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S U M M A R Y
We derive an explicit formula relating a recovered 3-D seismic slowness image to the ac-
tual seismic slowness under the assumption that a tomographically complete collection of
finite-frequency traveltime shifts is inverted using linearized ray theory. The tomographically
recovered image is blunted, or diminished in amplitude, and blurred, or spread laterally, as a
result of wave front healing and other finite-frequency diffraction effects. The 1-D spreading
varies as the cube root of the amplitude reduction, so that total volume-integrated slowness is
conserved.
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1 I N T RO D U C T I O N

Traveltime tomography is a mature seismic exploration method, which has been used to map the 3-D structural details of the earth’s interior
on a variety of scales from a single oil field to the entire mantle. The resolution and fidelity of tomographic images is marred by three
different factors: (i) errors in the measured traveltimes, (ii) uneven or incomplete illumination of the region under study, and (iii) deficiencies
in the forward-modelling theory underlying the inversion. One such theoretical deficiency is the almost universal reliance upon seismic ray
theory, which is an infinite-frequency approximation. In this ray-theoretical approximation, measured traveltimes are sensitive only to the
structure along an infinitesimally thin geometrical ray between the source and receiver. The traveltimes of real, finite-frequency seismic waves
are subject to diffraction and wave front healing effects and they are sensitive to 3-D structure off of the geometrical ray. In this paper, we
consider the limitations upon tomographic resolution resulting from the finite-frequency character of seismic waves. In doing so, we shall
ignore the other two factors that degrade tomographic images: noisy measurements and inadequate ray path coverage. These latter effects are
thoroughly addressed in all well-designed tomographic studies through the use of checkerboard tests and other such ‘what if’ forward-problem
simulations. The resolution limit under consideration here is the intrinsic limit resulting from diffraction. We examine this finite-frequency
diffraction limit strictly within the context of the linearized traveltime inverse problem. In Section 6 we compare our results with the recent
resolution-limit analysis of Sheng & Schuster (2003).

2 S TAT E M E N T O F T H E P RO B L E M

The highly idealized gedanken experiment considered is illustrated in Fig. 1. A smooth, isolated, seismic slowness anomaly δσ (x) is embedded
in an otherwise homogeneous medium, with constant slowness σ (x) = σ . Two parallel planes, one covered with a dense array of seismic
sources and the other with a dense array of receivers, are separated by a distance L, as shown. The 3-D slowness perturbation δσ (x) is presumed
to be slight, compared to the background slowness,

|δσ (x)| � σ, (1)

so that seismic rays do not deviate substantially from the straight lines connecting the sources and receivers. Every source is presumed to be
detonated in turn and recorded only by the receiver in the complementary position on the opposing plane. This results in a 2-D sample of
traveltime residuals δT , measured with respect to the time T = σ L required to traverse the background medium. The source and receiver
arrays maintain a fixed position with respect to each other, however, they are presumed to be mounted on giant gimbals enabling such a 2-D
sample of traveltime residuals δT to be measured for every possible orientation of the straight ray paths. Thus, the tomographic sampling of
the anomaly δσ (x) by rays of length L is perfect. The measured traveltime residuals δT are presumed to be noise-free.

The residuals are assumed to have been measured by cross-correlation of an observed waveform s obs(t) with the corresponding synthetic
waveform s syn(t), computed in the background medium:∫ t2

t1

sobs(t)ssyn(t − δT ) dt = maximum, (2)
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δσ(x) = constant
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Figure 1. Cartoon illustrating the idealized tomographic inverse problem considered in this paper. A 3-D slowness anomaly δσ (x), depicted here by a
peanut-shell-shaped isosurface, is sampled by a family of straight, parallel seismic rays, depicted by heavy solid lines. The rays are of equal length L and
the source and receiver arrays are distributed continuously over their respective planes. The planes can be rotated to all possible angular orientations, so that
the tomographic sampling of the anomaly is perfect. We seek to recover the 3-D slowness distribution δσ (x) from the infinite suite of measured traveltime
residuals δT .

where the time window, t 1 ≤ t ≤ t 2, is chosen to include the entire synthetic pulse. If the medium is an acoustic fluid and the receivers record
pressure variations, the synthetic response is given by (Morse & Ingard 1968)

ssyn(t) = ρṁ(t − σ L)

4π L
, (3)

where ρ is the fluid density, m(t) is the instantaneous rate of change of an infinitesimally small volume situated at the source and the dot denotes
differentiation with respect to time. Upon linearization of eq. (2), we obtain a first-order relation between the cross-correlation traveltime shift
δT and the 3-D slowness anomaly δσ (x):

δT =
∫ ∫ ∫ ∞

−∞
K (x) δσ (x) d3x. (4)

Throughout this paper, we shall consider integrals such as that in eq. (4) to be over all of space, ‖x‖ < ∞; in practice, the integration can
obviously be confined to the region in which δσ (x) 
= 0. The quantity K(x) is the Fréchet kernel expressing the sensitivity of the finite-frequency
traveltime measurement δT to the slowness perturbation at the point x. In the case of a homogeneous background medium, this kernel is given,
exactly, by (Dahlen et al. 2000; Hung et al. 2001)

K (x) = σ

2π

(
L

L ′L ′′

) ∫ ∞
0 ω3|ṁ(ω)|2 sin(ω
T ) dω∫ ∞

0 ω2| ṁ(ω)|2dω
, (5)

where L′ and L′ are the source-to-scatterer and scatterer-to-receiver distances, as shown in the top of Fig. 2. The presence in eq. (5) of
the normalized power spectrum |ṁ(ω)|2 serves as a reminder that this is the Fréchet kernel for a finite-frequency traveltime measured by
cross-correlation with a broad-band synthetic pulse (ssyn(t)), composed of waves having all angular frequencies ω. The quantity


T = σ (L ′ + L ′′ − L) (6)

is the additional time required for a wave to travel the dog-leg path from the source to the scatterer x to the receiver, rather than taking the
straight source-to-receiver path. The results (eqs 4–6) are obtained by invoking the Born approximation, which ignores all but single-scattering
interactions.

A cross-section through a typical traveltime Fréchet kernel K(x) is shown in the bottom of Fig. 2. It is noteworthy that the sensitivity is
identically zero everywhere along the geometrical ray (Dahlen et al. 2000; Zhao et al. 2000). This feature, together with the familiar upward
curvature of seismic rays within a spherically symmetric earth, has given rise to the whimsical terminology banana-doughnut kernel; in the
homogeneous-background case under consideration here, a hollow cucumber or zucchini might be a more appropriate culinary metaphor. The
source-pulse power spectrum |ṁ(ω)|2 used to plot the sensitivity kernel K(x) in Fig. 2 is given by

|ṁ(ω)|2 = (ω2σ 2λ2/2π ) exp(−ω2σ 2λ2/4π2). (7)

The parameter λ is the characteristic wavelength of the waves comprising the pulse. We shall use the simple analytical spectrum (eq. 7) for
illustrative purposes throughout this paper.
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Figure 2. (Top) Geometrical notation used in the specification of the traveltime Fréchet kernel K(x). Every single scatterer x is projected onto the nearest point
on the straight-line source-to-receiver ray. Distance along the ray is denoted by l and distance perpendicular to the ray is denoted by η. The distances L′ and
L′ are measured from the source to the scatterer and from the scatterer to the receiver, respectively. (Bottom) Foreshortened perspective view of a longitudinal
cross-section through the sensitivity kernel K(x). Black dots show the locations of the source and receiver; the path length in this example is L = 20λ, where
λ is the characteristic wavelength. A measured traveltime residual δT is maximally sensitive to slowness variations δσ (x) in a circularly symmetric cucumber
skin surrounding the source-to-receiver ray. The diameter of the region of significant traveltime sensitivity is

√
λL , measured at the midpoint of the ray.

It is now possible to give a precise statement of the problem that will be solved in this paper. We assume that the measured traveltime
residuals δT are adequately described by the linearized relation (eqs 4–5), however, that they are inverted using the corresponding linearized
ray-theoretical relation

δTray =
∫ L

0
δσ (x) dl, (8)

where the 1-D integral is evaluated along the straight source-to-receiver ray. How is the recovered image, which we shall denote by δσ̂ (x),
related to the actual image δσ (x), assuming that the ray coverage is tomographically complete, as described above?

To expedite the analysis, we shall restrict consideration to a slowness anomaly δσ (x) whose characteristic spatial dimension a is small
compared with the source-receiver distance,

a � L , (9)

and we shall assume that the anomaly is situated approximately midway between the source and receiver:

L ′ ≈ L ′′ ≈ L/2. (10)

The detour traveltime (eq. 6) can, in this case, be approximated by the first term in a paraxial expansion:


T ≈
(

2σ

L

)
η2, (11)

where η is the perpendicular distance from the ray to the scatterer x, as illustrated in the top of Fig. 2. In this approximation, the sensitivity
kernel K(x) is independent of the distance l along the ray and a function only of the path-perpendicular offset η:

K (η) = 2σ

π L N

∫ ∞

0
ω3|ṁ(ω)|2 sin

(
2ωσ

L
η2

)
dω, (12)

where we have introduced a shorthand notation for the normalization integral in the denominator of eq. (5):

N =
∫ ∞

0
ω2|ṁ(ω)|2 dω. (13)

The approximation (eq. 12) substantially simplifies the 3-D integration over the scatterer location x in eq. (4). It is noteworthy that we do not
impose any restriction upon the spatial extent of the slowness anomaly δσ (x) relative to the mid-ray diameter

√
λL of the region of significant

traveltime sensitivity: the only restriction is that the anomaly must be small compared with the source-receiver ray length L.
The extent to which wave front healing and other finite-frequency diffraction phenomena affect traveltime measurements δT is governed

by the dimensionless ratio

d = a√
λL

. (14)
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318 F. A. Dahlen

Physically, d is a measure of how well the anomaly δσ (x) fits into the insensitive hollow region of the kernel K(x); following Baig et al.
(2003), we shall refer to the ratio (eq. 14) as the doughnut-hole parameter. Whenever the spatial size of the anomaly is large compared with
the width of the kernel, we expect ray theory to be valid, and, indeed, Baig & Dahlen (2004) have verified that eqs (4)–(5) reduce, exactly, to
eq. (8): δT → δT ray in the limit d → ∞. It is well known that inversion of a tomographically complete suite of ray-theoretical traveltimes
δT ray will result in an artifact-free recovered image: δσ̂ (x) → δσ (x) in the limit d → ∞. For a complete suite of finite-frequency traveltimes
δT , characterized by finite values of d, the recovered image will be imperfect: δσ̂ (x) 
= δσ (x). The question is: how can we characterize this
diffraction-induced blunting and blurring?

3 M AT H E M AT I C A L R E V I E W

We begin with a brief review of some classical mathematical results, intended primarily to establish a convenient notation. In particular, we
introduce two well-known integral transformations that will play a critical role in the analysis.

3.1 Radon transform

Let f (x) be an arbitrary real, scalar-valued function defined in a connected region of 3-D space, and let

P = (x : p = p̂ · x) (15)

be a plane passing through this region, as shown in Fig. 3. The 3-D Radon transform of f (x) is the 2-D integral over this plane:

fR(p, p̂) =
∫ ∫

P
f (x) d2x. (16)

As indicated, it is convenient to regard fR(p, p̂) as a function of two variables: the offset p of the plane P from a parallel plane through the
origin, and the orientation of P, as specified by its unit normal p̂. Knowledge of fR(p, p̂) for all possible offsets p and orientations p̂ enables
us to reconstruct the original function f (x) via the inverse Radon transform,

f (x) = − 1

8π 2

∫ ∫
�

∂2
p fR(p = p̂ · x, p̂) d2p̂, (17)

where � = {p̂ : ‖p̂‖2 = 1} denotes the unit sphere. It is noteworthy that f (x) is determined by the 2-D integral information on all planes P
passing through the point x. The second partial derivative ∂2

p must be computed prior to evaluation of fR(p, p̂) at p = p̂ · x and integration
over all angular orientations p̂.

To verify the result (eq. 17) we rewrite the integral over the plane P in eq. (16) as an integral over all of 3-D space by introducing a Dirac
delta function:

fR(p, p̂) =
∫ ∫ ∫ ∞

−∞
δ(p − p̂ · y) f (y) d3y = 1

2π

∫ ∫ ∫ ∞

−∞
d3y

∫ ∞

−∞
dω eiω(p−p̂·y) f (y). (18)

direction p̂

offset from

plane through

origin p

isosurface

f(x) = constant

plane P

Figure 3. Cartoon illustrating the geometrical character of the 3-D Radon transform fR(p, p̂) of a function f (x). The arguments p and p̂ specify the offset
from the origin and the angular orientation of the plane P = {x : p = p̂ · x}, respectively.
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Resolution limit of traveltime tomography 319

Upon taking the ∂2
p derivative of eq. (18), inserting the result into eq. (17) and interchanging the order of integration, we obtain

f (x) = 1

8π3

∫ ∫ ∫ ∞

−∞
d3y

∫ ∫
�

d2p̂
∫ ∞

0
dω ω2eiωp̂·(x−y) f (y), (19)

where we have exploited the symmetry of the integrand to limit the innermost integral to positive angular frequencies, 0 ≤ ω ≤ ∞. Upon
making the substitution k = ωp̂ and noting that ω2 dω d2p̂ = d3k, we can rewrite eq. (19) in the form

f (x) =
∫ ∫ ∫ ∞

−∞
d3y

[
1

8π 3

∫ ∫ ∫ ∞

−∞
d3ke−ik·(y−x)

]
f (y). (20)

The quantity in brackets is the 3-D Fourier representation of the Dirac delta function,

δ(y − x) = 1

8π 3

∫ ∫ ∫ ∞

−∞
e−ik·(y−x) d3k, (21)

so that eq. (19) reduces to an identity:

f (x) =
∫ ∫ ∫ ∞

−∞
δ(y − x) f (y) d3y = f (x). (22)

This confirms that eqs (16) and (17) are a 3-D integral transform pair; the above proof is a reproduction of that given by Miller et al. (1987).

3.2 Abel transform

The Abel transform of a scalar-valued function f (r) of a single real variable r is defined by

fA(q) =
∫ ∞

−∞
f (

√
q2 + l2) dl = 2

∫ ∞

q

r f (r ) dr√
r 2 − q2

. (23)

The corresponding inverse Abel transform is (Bracewell 1965)

f (r ) = − 1

π

∫ ∞

r

f ′
A(q) dq√
q2 − r 2

, (24)

where a prime denotes differentiation with respect to the argument. To verify these relations we differentiate eq. (23),

f ′
A(q) = 2q

∫ ∞

q

f ′(r ) dr√
r 2 − q2

, (25)

substitute the result into eq. (24) and interchange the order of integration:

f (r ) = − 2

π

∫ ∞

r

q dq√
q2 − r 2

∫ ∞

q

f ′(u) du√
u2 − q2

= − 2

π

∫ ∞

r
f ′(u) du

∫ u

r

q dq√
q2 − r 2

√
u2 − q2

. (26)

The interior integral is elementary,∫ u

r

q dq√
q2 − r 2

√
u2 − q2

= π

2
, (27)

so that eq. (26) reduces to

f (r ) = −
∫ ∞

r
f ′(u) du = f (r ). (28)

This confirms that eqs (23) and (24) are a 1-D integral transform pair.

3.3 Radon–Abel relations

The Abel transform arises naturally in applications of the 3-D Radon transform ↔ inverse transform relationship (eqs 16–17) to spherically-
symmetric functions of the form

f (x) = f (r ) only, where r = ‖x‖. (29)

It is evident that the Radon transform (eq. 16) of such a spherically-symmetric function is independent of the orientation p̂ of the plane P:

fR(p, p̂) = fR(p) only. (30)
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plane P

spherical isosurface
f(r) = constant

cross-ray
coordinate m

along-ray
coordinate l

offset from
plane through

origin p

direction p̂

Figure 4. The 3-D Radon transform f R(p) of a spherically-symmetric function f (r) is independent of the orientation p̂ of the plane P. Points x on the plane
P can be described using the three Cartesian coordinates l, m, p. The 2-D integral f R(p) can be evaluated by first integrating with respect to −∞ ≤ l ≤ ∞
along a ray and then adding the contributions from all rays by integration over −∞ ≤ m ≤ ∞. The value of f R(p) does not depend upon the orientation of the
in-plane coordinates l, m.

As illustrated in Fig. 4, we can compute the 2-D integral of f (r) over an offset plane P using an orthogonal system of along-ray and cross-ray
coordinates l, m. The orientation on the plane of l, m may be chosen arbitrarily. The 1-D Radon transform (eq. 30) is given by

fR(p) =
∫ ∞

−∞

∫ ∞

−∞
f (

√
p2 + l2 + m2) dl dm

=
∫ ∞

−∞
fA(

√
p2 + m2) dm

= 2
∫ ∞

p

q fA(q) dq√
q2 − p2

,

(31)

where we have substituted r 2 = p2 + l2 + m2 and evaluated the resulting integral over r to obtain the second relation. Eq. (31) stipulates that
f R(p) is the double Abel transform of f (r), a relationship which may be expressed using an obvious shorthand notation:

fR(p) = fAA(p). (32)

A single Abel transform f A(q) in this 3-D context can be interpreted as a 1-D line integral (eq. 23) of f (r) along a ray R that is offset from
the origin by a distance q, as illustrated in the top left of Fig. 5; the second Abel transform in eqs (31) and (32) accounts for the integration
over all rays m on the plane P, as illustrated in the top right of Fig. 5.

Upon writing the concatenated Abel transformation (eq. 32) out in full and interchanging the order of integration, we obtain a much
simpler representation of the spherically-symmetric Radon transform:

fR(p) = 2π

∫ ∞

p
r f (r ) dr, (33)

where we have again used the identity (eq. 27). The inverse of eq. (33) is obviously

f (r ) = − f ′
R(r )

2πr
. (34)

We can alternatively obtain the simple relation (eq. 34) by specializing the 3-D inverse Radon transform (eq. 17) to the case of a spherically-
symmetric function (eq. 29). The orientation p̂ of a plane P passing through a point x can be parametrized in that case by a single angle
0 ≤ θ ≤ π , as illustrated in the bottom of Fig. 5. The offset of the plane from the origin is p = r cos θ and the differential solid angle is
d2p̂ = 2π sin θdθ , so that eq. (17) reduces to

f (r ) = − 1

4π

∫ π

0
sin θ f ′′

R (p = r cos θ ) dθ = − 1

4πr

∫ r

−r
f ′′
R (p) dp = − f ′

R(r )

2πr
. (35)

4 S P H E R I C A L LY- S Y M M E T R I C S L O W N E S S A N O M A LY

We begin our diffraction-limit analysis by considering the case of a spherically-symmetric slowness anomaly of the form

δσ (x) = δσ (r ) only, where r = ‖x‖. (36)

The more general case of an arbitrary 3-D slowness anomaly δσ (x) will be treated in Section 5.
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q

l
ray R

p q

m
plane P

r
θ

p

plane P

spherical

function f(r)

Figure 5. (Top left) The Abel transform f A(q) of a spherically-symmetric function f (r) is the 1-D integral along a ray R of impact parameter q. (Top right) The
double Abel or 3-D Radon transform f AA(r ) = f R(r ) involves an additional cross-ray integration over −∞ ≤ m ≤ ∞. An individual ray of impact parameter
q =

√
p2 + m2 is depicted in this view by a dot. (Bottom) Reconstruction of the original function f (r) from its Radon transform f R(p) requires integration

over all planes P passing through the observation point, depicted here by a dot. In the spherically symmetric case, a single angle 0 ≤ θ ≤ π is sufficient to
specify the orientation p̂ of the plane.

4.1 Ray-theoretical traveltimes

The ray-theoretical traveltime residual along a seismic ray that is offset by a distance q from the origin is the Abel transform of the slowness
distribution δσ (r):

δTray(q) =
∫ ∞

−∞
δσ (

√
q2 + l2) dl = 2

∫ ∞

q

rδσ (r ) dr√
r 2 − q2

= δσA(q). (37)

The inverse Abel transform (eq. 24) enables the slowness to be completely recovered from a 1-D suite of traveltime residuals collected at all
possible impact parameters, 0 ≤ q ≤ ∞:

δσ (r ) = − 1

π

∫ ∞

r

δT ′
ray(q) dq√
q2 − r 2

. (38)

In the straight-ray approximation, this relation provides the basis for the determination of the refractivity profiles of planetary atmospheres
from radio occultation observations (e.g. Ahmad & Tyler 1998).

Eqs (32) and (37) together stipulate that the Abel transform of the traveltime distribution δT ray(q) is the Radon transform of the slowness
perturbation:

δTray,A(p) =
∫ ∞

−∞
δTray(

√
p2 + m2) dm = 2

∫ ∞

p

qδTray(q) dq√
q2 − p2

= δσR(p). (39)

Using eq. (34), we obtain an alternative expression for the tomographically recovered image:

δσ (r ) = − δσ ′
R(r )

2πr
= − δT ′

ray,A(r )

2πr
. (40)

This spherically-symmetric version of the 3-D inverse Radon transform is more convenient than the more familiar 1-D Abel inverse (eq. 38)
in the present application.

4.2 Traveltime area and anomaly mass

The cross-sectional area of the circularly-symmetric traveltime distribution δT ray(q) in the receiver plane is given by

2π

∫ ∞

0
qδTray(q) dq = 4π

∫ ∞

0
dqq

∫ ∞

q

rδσ (r ) dr√
r 2 − q2

= 4π

∫ ∞

0
r 2δσ (r ) dr, (41)
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z

x

q

spherical

anomaly δσ(r)

z

x

plane P

p q

m

Figure 6. (Left) Geometry used to compute the finite-frequency traveltime residual δT(q) through a spherically symmetric slowness anomaly δσ (r). Dot
depicts the ray of impact parameter q; surrounding grey doughnut is a schematic depiction of the surrounding 3-D sensitivity kernel K (

√
x2 + (z − p)2).

(Right) Computation of the Abel transform δT A(p) requires an additional integration over all rays −∞ ≤ m ≤ ∞ on a plane P. Grey doughnut shows the 3-D
kernel K (

√
(x − m)2 + (z − p)2) surrounding an offset ray. The diameter of the anomaly in this pictorial example is substantially larger than the cross-path

diameter of the kernel, a � √
λL . The analysis is, however, independent of the magnitude of the ratio d = a/

√
λL .

where we have interchanged the order of integration and evaluated the integral over q to obtain the final relation. The quantity on the right
side of eq. (41) is the volume integral of the spherically-symmetric 3-D slowness perturbation δσ (r): for brevity, we shall refer to this as the
anomaly mass in what follows.

4.3 Finite-frequency traveltimes

Suppose now that the ray-theoretical traveltime residuals δT ray are replaced by the corresponding finite-frequency traveltime residuals δT ,
computed using eq. (4). The traveltime residual δT(q) along a ray with impact parameter q is given in terms of the approximate 3-D Fréchet
sensitivity kernel (eq. 12) by

δT (q) =
∫ ∫ ∫ ∞

−∞
K (

√
x2 + (z − q)2) δσ (

√
x2 + y2 + z2) dx dy dz, (42)

where x, y, z are a system of Cartesian coordinates, with the ray aligned along the y-axis and passing through the z-axis, as shown on the left
side of Fig. 6. The 3-D integral (eq. 42) can be reduced by first using the substitution r2 = x2 + y2 + z2 to eliminate the along-ray variable y,
then substituting x = u cos φ, z = u sin φ and evaluating the integral over the 2-D polar angle φ. The result of these manipulations is

δT (q) = 8σ

L N

∫ ∞

0
dω ω3|ṁ(ω)|2

∫ ∞

0
du u sin

[
2ωσ

L
(q2 + u2)

]
J0

(
4ωσ

L
qu

) ∫ ∞

u

rδσ (r ) dr√
r 2 − u2

, (43)

where N is the normalization integral (eq. 13) and J 0(z) is the Bessel function of order zero. The innermost integral in eq. (43) is one-half
times the Abel transform of the slowness anomaly: this enables us to express δT(q) in terms of the corresponding ray-theoretical traveltime
residual δT ray(q), using the relation (37) to give

δT (q) =
∫ ∞

0
H (q, q ′) δTray(q ′) dq ′, (44)

where

H (q, q ′) = 4σq ′

L N

∫ ∞

0
ω3|ṁ(ω)|2 sin

[
2ωσ

L
(q2 + q ′2)

]
J0

(
4ωσ

L
qq ′

)
dω. (45)

By interchanging the order of integration in eq. (43), we can express δT(q) in an analogous manner in terms of δσ (r):

δT (q) =
∫ ∞

0
Q(q, r ) δσ (r ) dr, (46)

where

Q(q, r ) = 8σr

L N

∫ ∞

0
ω3|ṁ(ω)|2

∫ r

0

sin
[

2ωσ

L (q2 + u2)
]

J0

(
4ωσ

L qu
)

√
r 2 − u2

du dω. (47)

Referring to the right side of Fig. 6, we compute the Abel transform of the traveltime residual,

δTA(p) =
∫ ∞

−∞
δT (

√
p2 + m2) dm = 2

∫ ∞

p

qδT (q) dq√
q2 − p2

, (48)

by integrating over all rays m on a plane P offset from the origin by a distance p:

δTA(p) =
∫ ∞

−∞
dm

∫ ∫ ∫ ∞

−∞
K (

√
(x − m)2 + (z − p)2) δσ (

√
x2 + y2 + z2) dx dy dz. (49)
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Eq. (49) can be reduced by first evaluating the integral over m and then using the substitution r 2 = x2 + y2 + z2 to eliminate x and y
simultaneously:

δTA(p) = 4π

N

√
2σ

π L

∫ ∞

0
dω ω5/2|ṁ(ω)|2

∫ ∞

0
dz cos

[
2ωσ

L
(p2 + z2) − π

4

]
cos

(
4ωσ

L
pz

) ∫ ∞

z
rδσ (r ) dr. (50)

Upon interchanging the order of integration, we can rewrite this result in the alternative form, analogous to eq. (46):

δTA(p) =
∫ ∞

0
P(p, r ) δσ (r ) dr, (51)

where

P(p, r ) = 4πr

N

√
2σ

π L

∫ ∞

0
ω5/2|ṁ(ω)|2

∫ r

0
cos

[
2ωσ

L
(p2 + z2) − π

4

]
cos

(
4ωσ

L
pz

)
dz dω. (52)

It is noteworthy that eqs (50) and (51)–(52) are simpler than their counterparts eqs (43) and (46)–(47), despite an additional initial integration.

4.4 Recovered image

It is now a straightforward matter to find the recovered spherically-symmetric slowness perturbation δσ̂ (r ) under the assumption that a
tomographically complete suite of finite-frequency traveltime residuals δT(q) is inverted using ray theory. Adopting a 3-D Radon transform
perspective, we define δσ̂ (r ) by the finite-frequency analogue of eq. (40):

δσ̂ (r ) = − δσ̂ ′
R(r )

2πr
= − δT ′

A(r )

2πr
= − 1

2πr

∫ ∞

0
∂r P(r, r ′) δσ (r ′) dr ′. (53)

Upon using eq. (52) to compute the partial derivative ∂ r P(r , r ′) and evaluating the resulting integral over z, we obtain

δσ̂ (r ) =
∫ ∞

0
G(r, r ′) δσ (r ′) dr ′, (54)

where

G(r, r ′) = 2

N

√
2σ

π L

(
r ′

r

)∫ ∞

0
ω5/2|ṁ(ω)|2 sin

[
2ωσ

L
(r 2 + r ′2) − π

4

]
sin

(
4ωσ

L
rr ′

)
dω. (55)

The quantity G(r, r′) can be regarded as a filter, which acts upon the actual image δσ (r) to form the blunted and blurred image δσ̂ (r ). This
finite-frequency, spherically-symmetric blurring filter depends upon the path length L and the power spectrum |ṁ(ω)|2 of the cross-correlated
pulse, as expected.

By construction, the finite-frequency traveltime distribution δT(q) in eqs (46)–(47) and the recovered slowness anomaly δσ̂ (r ) in eqs
(54)–(55) are an Abel transform pair:

δT (q) =
∫ ∞

−∞
δσ̂ (

√
q2 + l2) dl = 2

∫ ∞

q

rδσ̂ (r ) dr√
r 2 − q2

= δσ̂A(q), (56)

δσ̂ (r ) = − 1

π

∫ ∞

r

δT ′(q) dq√
q2 − r 2

. (57)

Eqs (56) and (57) assert that δT(q) is the ray-theoretical traveltime residual through the blunted and blurred anomaly δσ̂ (r ). Attempts to
verify these forward-inverse relations directly, or to determine δT A(p) directly from the defining relation (eq. 48), lead to apparently intractable
integrations. The initial integration over all rays −∞ ≤ m ≤ ∞ in eq. (49) seems to be the key to the simplification, enabling the derivation
of the explicit δσ (r ) → δσ̂ (r ) relation (eqs 54–55).

4.5 Conservation of mass and area

The total mass of the recovered spherically symmetric anomaly δσ̂ (r ) is

4π

∫ ∞

0
r 2δσ̂ (r ) dr = 4π

∫ ∞

0
r 2 dr

∫ ∞

0
G(r, r ′) δσ (r ′) dr ′. (58)

The integral over r can be evaluated following an interchange in the order of integration:∫ ∞

0
r 2G(r, r ′) dr = r ′2, (59)

so that eq. (58) reduces to the conservation relation

4π

∫ ∞

0
r 2δσ̂ (r ) dr = 4π

∫ ∞

0
r 2δσ (r ) dr. (60)

The cross-sectional area of the circularly-symmetric, finite-frequency traveltime distribution δT(q) in the receiver plane is

2π

∫ ∞

0
qδT (q) dq = 4π

∫ ∞

0
dq q

∫ ∞

q

rδσ̂ (r ) dr√
r 2 − q2

= 4π

∫ ∞

0
r 2δσ̂ (r ) dr, (61)
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Figure 7. (Top) Cross-section through the dimensionless traveltime distribution �(q/a, d) for doughnut-hole parameters d = 0.4, 0.6, 0.8 and d → ∞.
(Bottom) Cross-section through the dimensionless slowness anomaly �(q/a, d) for the same doughnut-hole parameters. All plots have been mirrored so that
q/a and r/a increase from the center in both directions. The limiting ray-theoretical profiles are given by �(q/a, ∞) = 1

2

√
π exp(−4r2/a2) and �(r/a, ∞) =

exp(−4r2/a2).

where we have made use of eq. (56) and then followed the same argument used to derive eq. (41) to obtain the first and second relations,
respectively. Combining eqs (60) and (61) we obtain a fourfold identity:

4π

∫ ∞

0
r 2δσ̂ (r ) dr = 4π

∫ ∞

0
r 2δσ (r ) dr

= 2π

∫ ∞

0
qδT (q) dq = 2π

∫ ∞

0
qδTray(q) dq. (62)

This result stipulates that both the total mass of a recovered anomaly and the total traveltime area are independent of the frequency content
|ṁ(ω)|2 of the probing wave.
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4.6 Example: Gaussian sphere

We illustrate the results in Sections 4.4 and 4.5 by considering the simple case of a Gaussian slowness distribution:

δσ (r ) = exp(−4r 2/a2), (63)

where a pre-multiplier with the proper units of time/length is understood. We shall refer to the quantity a as the characteristic diameter of the
slow sphere. The ray-theoretical traveltime distribution in the wake of such a Gaussian sphere is also a Gaussian:

δTray(q) = 1

2

√
πa exp(−4r 2/a2). (64)

For any pulse power spectrum |ṁ(ω)|2 and any spherically-symmetric slowness anomaly δσ (r), the recovered anomaly (eq. 54) and the
finite-frequency traveltime distribution (eq. 56) may be written in dimensionless form as

δσ̂ (r ) = �(r/a, d), δT (q) = a�(q/a, d), (65)

where d = a/
√

λL is the doughnut-hole parameter defined in eq. (14). Expressions for the dimensionless functions �(r/a, d) and �(q/a, d)
are derived in Appendix A, for the case that |ṁ(ω)|2 is given by eq. (7) and δσ (r) is given by eq. (63).

Plots of the recovered anomaly δσ̂ (r ) and the traveltime distribution δT(q), obtained by numerical evaluation of eqs (A3) and (A5), are
illustrated in Fig. 7. Both δσ̂ (r ) and δT(q) reduce to the corresponding ray-theoretical values, given by eqs (63) and (64), in the limit d →
∞. As the doughnut-hole parameter d is reduced, δσ̂ (r ) and δT(q) exhibit a reduction in their maximum magnitude, combined with a less
dramatic lateral spreading. For doughnut-hole parameters less than d ≈ 0.5, the maximum of the recovered anomaly δσ̂ (r ) no longer occurs
at the center of the sphere, r = 0; instead, δσ̂ (r ) exhibits a local minimum at r = 0, surrounded by a spherically-symmetric maximum that
gradually moves out to r → ∞ as d → 0. The variation of the central and maximum slowness with doughnut-hole parameter d is shown in
Fig. 8. The magnitude is reduced to half of its actual value, δσ̂ (0) = δσ̂max = 0.5 at a value d ≈ 0.6. For doughnut-hole parameters less than
d ≈ 0.3, the core of the recovered anomaly is negative, δσ̂ (0) < 0.

4.7 Point spread function

We consider next a slowness anomaly that is a 3-D Dirac delta distribution:

δσ (r ) = δ(r )

4πr 2
, (66)

where a pre-multiplier with the proper units, in this case time × (length)2, is understood. We denote the recovered image and the associated
finite-frequency traveltime distribution corresponding to eq. (66) by

δσ̂ (r ) = S(r ), δT (q) = δTS(q). (67)

Borrowing from the lexicon of optics and astronomy, we shall refer to the recovered Dirac delta image S(r) as the point spread function. Upon
inserting eq. (66) into the representation (eq. 54), we obtain

S(r ) = lim
r ′→0

[
G(r, r ′)

r ′

]
. (68)

The limit in eq. (68) can be evaluated with the aid of l’ Hôpital’s rule:

S(r ) =
(

2σ

π L

)3/2
∫ ∞

0 ω7/2|ṁ(ω)|2 sin
(

2ωσ

L r 2 − π

4

)
dω∫ ∞

0 ω2|ṁ(ω)|2 dω
. (69)
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Figure 8. Variation of the central and maximum values of the recovered slowness anomaly δσ̂ (r ) as a function of the doughnut-hole parameter d = a/
√

λL .
The input anomaly δσ (r) is a Gaussian sphere, of characteristic diameter a, given by eq. (63). In the ray-theoretical limit, the anomaly is fully recovered:
δσ̂ (0) = δσ̂max → 1 as d → ∞.
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Figure 9. (Top) Cross-section through the dimensionless point spread traveltime distribution λL δTS(q). (Bottom) Cross-section through the dimensionless
point spread function (λL)3/2 S(r ). Both plots have been mirrored so that q/

√
λL and r/

√
λL increase from the center in both directions. The source-pulse

power spectrum |ṁ(ω)|2 is given by eq. (7). The shape of δTS(q) is identical to that of the finite-frequency sensitivity kernel K(q), depicted in Fig. 2.

From eq. (42) we find (not surprisingly) that the associated traveltime distribution δTS(q) is identical to the cross-sectional shape of the
sensitivity kernel, given in eq. (12):

δTS(q) =
(

2σ

π L

) ∫ ∞
0 ω3|ṁ(ω)|2 sin

(
2ωσ

L q2
)

dω∫ ∞
0 ω2|ṁ(ω)|2 dω

. (70)

Dimensionless forms of eqs (69) and (70), suitable for numerical evaluation, are given in Appendix B. Cross-sectional plots of the point
spread function S(r) and associated traveltime distribution δTS(q) are displayed in Fig. 9. It is seen that a Dirac delta input is spread by a
ray-theoretical inversion into a layered, spherically-symmetric slowness distribution of diameter ∼ √

λL . The strongly oscillatory character
of the recovered image S(r) is particularly noteworthy: an interior core of negative slowness, S(r ) < 0, is surrounded by a mantle of positive
slowness, S(r ) > 0, and a crust of negative, then positive, slowness.
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5 A R B I T R A RY 3 - D S L O W N E S S A N O M A LY

We return now to the general 3-D problem posed in Section 2 and illustrated in Fig. 1: what is the character of the recovered image δσ̂ (x) in
the case of a non-spherically-symmetric slowness anomaly δσ (x)?

5.1 Recovered image

Eq. (69) describes the finite-frequency spreading of a Dirac delta distribution (eq. 66) centered at the origin x = 0. Subject to the premise that
the anomaly δσ (x) is small in extent, a � L , and situated approximately halfway between the source and receiver, L ′ ≈ L ′′ ≈ L/2, however,
every point x 
= 0 will be spread in exactly the same way. To find a general 3-D recovered image δσ̂ (x), we simply need to convolve the input
image δσ (x) with the point spread function (eq. 69):

δσ̂ (x) =
∫ ∫ ∫ ∞

−∞
G(x, x′) δσ (x′) d3x′, (71)

where

G(x, x′) =
(

2σ

π L

)3/2
∫ ∞

0 ω7/2|ṁ(ω)|2 sin
(

2ωσ

L ‖x − x′‖2 − π

4

)
dω∫ ∞

0 ω2|ṁ(ω)|2dω
. (72)

Eqs (71–72) are the 3-D analogue of the spherically-symmetric δσ (r ) → δσ̂ (r ) relations (54)–(55); the point spread function G(x, x′) =
S(‖x − x′‖) is the 3-D finite-frequency blurring filter. In the case of a spherically-symmmetric slowness anomaly (eq. 36), the 3-D integral
(eq. 71) reduces to

δσ̂ (r ) =
(

2σ

π L

)3/2 2π

N

∫ π

0
dθ sin θ

∫ ∞

0
dr ′r ′2δσ (r ′)

∫ ∞

0
dω ω7/2|ṁ(ω)|2 sin

[
2ωσ

L
(r 2 + r ′2 − rr ′ cos θ ) − π

4

]
, (73)

where r = ‖x‖, r ′ = ‖x′‖, cos θ = (x · x′)/rr ′, and N is the normalization integral defined in eq. (13). Upon interchanging the order of
integration and evaluating the integral over θ in eq. (73), we find that eqs (71–72) are consistent with eqs (54–55), as of course they must be.

5.2 Conservation of mass redux

The point spread function S(r) and associated finite-frequency traveltime distribution δTS(q) satisfy the spherically symmetric mass and area
conservation eqs (62):

4π

∫ ∞

0
r 2 S(r ) dr = 2π

∫ ∞

0
qδTS(q) dq = 1. (74)

Because a volumetric integral over all of space is unaffected by a translation, the 3-D point spread filter (eq. 72) must satisfy∫ ∫ ∫ ∞

−∞
G(x, x′) d3x = 1. (75)

Upon integrating eq. (71) over x and exploiting the identity (eq. 75), we obtain the 3-D generalization of the conservation of mass law
(eq. 60):∫ ∫ ∫ ∞

−∞
δσ̂ (x) d3x =

∫ ∫ ∫ ∞

−∞
δσ (x) d3x. (76)

Wave front healing and other finite-frequency effects will generally give rise to both a lateral spreading and a reduction in the maximum
amplitude of a recovered anomaly δσ̂ (x). The 3-D conservation law (eq. 76) guarantees that the spreading will always be a less significant
effect than the amplitude reduction; roughly speaking, we must have

â

a
∼

(
δσ̂max

δσmax

)−1/3

, (77)

where δσ̂max and â are the maximum magnitude and the characteristic linear dimension of the recovered image, respectively. The blunted and
blurred 1-D Gaussian profiles δσ̂ (r ) in Fig. 5 are consistent with the rule-of-thumb (eq. 77). In actual tomographic studies, with imperfect
geographical coverage, the image magnitude δσ̂max and dimension â will be affected by the damping and/or smoothing used to regularize the
inversion, as well as by finite-frequency effects; the conservation of mass law (eq. 76) strictly applies only in the limit of ideal ray coverage
and negligible damping and smoothing.

5.3 Examples

We illustrate the 3-D result (eqs 71–72) with two examples. The first is a 3-D dumbbell composed of two Gaussian spheres of characteristic
diameter a, offset from each other by a distance b = ‖b‖:

δσ (x) = 1

2

[
exp

(
−4

∥∥∥∥x − 1

2
b

∥∥∥∥
2

/a2

)
+ exp

(
−4

∥∥∥∥x + 1

2
b

∥∥∥∥
2

/a2

)]
. (78)
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Figure 10. (Top row) Axial cross-sections through a 3-D superposition (eq. 78) of two vertically aligned Gaussian spheres, separated by distances b = 0, b
= 0.5a, b = a and b = 1.5a (left to right). Contours of perturbed slowness δσ (x) are plotted at 0.075, 0.15, 0.225, 0.3 and 0.6; gray stippling denotes regions
where 0.3 < δσ (x) < 0.6; black denotes regions where δσ (x) > 0.6. (Middle row) Corresponding recovered images (eq. 79) for doughnut-hole parameter
d = a/

√
λL = 0.6. (Bottom row) Recovered images δσ̂ (x) for d = 0.4. The same irregular contouring scheme is used to plot δσ̂ (x); the closer spacing near

zero perturbed slowness enables details of the subdued images δσ̂ (x) to be seen.

The recovered anomaly δσ̂ (x) is a similar superposition of two blurred Gaussian spheres:

δσ̂ (x) = 1

2

[
�

(∥∥∥∥x − 1

2
b

∥∥∥∥/a, d

)
+ �

(∥∥∥∥x + 1

2
b

∥∥∥∥/a, d

) ]
. (79)

In the limit b = 0, eqs (78) and (79) reduce to the single-sphere results in eqs (63) and (65). Axial cross-sections through the input (d → ∞)
dumbbell δσ (x) are illustrated in Fig. 10 for various offsets b = 0, b = 0.5a, b = a and b = 1.5a. The recovered dumbbell is also shown for
two values of the doughnut-hole parameter, d = a/

√
λL = 0.6 and d = 0.4. The recovered images are spread laterally and diminished in

magnitude, in accordance with the rule-of-thumb (eq. 77). The blunting and blurring become increasingly pronounced as the doughnut-hole
parameter d is decreased: the side-lobes of the 3-D point spread function G(x, x′) = S(‖x − x′‖) conspire to produce three, weak, vertically
aligned blobs rather than two, in both the b = a, d = 0.4 and the b = 1.5a, d = 0.4 cross-sections.

Our second example is a superposition of 92 Gaussian spheres (eq. 63), arrayed in a plane to form the five-letter word PLUME. The
input (d → ∞) image δσ (x) and the recovered images δσ̂ (x) for doughnut-hole parameters d = 0.6 and d = 0.4 are shown in Fig. 11. The
d = 0.6 image is blurred but still recognizable; however, upon viewing the d = 0.4 image, a skeptic (perhaps from Caltech) might conclude
that this particular PLUME, and perhaps many others, did not exist.

6 D I S C U S S I O N

Sheng & Schuster (2003) have recently presented an analysis of the finite-frequency limit of traveltime tomography that is more general
than ours, in as much as they explicitly allow for the possibility of an irregular and incomplete source-receiver distribution and an arbitrary
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a

(λL)1/2

(λL)1/2

Figure 11. (Top) Superposition of 92 Gaussian spheres arrayed in a plane to form the word PLUME. Contours of perturbed slowness δσ (x) are plotted at 0.4
and 0.6; gray stippling denotes regions where δσ (x) > 0.6. The characteristic diameter a of a constituent sphere is shown on the right. (Middle) Corresponding
recovered image δσ̂ (x) for a doughnut-hole parameter d = a/

√
λL = 0.6. (Bottom) Recovered image δσ̂ (x) for d = 0.4. The same contouring scheme is used

to plot δσ̂ (x). Bull’s-eyes on right show the characteristic diameter
√

λL of the finite-frequency point spread filter G(x, x′).

background slowness distribution, σ (x) 
= constant. They derive a δσ (x) → δσ̂ (x) relationship in the form of eq. (71) in which the point spread
function G(x, x′) is expressed as a symbolic 3-D integration over a ‘domain determined by the frequency range and by those source-receiver
pairs for which the associated wave path and the recorded traveltimes can be influenced by the perturbation at x.’ They seek to determine only
the approximate 3-D extent of the point spread function G(x, x′), presenting a number of examples, in which the spreading is influenced not
only by finite-frequency effects, but also by well-known undersampling effects, which lead to streaking in the direction of any particularly
well-populated family of rays. In this paper, we have assumed that the tomographic coverage is perfect, in order to isolate the effects of
finite-frequency wave front healing. This simplification has enabled us to derive a much more explicit relation between the recovered and
input images, δσ̂ (x) and δσ (x). Our restriction to a homogeneous background medium is not a fundamental limitation because the rays
passing through a point x in a more general background medium may be considered to be locally straight: indeed, that is the basis of the
so-called generalized Radon transform (Beylkin 1985; Miller et al. 1987), which is the starting point of the analysis by Sheng & Schuster
(2003).
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7 A N T I B L U R R I N G R X

In principle, the correct slowness perturbation δσ (x) could be reconstructed from a blunted and blurred image δσ̂ (x) by deconvolution with
the 3-D point spread function G(x, x′). In the presence of traveltime measurement errors and imperfect ray coverage, this would be a highly
dubious undertaking in as much as it would be plagued by instabilities induced by the strong oscillatory layering of G(x, x′), displayed in
Fig. 9. It is preferable to use 3-D Fréchet sensitivity kernels K(x) to account for finite-frequency wave front healing effects directly in the
tomographic inversion, as done recently by Montelli et al. (2004a,b). Noise and limited ray sampling will always act to degrade seismic
tomographic images δσ̂ (x), however, the blunting and blurring resulting from finite-frequency diffraction effects can be easily accounted for.
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frequency traveltimes—I. Theory, Geophys. J. Int., 141, 157–174.

Hung, S.-H., Dahlen, F.A. & Nolet, G., 2001. Wave front healing: a banana-
doughnut perspective, Geophys. J. Int., 146, 289–312.

Miller, D., Oristaglio, M., & Beylkin, G., 1987. A new slant on seismic
imaging: Migration and integral geometry, Geophysics, 52, 943–964.

Montelli, R., Nolet, G., Masters, G., Dahlen, F.A. & Hung, S.-H., 2004b.
Global P and PP traveltime tomography: rays versus waves, Geophys. J.
Int., in press.

Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdahl, E.R. & Hung,
S.-H., 2004a. Finite-frequency tomography reveals a variety of plumes in
the mantle, Science, 303, 338–343.

Morse, P.M & Ingard, K.U., 1968. Theoretical Acoustics, McGraw-Hill, New
York, pp. 306–332.

Sheng, J. & Schuster, G.T., 2003. Finite-frequency resolution limits of wave
path traveltime tomography for smoothly varying velocity models, Geo-
phys. J. Int., 152, 669–676.

Zhao, L., Jordan, T.H. & Chapman, C.H., 2000. Three-dimensional Fréchet
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A P P E N D I X A : G AU S S I A N G RU N G E

For completeness, we present the formulae used to compute the recovered image and finite-frequency traveltime distribution,

δσ̂ (r ) = �(r/a, d), δT (q) = a�(q/a, d), (A1)

for the case

δσ (r ) = exp(−4r2/a2), |ṁ(ω)|2 = (ω2σ 2λ2/2π ) exp(−ω2σ 2λ2/4π2), (A2)

discussed in Section 4.6. The dimensionless slowness anomaly �(r/a, d) can be found by substituting eqs (A2) into eq. (54) and evaluating
the integral over r′. We obtain, after a lengthy calculation,

�(r/a, d) = d

2

(∫ ∞

0
u4e−u2/4π2

du

)−1 ∫ ∞

0
u9/2e−u2/4π2

e−4Br2/a2

× [
(B A+ + C A−) cos(4Cr 2/a2 − π/4) + (C A+ − B A−) sin(4Cr 2/a2 − π/4)

]
du,

(A3)

where

A± =



√
1 + 1

4 d4u2 ± 1

1 + 1
4 d4u2




1/2

, B =
1
4 d4u2

1 + 1
4 d4u2

, C =
1
2 d2u

1 + 1
4 d4u2

. (A4)

To determine the dimensionless traveltime distribution �(q/a, d), it is most convenient to return to the original 3-D integration in eq. (42) and
evaluate the integrals over the Cartesian coordinates y, x and z in that order. Another lengthy calculation leads to

�(q/a, d) =
√

π

2

(∫ ∞

0
u4e−u2/4π2

du

)−1 ∫ ∞

0
u4e−u2/4π2

e−4Bq2/a2 [
C sin(4Cq2/a2) + B sin(4Cq2/a2)

]
du. (A5)

The remaining integrals over the dimensionless frequency u = ωσλ in eqs (A3) and (A5) have been evaluated numerically to plot the results
shown in Figs 5 and 8. In the ray-theoretical limit, d → ∞, eqs (A3) and (A5) reduce to

�(r/a, ∞) = exp(−4r 2/a2), �(q/a, ∞) = 1

2

√
π exp(−4q2/a2). (A6)

The consistency of the above results with the mass and area conservation laws (eq. 62) can be verified by direct analytical integration.
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A P P E N D I X B : P O I N T S P R E A D S T U F F

The point spread function (eq. 69) and associated finite-frequency traveltime distribution (eq. 70) can be written in dimensionless form as

S(r ) =
(

2

πλL

)3/2
∫ ∞

0 u11/2e−u2/4π2
sin

(
2r2

λL u − π

4

)
du∫ ∞

0 u4e−u2/4π2 du
, (B1)

δTS(q) =
(

2

πλL

) ∫ ∞
0 u5e−u2/4π2

sin
(

2q2

λL u
)

du∫ ∞
0 u4e−u2/4π2 du

, (B2)

where it has been assumed that |ṁ(ω)|2 = (ω2σ 2λ2/2π ) exp(−ω2σ 2λ2/4π2). It is evident that S(r) is of the form (λL)−3/2 × (a dimensionless
function of r/

√
λL), whereas δTS(q) is of the form (λL)−1 × (a dimensionless function of q/

√
λL). The integrals over dimensionless frequency

u = ωσλ have been evaluated numerically to plot the curves in Fig. 9.
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