Geophys. J. Int. (2004) 157, 595-606 doi: 10.1111/5.1365-246X.2004.02114.x

A deterministic algorithm for experimental design applied
to tomographic and microseismic monitoring surveys

Andrew Curtis,!? Alberto Michelini,®> David Leslie! and Anthony Lomax*

1 Schiumberger Cambridge Research, High Cross, Madingley Road, Cambridge CB3 0EL, UK. E-mail: curtis@cambridge.oilfield.slb.com
2 University of Edinburgh, Department of Geology and Geophysics, Grant Institute, West Mains Road, Edinburgh, UK

3 Instituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/c, Sgonico 34010, Trieste, Italy
4Scientific Software, Mouans-Sartoux, France. E-mail: anthony@alomax.net, www.alomax.net

Accepted 2003 August 18. Received 2003 July 8; in original form 2002 August 20

SUMMARY

Most general experimental design algorithms are either: (i) stochastic and hence give different
designs each time they are run with finite computing power, or (ii) deterministic but converge
to results that depend on an initial or reference design, taking little or no account of the range
of all other possible designs. In this paper we introduce an approximation to standard mea-
sures of experimental design quality that enables a new algorithm to be used. The algorithm
is simple, deterministic and the resulting experimental design is influenced by the full range
of possible designs, thus addressing problems (i) and (ii) above. Although the designs pro-
duced are not guaranteed to be globally optimal, they significantly increase the magnitude of
small eigenvalues in the model—data relationship (without requiring that these eigenvalues be
calculated). This reduces the model uncertainties expected post-experiment. We illustrate the
method on simple tomographic and microseismic location examples with varying degrees of

seismic attenuation.

Key words: inversion, microseismicity, tomography.

1 INTRODUCTION

When data are difficult, time consuming or otherwise expensive to
acquire, the ability to decide in advance which data are likely to add
most information and hence to be most valuable becomes important
(Curtis 2000). There may be a trade-off between data value and cost
of data acquisition in order to decide which data will ultimately
be collected. The field of experimental design covers techniques
that accomplish this valuation and design process (e.g. Silvey 1980;
Atkinson & Donev 1992).

In geophysics, experimental design techniques have been applied
to seismic tomography problems (Curtis 1999a,b), electromagnetic
experiments (Maurer & Boerner 1998; Maurer ef al. 2000) and seis-
mic location (Kijko 1977; Rabinowitz & Steinberg 1990; Steinberg
et al. 1995). In all of these applications, and many others, the mea-
sure of data importance is defined in terms of the amount of informa-
tion each potential data set (each experimental design) is expected to
provide about specific model parameters of interest when the model—
data relationship is assumed to be approximately linear. However,
this measure is related in a highly non-linear way to the design.
This led all of the above authors to implement optimization algo-
rithms, which either use initial designs that are gradually modified
into improved designs (e.g. Kijko 1977; Rabinowitz & Steinberg
1990; Steinberg et al. 1995, all using the heuristic method of
Mitchell 1974), or use stochastic optimization methods (e.g. ge-
netic algorithm or simulated annealing) to find sets of good designs
(e.g. Smith ef al. 1992; Maurer & Boerner 1998; Curtis 1999a,b).
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The disadvantage of the first approach is that the best design found
always depends on the starting design used, and this starting design
contains no information about the range of all possible designs. The
disadvantage of the second approach is that their stochastic nature
implies that they do not necessarily achieve the same result each
time they are run; indeed, there is no guarantee that they will per-
form well at all given limitations of computing power and hence on
the number of designs that can be tested.

In this paper we present a new algorithm that can be used to design
any experiment deterministically when: (a) the number of possible
designs is finite, and (b) the model—data relationship is approxi-
mately linear. The final design is influenced by the full range of all
possible experimental designs. We achieve this by approximating
the usual measure of data importance: this approximation allows
a deterministic algorithm to be used to create a final design. This
approach confers advantages of (i) the repeatability of the design
process, and (ii) the guarantee of obtaining an experimental design
within a finite length of time for a problem of finite size. Although
the final design is not guaranteed to be globally optimal (the best out
of all possible designs), in all of the examples examined in this paper
the designs created performed well. Similar performance was also
observed when the algorithm was used to design optimal surveys to
elicit knowledge from experts (Curtis & Wood 2004).

Below we describe the new methodology and illustrate it by de-
signing two simple tomographic experiments and two simple micro-
seismic monitoring surveys. This paper is the culmination of sev-
eral pieces of work: it is based on a suggestion to improve inverse
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problem conditioning made by Sabatier (1977), further investigated
by Michelini and Lomax (unpublished manuscript) and developed
into the current experimental design method by Curtis and Leslie
(Schlumberger confidential report).

2 METHODOLOGY

For any given model vector m of dimension P within model space
M, let the forward problem of estimating the corresponding data
vector d of dimension N in data space D be accomplished by the
matrix operator A, i.e.

d=Am, (D
where the row 7 and column j of A contain the element

Ay = @)
where d; and m; are elements of vectors d and m, respectively. In
linearized problems both m and d may be perturbations around
reference values (e.g. Tarantola 1987). Then, for a given data vec-
tor dy, we often wish to find the model vector my, € M such that
|dg — Amy|? is minimized. Theoretically, this is accomplished by
pre-multiplying eq. (1) by AT (where T is the matrix transpose) and
taking a matrix inverse:

my = (ATA)"'ATd,. (3)
Instability in the solution arises because the N x N square matrix,
L=A"A, 4)

is often near singular, i.e. some of its eigenvectors, {e; :i = 1,...,
N}, for example, have extremely small eigenvalues {A; :i =1,...,
N}. Measurement errors in the data space D propagate into solution
m, parallel to each eigenvector e; with an amplification 1/A;; hence,
when small eigenvalues exist the solution becomes unstable and
unreliable, and the inverse problem is said to be ill-conditioned
(Menke 1989).

The algorithm for survey design introduced herein is based on
an observation made by Sabatier (1977). Sabatier noted that ill-
conditioning in matrix A is caused because many data add little or
no additional information to other data collected. In other words,
there are some model-datum relationships (described by rows of
matrix A) that are linear combinations of all of the other model—
datum relationships (other rows of matrix A).

Sabatier (1977) suggested that inverse problem conditioning
could be improved as follows: the data should be ordered by the
P-dimensional angle between the row of matrix A corresponding
to each datum and the space spanned by all other rows. This angle
is a measure of the linear independence of each row relative to all
others. Rows for which this angle is large contribute information
about the model; rows for which the angle is small are effectively
merely consistency conditions within the noise level of the data. The
problem with these consistency conditions is that they are largely
responsible for the effect that small variations in data resulting from
noise can lead to large variations in estimated model parameters (ill-
conditioning) in under-determined problems. Therefore, Sabatier
(1977) suggested that only data corresponding to rows for which
the associated angle is greater than some noise-dependent threshold
should be used for the inversion: this has the effect of improving the
conditioning of matrix L.

This idea was developed by Michelini and Lomax (unpublished
manuscript). They ordered the rows of A according to the following

penalty function for each row i:

N a0 a0 7T
o = — i=1,2,...,N), 5
=3 ] ) Y
where a®) is the ith row of matrix A. Geometrically, each o, is the
sum of squares of the cosines of the angles in an M-dimensional
space between vector a®) and all other row vectors and hence, is a
measure of the angle described by (Sabatier (1977), see above). In
order to improve the conditioning and reduce the size of tomographic
inverse problems for which a profusion of data exists, Michelini
and Lomax preserved datum d; only if «; was greater than some
threshold.

We will use a similar method to design surveys. The situation is
slightly more complicated than that considered by Sabatier (1977),
or by Michelini and Lomax because we wish to begin with all pos-
sible data that could be recorded with the available equipment (in
the seismic case, for example, corresponding to all possible seis-
mic arrivals recorded at all possible locations at which seismic
sources/receivers of a range of possible types could be placed): we
will preserve only that equipment for which the corresponding data
is expected to contain information that is as independent as possible
of all other preserved data. From here on we refer to the equipment
used as receivers.

In order to do this we must change the penalty function used
above to account for the fact that each receiver may contribute mul-
tiple data (e.g. traveltimes from several seismic arrivals) and, hence,
may contribute several rows to matrix A. In addition, we would like
to be able to specify differences in expected data uncertainties (for
example, as a result of differences in expected traveltime, picking
accuracies for different arrival types, or different types of equip-
ment) and which model parameters we would like the penalty to
be particularly sensitive to and, hence, focused on in the resulting
designs (see Curtis 1999b).

2.1 The importance of data

In order to define which receivers should be included in our exper-
imental design we define a new measure of receiver quality. This,
in turn, must depend on the importance of the data that a specified
receiver is expected to record. We define the quality of receiver & to
be given by the function,

iZ[ a® © a0 o g » m} S50
2

Jj=1i=1 ([k)” Ha(’)H dxwmr
(6)
(k=1,2,...,8), where S is the total number of receivers, lj’.‘ j =
1,..., ny is the set of row indices that defines the set of all rows
al":j =1,..., ny associated with receiver number &, 8¢ equals

one or zero depending on whether row i is on (used) or off (unused),
respectively, A contains derivatives corresponding to all possible
data that could be recorded given available equipment and physical
constraints [the ith datum corresponding to row a®)], N, equals the
total number of such data, crfi is the standard deviation expected for
datum 7 (the maximum such standard deviation squared across the
data set being 02 ), w2, is the maximum squared model parameter
weighting factor across all model parameters, and € is a positive
exponent. For any two vectors a and b the weighted scalar product
© is defined to be

P
a;b;
a@bZZW, (7)

=1 m m
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where w is the weighting factor associated with model parameter /
and norms in the denominator of equation (6) are calculated accord-
ing to the weighted scalar product in equation (7), i.e. |a]> = a®a.
Notice that because each a”) is normalized in eq. (6), each term
within the summations is always positive in the range [0, 1].

We have chosen to use a quality function (receivers with high-
est quality function values provide the most information about the
model parameters of interest) rather than a penalty function [vice
versa; see, for example, the penalty function presented in eq. (5)].
This is to ensure that y; increases either as matrix rows become less
linearly dependent (the scalar products tend towards zero), or as the
number of data (n;) that can be collected using receiver k increases
(the reverse is not true for penalty functions).

Other than the change just described, eq. (6) is merely a general-
ization of eq. (5): this in turn is Michelini and Lomax’s suggested
measure of the data angle of Sabatier (1977). Eq. (6) generalizes
to the case where the angle measurement is weighted both by the
data uncertainties (through o, and normalized by o 4 ) and by fo-
cussing on desired subsets of model parameters (through w,, and
normalized by w,,). It also includes an extra summation (over 7y)
to account for the possibility of multiple matrix rows (multiple data)
being recorded per receiver.

The experimental design algorithm (below) requires that we can
rapidly recalculate the quality of all receivers when any particular
receiver is switched off. For example, switching off receiver number
g with the effect of removing all associated rows a”), j =1,...,n,
of matrix A. Consider the effect on the quality of a different receiver
(number s) of switching off any single one of these rows, row a’”,
for example. Receiver s is associated with rows a®", j = 1,...,
n,. For each row a"), the contribution to quality function y is the
sum of the terms in eq. (6) involving N weighted scalar products
with all other rows. Hence, for any row a/") such that I # r, the
only change in that row’s contribution to y , is the term involving the
weighted dot product between rows r and [ (because row r will be
switched off). When row r is switched off, the total change to qua-
lity function y, for all rows such that /; # r is therefore given by:

s s €
C(er)- _ i | !a(l]: 0] a(r)’ O.;_/)Ua('r) 8(/})8(”’ (8)
| D fa] ods

mx

J=LBAr a

where the § terms on the right-hand side have the same values as
before receiver ¢ was switched off.

It is possible that /; = r for some j if both receivers g and s are
required to record the single datum number 7 (e.g. both a seismic
source and seismic receiver are required to measure a single travel-
time datum). In this case, the entire set of scalar products of row r
with all others will be lost when this row is switched off. Hence, the
total change to quality function y; will be given by:

N @ GO
a” ©a® 0,0, } 5050

) _ _
%= 2 [1 [ [[a0] 72wz, ©

i=1

Finally, the total correction to quality function y is given by the
sum of these two correction terms summed again over all rows 7 that
were associated with the receiver ¢ when it was switched off:

g q q
¥ !
C.gq) = Cl.s + CZ,A' ‘ (10)

i=1
2.2 Algorithm
The algorithm used here carries out the following steps:

(i) Calculate all S receiver qualities using eq. (6).
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(i1) Find the receiver (for example, number ¢) with the lowest
quality [this will be switched off in step (iv)].

(iii) Using eqs (8), (9) and (10) calculate corrections ¢%); to
the qualities of all other receivers s caused by the removal of rows
17 :j = 1,..., n, associated with receiver ¢g. Update all receiver
qualities with these corrections.

(iv) Switch off the receiver with the lowest quality by setting
86N =0,7=1,...,n,

(v) Repeat the process from step (ii) until data acquisition us-
ing the receivers remaining switched on can be implemented at an
acceptable cost.

(vi) The remaining receivers constitute the final survey design.

There are several points of interest concerning this algorithm. First,
notice that in this algorithm the subjective, noise-dependent thresh-
old required by Sabatier (1977) and Michelini and Lomax (unpub-
lished manuscript) has been replaced by the objective cost threshold
in step (V).

Secondly, the algorithm begins with all possible receivers
switched on. Because the quality measures considered at each it-
eration depend on all active receivers, this is the sense in which the
algorithm, and thus the final design, is influenced by all possible
receivers and, hence, by all possible experimental designs.

Thirdly, the algorithm does not guarantee convergence to the
globally optimal design because at each iteration it chooses the
best design from those that can be formed by switching off an-
other receiver without switching any back on. Thus, the design
chosen suffers from the legacy of receivers switched off previ-
ously. This aspect of the algorithm could be relaxed by allowing
one or more receivers to be switched on at each iteration. How-
ever, to achieve global optimality, either all combinations of re-
ceivers would have to be explored, or a stochastic approach could
be adopted where, for example, a metropolis or simulated anneal-
ing algorithm was used to switch receivers on and off. The for-
mer approach would lead to a combinatoric expansion in required
computation, the latter would guarantee global optimality only in
the limit of infinite computation (even for a finite problem). Nei-
ther approach confers the advantages of the current algorithm,
which is simple, deterministic and converges efficiently to a final
design.

Fourthly, instead of beginning with the full design (all receivers
on) and iteratively removing receivers, one could begin with no re-
ceivers and add them one-by-one using correction terms eqs (8)
and (9) in the opposite sense. Notice, though, that in the case of
zero parameter weighting and equal data uncertainty, the first re-
ceiver added would provide equal information whichever receiver
was added. Hence, to converge to a unique solution, S experimental
designs would have to be created, each found by seeding the algo-
rithm with a different initial receiver. Whether this alternative algo-
rithm or the one presented above would be more efficient depends
on both the total possible number of receivers S and the number of
receivers required in the final design.

Fifthly, some previously published algorithms allow many de-
signs to be found, each with approximately the same quality. This
can be exploited later when further cost considerations (financial,
time, effort) make the acquisition of some designs more attractive
than others. Such cost considerations can easily be incorporated
within the algorithm described above by including a cost factor as-
sociated with each receiver in eq. (6). Thus, if at a given iteration
several receivers provide equally little information to the design,
this ambiguity can be exploited by switching off the most costly
receiver.
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Finally, this algorithm relies on eq. (6) providing a reliable mea-
sure of experimental design quality. We note again that while most
previous algorithms mentioned in the Introduction explicitly opti-
mize measures of the quality of the eigenvalue spectrum itself, eq.
(6) is only an approximation to such a measure. However, despite all
of the shortcomings of our algorithm described above, in the exam-
ples below we demonstrate that the designs found seem to perform
close to optimally in the cases tested.

3 EIGENVALUE ANALYSIS
OF RESULTING DESIGNS

Fig. 1 shows the geometries of the maximum allowed set of ray
paths in two simple tomographic experiments. Traveltimes can be
measured along each of the ray paths and the aim of the experiment
is to invert these data for the slowness of each of the nine square
cells, assuming the slowness is constant within each cell. Each ray
path has a source at one end and a receiver at the other, however,
consistent with the vocabulary used above, we refer to both source
and receiver as simply receivers. Hence, for example, the exper-
iment depicted on the left of Fig. 1 has a maximum number of
20 receivers. The aim of the experimental design procedure is to
allow the slowness of each cell to be inferred with the minimum
number of receivers.

Matrix A has elements 4;;, which are the derivatives of traveltime i
with respect to slowness j. We assume that all traveltimes have equal
uncertainty so ag) =1 for all i. We also apply no weighting to the
different model parameters so w") = 1 for all /. This ensures that
all information relevant to designing the experiment is contained
within matrix A alone, so that eigenvalue analysis of A” A provides
full information about the quality of the final design.

The algorithm above was run to remove receivers sequentially
from the maximum set shown on the left of Fig. 1. The algorithm
removed receivers in the following order:

13, 14, 16, 15,3,4,7,8, 6,5, 10,9, 1, 2, 12, 11, 18, 17, 20, 19.

Comparing this order with Fig. 1 we see that ray paths that are ef-
fectively duplicated (with respect to their sensitivity to model param-
eters) are removed first. The four plots in Fig. 2 show the eigenvalue
spectra after 1, 6, 11 and 16 receivers, respectively, were removed
from the maximum set. We compare these eigenspectra to those ob-
tained by removing a random set of the same number of receivers
from the maximum set, producing a random design. Each plot in
Fig. 2 shows 20 realizations of such random designs (many of these

3 5 7 9
1 2 3
11 ]
4 5 )
13 4
150 ]
17 18
7 8 [
19 20

2 4 6 8 10

spectra overlie each other) and the dashed line shows the average of
these realizations in each case.

The design algorithm was then run on the experiment depicted on
the right of Fig. 1, which resembles a coarsely discretized version
of a cross-well experiment with two vertical wells following the left
and right edges of the model. The order of removal of receivers was:

8,10,6,2,7,3,9,1,11,5,4.

Comparing this order with Fig. 1 we see that the first three re-
ceivers removed (6, 8 and 10) create a symmetrical receiver geom-
etry in the left and right wells. Receivers removed thereafter are
the central receivers (2, 3, 7 and 9), thus maintaining the maximum
angular coverage with the remaining receivers (1, 4, 5 and 11). The
four plots in Fig. 3 show the eigenvalue spectra after 1, 3, 5 and 7
receivers, respectively, were removed from the maximum set. These
are compared to spectra obtained by removing a random set of the
same number of receivers. Each plot in Fig. 3 shows 20 realizations
of spectra from such random designs.

Every plot in Figs 2 and 3 shows that the design produced by the
new algorithm maximizes the magnitude of the small eigenvalues.
This behaviour is observed in all examples tested. Sometimes this
is achieved at the expense of the large eigenvalues and this char-
acteristic will be observed as a direct trade-off in the microseismic
examples presented later. However, in most plots the larger eigen-
values are also higher than, or at least close to, those obtained on
average for a random design.

This behaviour makes sense intuitively. The algorithm effectively
only removes data for which their sensitivities to the model parame-
ters are almost or completely linearly dependent on other data from
the experiment. Such data increase the magnitude of the large eigen-
values of ATA so the algorithm effectively only seeks to remove
large eigenvalues, leaving smaller eigenvalues intact.

This behaviour is desirable in an experimental design method
provided that data is expected to be of sufficiently high quality that
we aim to include as much information in the small (non-zero)
eigenvalues as possible. Noise in the data will be projected into the
model space parallel to each eigenvector with an amplification of
the inverse of the corresponding eigenvalue (see earlier). To avoid
instability in the inverse problem solution when noise is significant,
either eigenvectors associated with small eigenvalues must be re-
moved from the model space, or small eigenvalues must be boosted
by regularization. Hence, if data is expected to be of poor quality
then in some cases it may be better to use an experimental design
method that improves the large eigenvalues at the expense of the

1 2 3 4
1 — 5
>< 6
7 8
2 7
5
3 8
3 N 12 ?
P 10
—
4 11
13 14 15 16

Figure 1. Geometries of two simple tomography problems: squares represent discretization of the medium into cells of constant slowness numbered 1 to
9 (left) and 1 to 16 (right). Bold lines are ray paths along which traveltimes were measured. Each path has a source at one end and a receiver at the other

numbered 1 to 20 (left) and 1 to 11 (right).
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Figure 2. Plots (a), (b), (c) and (d), respectively, show eigenvalue spectra after 1, 6, 11 and 16 receivers are removed from the tomography problem on the
left of Fig. 1. Circles show 20 realizations of spectra after a random set of 1, 6, 11 and 16 receivers were removed, respectively (many eigenvalues are equal so
circles overlap). Dashed lines show the average of these spectra. Bold lines show spectra after the same numbers of receivers were removed in the order defined

by the design algorithm.
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Figure 3. Plots (a), (b), (c) and (d), respectively, show eigenvalue spectra after 1, 3, 5 and 7 receivers are removed from the tomography problem on the right
of Fig. 1. Circles show 20 realizations of spectra after a random set of 1, 3, 5 and 7 receivers were removed, respectively. Dashed lines show the average of
these spectra. Bold lines show spectra after the same numbers of receivers were removed in the order defined by the design algorithm.

small ones (Curtis & Snieder 1997 and Curtis 1999a, present such
a method). When data is expected to be of high quality (low noise)
then the current algorithm may provide best results.

4 MICROSEISMIC MONITORING
EXAMPLES

Fig. 4 shows the geometry of a simplified (2-D) microseismic mon-
itoring experiment for which we will design an optimal receiver

© 2004 RAS, GJI, 157, 595-606

geometry using the above algorithm. A vertical well on the left in-
tersects a reservoir formation at a depth of 1500 m. It is often the
case that when large amounts of fluid are pumped into or out of the
reservoir through the well, fracturing occurs in the formation as a
consequence of resulting stress changes. Such fracturing is expected
to occur close to the reservoir layer and to be concentrated close to
the well. We have represented the expected distribution of fractures
with seven discrete fracture locations at horizontal distances 10 x
2"m,n =0,...,6 from the well, marked by asterisks.
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Figure 4. Velocity model (shading), receiver locations (black circles) and microseismic event locations (asterisks) used in experimental design examples.

When a fracture occurs, seismic P and S waves travel out into
the formation at their respective seismic velocities. In Fig. 4 the
P-wave velocities increase linearly with depth and are represented
by the shading (in km s™!). S-wave velocities are assumed to follow
V,/Vs = 1.6 where V,, and V are P- and S-wave velocities, respec-
tively. As the seismic energy travels it is attenuated by geometrical
and anelastic effects: energy attenuation increases as anelasticity in-
creases and as energy travels further. Some of the remaining energy
passes through the well and can be detected by seismic receivers
placed there. By detecting the P and S wave arrival times, ¢, and 7,
respectively, of energy traversing essentially the same path through
the formation, the set of data ¢/ — ¢ :i = 1,..., N (arrival time
differences at each of N receivers) is related to the event location
and is not dependent on its time of occurrence (see e.g. Tarantola
& Valette 1982). The uncertainty o, of each of 7 — ¢, datum is
dependent on the signal to noise ratio at each receiver and in this
example we assume that this depends on energy attenuation only.
We use the following relationship between attenuation and expected
data uncertainty o, that was derived in another (confidential) study,
although any other relevant relationship could also be used:

¢ BC
i ref
04 = Orer €Xp [—gB(1 — 1)) <T> : (11)

Here ¢ is the traveltime, g = 7 f/Q where f is the dominant fre-
quency and Q is the formation quality factor (the inverse of attenua-
tion) that is assumed constant over the background medium. 7,.r and
o ot are estimated traveltimes and uncertainties at some reference
receiver (we use the receiver at 1500 m depth). Constants B and C
control the overall form of the relationship and we will use C =
1 throughout this paper. Data uncertainty is, therefore, expected to
increase as attenuation increases or as the receiver is placed further
away from the expected event location (towards the top or bottom
of the well) because this increases the time of travel ¢ of the seismic
energy. We represent the set of all possible receiver locations (and,

hence, the set of possible experimental designs) by the 41 locations
marked as circles within the well in Fig. 4.

We wish to select an optimal set of seismic receiver locations such
that the representative set of microseismic events will be located as
well as possible in the following sense. If we define the model vector
m to be the set of all event location parameters (two coordinates for
each of seven events, hence m has 14 elements) then we wish the
uncertainty on m to be minimized. In these examples we set all
w) =1 so that no model space weighting is used. We calculate
elements of matrix A in eq. (2) by:

(i) calculating traveltimes between all potential event and re-
ceiver locations by solving the eikonal equation;

(i1) perturbing event locations in turn by small amounts horizon-
tally then vertically;

(iii) recalculating traveltimes for the perturbed locations;

(iv) calculating derivatives in matrix A using finite difference
approximations.

The above definitions, relationships and calculations provide all
information necessary to apply the design algorithm presented ear-
lier. We first design an experiment with constant background veloc-
ity (no velocity gradient) of ¥, = 3000 m s™!, V, = 1875 m s~ L.
In this case, energy travels along straight paths between events and
receivers. Each ¢/ — t; datum for any event provides an estimate of
the distance /; between that event and receiver i because

(1 1\

Hence, the location of each event is obtained from the set of such
distances by triangulation.

The design algorithm is applied exactly as described earlier. The
entire array of all possible receiver locations is used as a starting
design and during each iteration of the algorithm one receiver is
removed (switched off). We continue to iterate until only one receiver
remains. The order in which receivers are removed defines a ranking
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Receiver ranks : Homogeneous, isotropic model

40 - T I T T —
X
S 20} -
o
Version5:B=-1;
0 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
40 - T T T =
<
820 ]
Version 12 : B = -0.2;
0 A 1 1 1 1
0 5 10 15 20 25 30 35 40
40 - T T T T =
X
& 20} .
o
Version 6 : B=-0.1;
0 1 1
0 5 10 15 20 25 30 35 40
40 - T T =
<
6:“ 20+ T
Version 11 : B = -0.075;
0 1 1 1
0 5 10 15 20 25 30 35 40
40 - 1 I I 1 -
X
S 20} :
o
Version 10 : B = -0.05;
0 1 1 1 ul
0 5 10 15 20 25 30 35 40
40 - T T =
x
S 20} -
[
Version7:B=0;
0 1 1 1 1 A 1
0 5 10 15 20 25 30 35 40
Receiver number

Figure 5. Results obtained using a homogeneous background velocity model and increasing effects of attenuation (from bottom to top). Values of parameter

B are shown on the figure.

of receivers: rank 1 is attributed to the first receiver removed, rank
41 is attributed to the final receiver remaining. We can then plot
these ranks as shown in Fig. 5.

Fig. 5 shows six independent sets of results each obtained using
a different value of B to generate data uncertainties (B = —1, —0.2,
—0.1, —0.075, —0.05 and 0 in eq. 11). The final (lowest) plot shows
results for a completely elastic medium in which data uncertainty
does not increase with distance from the event. In practice, these
plots are used as follows: select the set of ranks associated with what

© 2004 RAS, GJI, 157, 595-606

is believed to be the correct relationship between attenuation and
data uncertainty, then add receivers of consecutive, decreasing rank
to the experimental design starting at rank 41. Receivers are added
until either sufficient information is expected to be obtained from
those already selected, or until some threshold of cost of carrying
out the experiment has been superseded.

For an elastic, homogeneous medium with B = 0, following this
approach results in an experimental design in which receivers are
clustered around the top, middle and bottom of the well with twice

O
(=]
=
=)
o
QO
Qo
[0}
(o8
=
=
]
3
=
=
©
(7]
<
Q
Q
Q
Q
(]
3.
34
o
c
©
Q
o
3
=
Qe
=
Q
=i
o
@
=
=
[&)]
N
=
N
=
a
©
a
=
(]
w
w
]
w
(o]

2202 Jequieides ¢



602  A. Curtis et al.

Receiver ranks : Isotropic model with velocity gradient
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Figure 6. Results obtained using the linear background velocity model shown in Fig. 4 and increasing effects of attenuation (from bottom to top). Values of

parameter B are shown on the figure.

as many receivers in the middle than at the top or bottom of the well.
This makes sense intuitively: with no anelasticity the seismic energy
is expected to be detected at all receiver locations with equal uncer-
tainty; the best source location estimates can be obtained by using as
wide a fan of event-receiver paths as possible for triangulation. As
B increases in magnitude (B is negative), receivers near the top or
bottom of the well still produce a wide fan of event-receiver paths,
however, this trades off with increasing uncertainty with distance

from the reservoir. Hence, as B decreases towards —1 the optimal
fan becomes narrower and narrower until (B = —1) we obtain the
best experimental design by simply choosing receiver locations as
close as possible to the reservoir around 1500 m depth.

Fig. 6 presents results obtained when the velocity gradient shown
in Fig. 4 is used in place of the homogenous velocity field used to
obtain results in Fig. 5. The results show similar patterns to those in
Fig. 5, except that the depths at which receivers should be placed are
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Receiver ranks : isotropic model with velocity gradient
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Figure 7. Results obtained for seven independent runs of the design algorithm using the linear (constant gradient) background velocity model shown in Fig. 4,
fixed attenuation (B = —0.2), and using only a single event in each run. From top to bottom events were at 10 m, 20 m, 40 m, 80 m, 160 m, 320 m and 640 m
from the well.

asymmetric with respect to the reservoir depth. Receivers should be
placed preferentially at deeper locations than they would be in the
homogenous velocity field. This makes sense because seismic en-
ergy arrives at deeper receivers more quickly as a result of the higher
velocities at depth. Hence, seismic waves of each frequency oscil-
late through fewer cycles and attenuate less, resulting in decreased
uncertainties relative to shallower receiver locations. In addition,

© 2004 RAS, GJI, 157, 595-606

the deeper receivers provide a relatively larger angular coverage of
ray paths at the sources as a result of the curvature of rays in the
gradient velocity field.

Fig. 7 shows the results obtained with a velocity gradient and B =
—0.2 when each of the seven events is included individually in the
design process. Consecutive plots in the series from top to bottom
show optimal designs for locating events at increasing distance from
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Figure 8. Plots (a), (b), (c) and (d), respectively, show eigenvalue spectra after 11, 21, 31 and 36 receivers are removed from the microseismic design shown
in the lowermost plot in Fig. 5. Thin lines show 20 realizations of spectra after a random set of 11, 21, 31 and 36 receivers were removed, respectively. Dashed
lines show the average of these spectra. Bold lines show spectra after the same numbers of receivers were removed in the order defined by the design in Fig. 5.

the well. For events at greater distance from the well (lower plots),
we require receivers spaced further apart in order to generate the
best possible fan of angles of departure of seismic energy travelling
from events to the receivers. Although distantly spaced receivers
would also produce the best fan for events close to the well, this
trades off with the fact that receivers at greater distance are likely to
obtain data with higher uncertainties. It is possible to obtain almost
equally good fans using less distant receivers, which produce higher
quality data. For events at only 10 m from the well (top plot) it is
best to locate receivers as close as possible to the reservoir depth.

To compare these results with those of the tomography exam-
ple presented earlier, Fig. 8 presents eigenvalue spectra of AT A for
four of the designs from the lowermost plot of Fig. 5. The designs
analysed in each of the four plots consist of the receivers remain-
ing after 11, 21, 31 and 36 receivers were removed, respectively. In
this particular case there was no weighting of the model parameters
and the data uncertainties were all constant (no anelastic attenuation
occurred because B = 0). Hence, similar to the tomography exam-
ple, all information relevant to the experimental design is contained
within matrix A so analysis of the eigenvalues of AT A makes sense.
Similarly to Figs 2 and 3, spectra from 20 random designs are also
shown in Fig. 8.

Again we see that in all cases the design algorithm maximizes
small eigenvalues. However, in the current example this trades off
strongly with minimizing large eigenvalues. Indeed, there is an al-
most exact symmetry between the small and large eigenvalues, with
areflection point at 7.5 on the eigenvalue number axis and the aver-
age of the maximum and minimum eigenvalues on the eigenvalue
axis. All eigenvalue spectra pass through this point.

To analyse this curious behaviour further, in Fig. 9 we show the
eigenvalue and eigenvector spectrum for the particular design after

31 receivers have been removed (lower-left plot in Fig. 8). Sym-
metry in the eigenvalue spectrum is reflected in symmetry in the
eigenvector spectrum. Each eigenvector is shown in the lower plot
as a column vector with each row representing a model parameter.
The model parameters are ordered (x1, z1), (x3, z2), ... Where (x;,
z;) are the horizontal and vertical coordinates of event i, and event
numbers increase away from the well. Hence, each eigenvector con-
sists of a linear combination of the x and z coordinates of a single
event.

This experimental design will provide least information (smallest
eigenvalue) about the x-coordinate of the closest event, and provides
most information (largest eigenvalue) about the z-coordinate of the
same event. The point at 7.5 between eigenvalues 7 and 8 is the point
at which we switch from eigenvectors that are sensitive mainly to
event x-coordinates to those sensitive mainly to event z-coordinates.
The trade-off through the point at (7.5, 2) observed on the lower-
left plot of Fig. 8, therefore, approximately represents a trade-off
between constraining x and z coordinates of events. Furthermore, it
appears that this trade-off is a necessary feature of any design that is
a subset of the full experimental geometry shown in Fig. 4 because
it appears on all of the random designs shown in Fig. 8. Therefore,
in this particular experiment it is possible to change the design to
better constrain x-coordinates of any events at the expense of their
z-coordinates, or vice versa, but it is not possible to better constrain
both x- and z-coordinates of any events simultaneously.

5 DISCUSSION

The examples presented above show that in cases that are sufficiently
simple for us to have intuition about expected results, the algorithm
indeed produces results consistent with this intuition. However, our
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Figure 9. Eigenvalues (top plot) and eigenvectors (bottom plot) from the design found by the new algorithm after 31 receivers were removed (corresponding
to the lower-left plot in Fig. 8). On the lower plots eigenvectors are plotted as columns with colour-coded values.

intuition is generally only qualitative whereas the algorithm pre-
sented here provides quantitative experimental designs (would we
be able to guess intuitively exactly how asymmetric in depth the
microseismic monitoring design should be for a given linear veloc-
ity gradient?). In more complicated velocity structures with several
high- and low-velocity layers and, hence, potentially highly non-
linear ray paths, we have little hope of applying intuition and are
forced to use quantitative design algorithms to design both tomo-
graphic and microseismic monitoring surveys.

The algorithm presented here can be applied to any linear or lin-
earized experimental design problem, is simple to use and converges
to a unique, deterministic result that is influenced by the range of
all possible experimental designs. It results in designs that signifi-
cantly increase small eigenvalues without ever having to calculate
those eigenvalues. Such designs are desirable if we expect our data
quality to be sufficiently high that these eigenvalues and the associ-
ated eigenvectors will not be removed from the inverse problem. Our
method, therefore, complements the suite of previous algorithms de-
scribed in the introduction that have different key features.

Although in the examples contained in this paper we have de-
signed surveys to provide either slowness structure from tomogra-
phy or fracture locations from triangulation methods, it is simple
to include both types of model parameters within the vector m. In
this way, we might design a survey that provides information both
about the fracture locations and the seismic velocity structure of
the Earth in the vicinity of the survey and events. In such cases,
matrix A would become partitioned (e.g. Menke 1989). Both this
partitioning and the (typical) sparseness of matrix A in tomographic
problems allow highly efficient, sparse matrix algorithms to be used.
This would result in rapid computation of quality functions and their
updates as receivers are removed from the design. This is important
for practical survey design problems that may have many more data
and model parameters than those considered above.

© 2004 RAS, GJI, 157, 595-606

The current algorithm contains an underlying assumption that to
within expected data uncertainties the relationship between model
parameters and data can be approximated adequately by a relation-
ship that is linearized around each model parameter value, similar
to most of the other studies mentioned in the introduction. Gen-
erally speaking, such pseudo-linearity should only be assumed for
the design problem if making the same assumption post-experiment
would allow linearized inverse theory to be used robustly to con-
strain model parameters from the data in a single inversion step (i.e.
without requiring iterated linearization and inversion).

If in reality this relationship depends on the model parameter val-
ues themselves in a more non-linear fashion, or on the values of
other parameters that are intrinsic to the model—data relationship,
this assumption could be relaxed slightly in the following Bayesian
sense: the value of each receiver calculated in the above algorithm
is replaced by the average value over the distribution of possible
parameter values, where this distribution reflects our prior expecta-
tions of what the parameter values might be. Rankings then reflect
the average performance of each receiver across this distribution of
parameters. In the microseismic example above, for instance, we
might average the range of quality functions obtained when a range
of possible background seismic velocity structures were used. Such
a design process is referred to in the statistics literature as Bayesian
or non-linear experimental design (e.g. Atkinson & Donev 1992;
Maurer & Boerner 1998).

However, this technique can only take account of mild non-
linearity: specifically, only non-linearity that does not cause mul-
tiple, disconnected regions of model space to provide good fits to
observed data (Curtis & Spencer 1999). Sometimes non-linearity
encountered in real problems will not satisfy these conditions.
In such situations, more computationally intensive methods must
be employed (Curtis & Spencer 1999; van den Berg et al.,
2004).
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