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S U M M A R Y
In most geological instances, 2-D or 3-D fracture distributions are not available from field
data. We show here that when data relative to fractures are collected along a line such as a road
or a well, estimations can be given to the major geometrical properties of the corresponding
fracture networks, such as the volumetric density of fractures, their percolation character and
their macroscopic permeability. All these formulae are analytical and can be split into two
parts; the first one can be derived from the measured data, while the second one requires
some assumption on the lateral extension of the fractures and on their permeability. All these
techniques are applied to fractures located in the Baget watershed. They are also validated on
a granite block whose structure is fully known. Extensions are proposed for networks with
variable permeabilities and polydisperse fractures.

Key words: fracture network, geometry, line data analysis, percolation, permeability,
reconstruction.

1 I N T RO D U C T I O N

The macroscopic properties of a fracture network consist of its ge-
ometrical and topological properties (such as connectivity and per-
colating character), and of its transport properties (such as perme-
ability).

The main objective of this work is to show how a fracture network
can be characterized by data collected along a line. This line can be
located at the surface of the ground, but it can also be a well. Net-
works can be subsequently reconstructed according to these data and
the geometrical properties, namely connectivity and percolation, can
be estimated; moreover, transport properties such as permeability
can be determined as well. In other words, we wish to show that rela-
tively important overall information can be extracted from relatively
poor data.

Fractures are usually generated in a random way (e.g. Koudina
et al. 1998), whereas their positions and characteristics are likely
to depend on the geological features of the region under study. An-
other technique is stereological analysis which was used for instance
by Berkowitz & Adler (1998); the input data were traces collected
on a plane surface. In this work, we focus on fractures located in
the Baget watershed (in the southeast of France) which presents
the peculiarity of being karstified so that an analysis of the fracture
distribution could provide some hints of the drainage pattern of the
basin (Pistre et al. 1999); this means that the transport properties
of the fracture networks will be dependent, to a great extent, on
phenomena such as deposition and dissolution. Due to bad outcrop-
ping conditions, fractures are only visible along recently excavated

roads; hence, geometrical parameters of the fractures such as their
dips and strikes were mapped along these roads. These parameters
were then included into our network model. It should be stressed that
the karstified character will be studied in a different contribution.

This paper is organized as follows. Section 2 presents the major
theoretical considerations. After a few definitions, the volumetric
density of an event is determined as a function of measurable quan-
tities. Then, it is shown how the networks can be reconstructed
when the individual events are assumed to be randomly distributed
in space. The general percolation properties of these networks can
be derived from quantities such as the mean number of intersections
per event, which can be partly expressed in terms of the measured
data. The determination of the permeability of these networks is
presented and two general estimations are proposed: the first one
derived from percolation theory is valid close to the percolation
threshold, while the second one is valid for high densities. It should
be emphasized that many of these properties can be derived from
relatively straightforward analytical formulae whose simplicity is a
decisive factor for the applications.

Section 3 applies these concepts to the particular case of the Baget
watershed. After a detailed analysis of the line surveys, several types
of fracture networks are reconstructed; fractures may be of the same
size (monodisperse fractures) or of two different sizes (bidiperse
fractures), and each event can be composed of one or several parallel
fractures. Examples of networks are presented. Their percolation
properties are discussed as well as their flow properties.

The first part of Section 4 is devoted to the validation of the
methodology on a block of granite whose structure and properties
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918 S. Sisavath et al.

Figure 1. Notations: (a) intersection of the observation line L with a series of fractures; (b) intersection of a fracture with an observation line and the
corresponding intersection volume.

are known extensively (Ledésert et al. 1993; Gonzalez Garcia et al.
2000). In the second part of Section 4, it is first recalled how the
permeability of the individual fractures can be determined; the ap-
proach and the formulae presented in Section 2 are extended to net-
works with variable permeabilities, and applications to the Baget
watershed are detailed. Finally, the polydisperse character of the
fracture sizes is addressed; an extension of the classical Snow for-
mula is proposed.

Some concluding remarks end this paper.

2 T H E O RY

2.1 Definitions

Let us consider a line L (cf. Fig. 1a) which is crossed by fractures; the
line is parallel to the unit vector p. More generally, since these fea-
tures include single fractures, series of parallel fractures and possibly
faulted zones, these intersections are classified as events numbered
by f for which the position xf along the profile and the width wf

can be measured; wf is of course equal to zero when the event con-
tains a single fracture. In the opposite case, the event f contains n f,p

fractures which are more or less parallel with an average spacing df

with the obvious relation

w f = n f,pd f . (1)

In addition to this, the orientation of each fracture should be mea-
sured. Instead of the strike and dip angles, we use directly the unit
vector ni perpendicular to the fracture plane, which can be deduced
from the information above; the vertical component of these unit
vectors is taken as positive.

Another useful quantity is the spacing si between two successive
events i and i + 1 along L

si = xi+1 − xi . (2)

2.2 Spatial distributions and volumetric density

In the subsequent simulations, we aim at generating random realiza-
tions of fracture networks in agreement with the field observations.
To this end, it is necessary to know how many events of each type
are to be inserted in a given sample volume.

To determine this from the line surveys, we need to know the
density of a given event characterized by the subscript f . Suppose
that this event is a fracture of area Af and of normal nf . This fracture
intersects a segment of length L on a line parallel to p if its center

belongs to the cylinder of base Af and length L as illustrated in
Fig. 1(b). The volume of this cylinder is

V = L Af |p.n f |. (3)

If ρf is the number of such events per unit volume, the number
of intersections nf of this type of event with L is given by

n f = ρf L Af |p.nf |. (4)

Therefore, the average spacing sf between two intersections is given
by

sf = L

nf
= 1

ρf Af |p.nf | . (5)

Actually, this quantity sf is measurable along the profile L. It can be
used to express the volumetric density of the event f as

ρf = 1

L f Af
withL f = sf |p.nf |. (6)

This apparently formal decomposition has the great advantage of
dividing ρf into two terms, namely Lf which is known from the
measurements along the line and Af whose value has to be hypoth-
esized. Such a decomposition will be used repeatedly in this paper,
and it can be considered as one of the major contributions of this
work.

Note that according to (5), 1/Lf is also equal to ρf Af , i.e. to the
area of the event f per unit volume.

The main problem for the determination of ρf is the estimation
of the area Af . Here, it will remain an unknown quantity since data
collected along a line cannot give any information on their extent.
Note that when 2-D trace maps are available, these quantities can be
estimated after a stereological analysis (Berkowitz & Adler 1998).

2.3 Numerical reconstruction

It is useful to give some general information on the reconstruction
procedure which involves two steps.

First, the events are assumed to be Poissonian (a hypothesis sub-
ject to verification) and they are inserted at random locations: their
number results from the volumetric density ρf in (6) and from the
sample volume. Secondly, whenever it is relevant, each event is de-
composed into series of parallel fractures, the number and spacing
of which are deduced from the data w and d.

The first step of the generation follows the procedure of Huseby
et al. (1997). The generated samples are made up of cubic unit cells
of size L. In order to minimize size effects in the determination of
the network transport properties, periodicity conditions are applied,
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Geometry, percolation and transport properties of fracture networks 919

so that an infinite medium results from the juxtaposition of identical
unit cells.

The events and the fractures they contain are assumed to have
identical plane circular or polygonal shapes. Their size is quantified
by the radius R of the circumscribed circle.

2.4 Connectivity

Within the framework of Poissonian spatial distribution of the frac-
turation events, much can be deduced about the connectivity of the
network from the line survey data.

Recall firstly the definition of the exclusion volume Vex(1, 2)
of two objects f1 and f2 (Balberg et al. 1984). It is the volume
surrounding f1 in which the center of f2 must be located in order
for them to intersect. Note that the definition is symmetric, with
Vex(1, 2) = Vex(2, 1). Thus, if ρ i is the volumetric density of objects
fi, ρ i Vex(i , j) is the mean number of fi objects intersecting fj. By
simple summation, the total number ρ I of object intersections per
unit volume is

ρI = 1

2

∑
i

∑
j

ρiρ j Vex (i, j). (7)

For the sake of simplicity, we suppose that the fracturation events
can be regarded as plane convex polygons, i.e. that their width wf

is small compared to their extension. The argument can be easily
generalized to events with non-zero thickness, by modifying the
expression (8) below for the excluded volume.

It can be shown (Adler & Thovert 1999) that if the objects fi are
plane convex polygons, with areas Ai, perimeters Pi, and relative
orientations given by the angle γ i, j between their normal vectors,
the excluded volume is given by

Vex (i, j) = sin γi, j

π
(Ai Pj + A j Pi ) with cos γi, j = ni · n j . (8)

By injecting (8) into (7), the density of intersections reads

ρI = 1

2

∑
i

∑
j

ρiρ j
sin γi, j

π
(Ai Pj + A j Pi ). (9)

However, ρ i is directly related to the volumetric area 1/Li by eq. (6).
Hence,

ρI = 1

2π

∑
i

∑
j

sin γi, j

Li L j

(
Pi

Ai
+ Pj

A j

)
. (10)

If the shapes and sizes of the various events are known, they can be
used in the fully general expression (10). Partial summations can
also provide more detailed statistics, such as the mean numbers of
intersections between specific events or families of events.

In the absence of such information, we suppose here that all the
fracturation events have the same shape and size, and thus, the same
area A and perimeter P. The density of intersections then reads

ρI = P

π A

∑
i

∑
j

sin γi, j

Li L j
. (11)

On the other hand, the total volumetric density ρ of events, i.e.
the number of fractures per unit volume, is simply the sum of the
densities ρ i :

ρ = 1

A

∑
i

1

Li
. (12)

Moreover, the mean number ρ ′ of intersections per event, which
directly quantifies the connectivity of the network and will be used
hereafter as a dimensionless measure of the network density is

ρ ′ = 2ρI

ρ
= 2P

π

∑
i

∑
j

sin γi, j

Li L j∑
i

1
Li

, (13)

where the factor 2 comes from the fact that an intersection neces-
sarily belongs to two different fractures.

A global effective exclusion volume Vex can be defined from ρ

and ρ ′, as

Vex = ρ ′

ρ
= 2

π
AP

∑
i

∑
j

sin γi, j

Li L j(∑
i

1
Li

)2 . (14)

For an isotropic distribution of monodisperse objects, Vex = AP/2
(Adler & Thovert 1999).

As (6), all these formulae can be decomposed into a measurable
part and a part which has to be hypothesized.

2.5 Probability of percolation

It was shown in Section 2.4 that the connectivity depends both on
the density and size of the fractures. However, percolation is a topo-
logical property, and it is therefore desirable to quantify the event
density by an intrinsic, topological, dimensionless parameter.

The mean number of intersections ρ ′ defined by (13) is the ideal
quantity in this respect. It can be regarded both as a topological pa-
rameter, which directly measures the connectivity of the network,
and as a dimensionless density, since it is the mean number of ob-
jects per volume Vex (see eq. 14). It has been successfully used by
Huseby et al. (1997) to describe and unify the topological and geo-
metrical properties of isotropic fracture networks, and by Koudina
et al. (1998) for the flow properties of such networks. In the follow-
ing numerical results, it is directly measured on the reconstructed
samples as the ratio of the actual number of fracture intersections
NI to the number of fractures Nf

ρ ′ = 2NI

Nf
. (15)

The factor 2 is due to the fact that an intersection belongs to two
fractures.

Percolation is defined as the existence of a spanning continuous
path, where a fluid can circulate, across the medium. Percolation is
a crucial topological property which controls many geometrical and
transport properties of the network. This concept originated and was
closely studied in discrete sites or bonds lattices (see, e.g. Stauffer
& Aharony 1994), where the density of occupied (or conducting)
sites or bonds is measured by a probability (or concentration) p. In
large systems, percolation occurs when p exceeds a critical value
pc, known as the percolation threshold. For p close to pc, many
geometrical or transport coefficients are known to scale as power
laws of the difference p − pc, according to the standard form

X ∝ (p − pc)α. (16)

The quantity X may represent the correlation length, the fraction
of sites connected to the infinite cluster, or the transport coefficients
of the system. Different exponents are associated with the various
quantities, but each is generally believed to be universal, i.e. insen-
sitive to the details of the underlying lattice.

It is one of the great merits of the concept of excluded volume and
of the dimensionless density ρ ′, to allow for a transposition of the
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on-lattice percolation theory in terms of p to continuous percolation
systems, with a formulation in terms of ρ ′. A survey of this topic is
provided by Adler & Thovert (1999). In particular, a critical density
ρ ′

c exists for a given class of continuous systems, which plays the
role of pc in lattice systems. For networks of randomly-oriented
fractures, Huseby et al. (1997) determined this percolation threshold
to be

ρ ′
c ∼ 2.26. (17)

Of course, this threshold is different for non-isotropic networks.
However, it provides an order of magnitude to which the estimation
(13) can be compared; it can be easily decided a priori if a given
fracture network is likely to percolate or not.

2.6 Flow properties

The flow properties of these networks can be studied by the methods
and numerical tools described by Koudina et al. (1998). The solid
matrix containing the fractures is assumed to be impervious.

Let us first consider a single fracture at a local scale characterized
by a typical aperture b0, which is assumed to be much smaller than
the lateral extent R of the fracture. Then, the flow of a Newtonian
fluid at low Reynolds number is governed by the Stokes equations.

At a scale L, which is intermediate between b0 and R, the flow is
governed by the Darcy equation

j = − 1

µ
σ.∇ p, (18)

where j and ∇ p are the locally averaged flow rate per unit width
[L2T −1], and the pressure gradient σ[L3] is the fracture permeabil-
ity tensor. The mass conservation equation reads

∇S . j = 0, (19)

where ∇ S is the 2-D gradient operator in the mean fracture plane.
Because of the classical Poiseuille law, the permeability σ of a

fracture is expected to be of the order of

σ ∼ σ0 = b3
0

12
. (20)

The dimensionless fracture permeability σ ′ is defined by

σ ′ = 1

σ0
σ. (21)

Note that if electrical conductivity is addressed, the shape of (18)
and (19) remains the same: p should be replaced by the electric
potential ψ ; σ would be the fracture conductivity tensor.

It is known that natural fractures are more complex than plane
channels. However, the flow behaviour due to the complexity of
fracture geometry is not the focus of the present study. This topic was
specifically addressed by Mourzenko et al. (1995, 2001). In most of
this paper, σ is taken to be uniform over each fracture and generally
identical for all the fractures. A more complex estimation of the
fracture permeability will be given in Section 4.2: in addition some
calculations with non-constant fracture permeabilities are described
and discussed.

These equations must be supplemented with non-flux conditions
at the fracture edges and conservation (for the flux) and continuity
(for pressure) equations along the fracture intersections.

Any standard overall boundary condition can be applied to the
network. For instance, pressures or fluxes could be applied along
inlet and outlet lines drawn on fractures of the network. In the case

where the fracture network can be considered as statistically homo-
geneous at the field scale, which is assumed to be large with respect
to the lateral dimensions R of the fractures, a macroscopic pres-

sure gradient ∇ p induces an average flux vn , which is related to the
pressure gradient by Darcy’s law (Adler 1992)

vn = − 1

µ
K .∇ p. (22)

K is the network permeability tensor [L2]. For isotropic networks,
it is a spherical tensor

K = K I. (23)

Since the generated numerical samples are spatially periodic in the
present case, it is a simple matter to impose a macroscopic pres-

sure gradient ∇ p on the infinite periodic medium, and to derive the
corresponding components of K from the mean flux vn .

It is convenient to introduce a dimensionless permeability tensor
K

′
,

K
′ = 1

K0
K , K0 = σ0

R
. (24)

Koudina et al. (1998) developed general numerical tools to solve
the local flow equations in fracture networks described by a 3-D
triangular mesh, and systematically investigated the flow properties
of the same class of random networks of plane fractures as Huseby
et al. (1997). They showed that the permeability varies as

K
′ = 0.0455(ρ ′ − ρ ′

c)1.57 (3.5 ≤ ρ ′ ≤ 20). (25)

Snow (1969) considered networks where all the fractures are in-
finite plane channels with an arbitrary orientation distribution. This
is equivalent to assuming that the whole surface of all the fractures
in the network may contribute to the flow and can be valid only
in the limit of very dense networks. For an isotropic network, the
permeability tensor is given by

K iso
Sn = 2

3
σS I, (26)

where S is the volumetric surface area of fractures, i.e. the inverse
of the length Lf in eq. (6). This result is easily generalized for
anisotropic networks by introducing the fracture orientation distri-
bution, which yields a non-spherical tensor KSn

K Sn =
∫ ∫



σ (n)S(n)(I − nn) d2n, (27)

where  is the unit sphere and S(n)d2n is the volumetric surface
area of fractures with normal vector in the solid angle d2n around
n, with permeability σ (n).

For finite polygons, S can be expressed in terms of the surface
A and perimeter P of the polygons. Hence, the dimensionless per-
meability in Snow’s (1969) model network with the same surface
density is

K iso′
Sn = 4

3

R

P
ρ ′, (28)

where R/P is a shape factor, equal, for instance, to
√

2/8, 1/6, and
1/2π for square, hexagonal, and circular fractures, respectively. The
numerical calculations of Koudina et al. (1998) showed that (28) is
indeed a possible asymptote for networks of finite fractures with
very large densities.

This analytical approach can be applied to line data. If the nf,p

fractures representing each event f have identical size and shapes,
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Geometry, percolation and transport properties of fracture networks 921

Figure 2. Geological setting of the Baget area. A north–south cross-section of the surveyed area is displayed in the upper left. A geological map is also
displayed where the geological formations north of the Alas fault are not detailed.

and if the volumetric area of each event type is simply 1/Lf , eq. (27)
can be rewritten as a sum over the events:

KSn = σ
∑

f

n f,p

L f
(I − nf nf ). (29)

It is remarkable that except for σ , all the quantities in (29) are again
geometrical parameters which are readily available from the line
surveys. In particular, no assumption regarding the size or shape of
the fracture is required since they are assumed to be infinite. As a
corollary, eq. (29) yields the same prediction of the permeability of
monodisperse and polydisperse networks.

This presentation of the flow properties can be summarized as
follows. The permeability of a given network can be determined in
three different ways: it can be numerically calculated by the tool
developed by Koudina et al. (1998); more conveniently, it can be
estimated by (25) or (29).

3 F I E L D DATA

3.1 Geological setting

The Baget watershed (see Fig. 2) is located inside the north Pyrenean
zone that was highly deformed during late Cenomanian to Tertiary
Pyrenean orogeny induced by the transpressional strike-slip mo-
tion of the Iberic and European plates along the north Pyrenean
fault (see Choukroune 1992, for a review paper on the tectonics of
the Pyrenees). Our study concerns the karstified part of the basin
consisting of a slice of alternating metamorphic Jurassic to Creta-
ceous dolomites, limestones and calcareous marls, dipping 70◦ to
90◦ southwards under the slaty Albian–Cenomanian Ballongue fly-
sch, remnant of a Cretaceous pull-apart basin opened during strike-
slip motion along the Pyrenean margin (Johnson & Clarence 1989).

The Baget drainage basin is limited to the north by the Alas ver-
tical fault, a satellite of the north Pyrenean fault, running mainly
west–east. The original stratification is easily seen at the outcrop as
ubiquitous open discontinuities running mainly east–west. The same
direction is also recognized as the cleavage direction in Ballongue
flysch and so produces a major source of anisotropy. A second dis-
continuity direction is recognized from satellites images, running
170◦N to 10◦N (Debroas 1987). The present state of stress of the
basin is poorly constrained. Goula et al. (1999) proposed that the
regional main (compressive) stress is N–S in the eastern Pyrenees
from an inversion of focal mechanisms and striation data. However,
the world stress map of Reinecker et al. (2003) exhibits only sparse
and highly dispersed data around the Baget area. Souriau & Granet
(1995) and Souriau et al. (2001) proposed that a rigid block cen-
tered around St Gaudens and bordering westward the Baget drainage
basin, could explain the lack of seismicity in this area. Hence, the
local stress field around the Baget area can only be deduced from lo-
cal field work. Due to metamorphism, matrix porosity is reduced to
less than 1 per cent (Mangin 1974) and voids consist in dissolution
caves and in an open fractures and joints. Several caves have been
recognized on both sides of the Baget valley. Two of them have been
mapped: La Péreyre to the north and St Catherine to the south of
the valley. However, the underground drainage system of the Baget
valley is far from being completely explored.

Finally, it is worth noting that the river is oriented east–west,
a direction which is likely to be followed by most underground
waters.

3.2 Line surveys

Open cracks orientation and extension have been mapped along
three roads: these line surveys correspond to sub-horizontal profiles,
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referred to as P1, P2 and P3, oriented 110◦, 70◦ and 120◦ clockwise
from the north, with lengths 700 m, 200 m and 100 m, respec-
tively. In addition, fractured zones consisting in series of subparallel
cracks have been characterized by their width and their mean crack
spacing.

Some data collected in the La Péreyre and St Catherine cave
system have not been included in this survey, but they were used to
check the consistency of the data set.

The characteristics of all the recorded events are summarized in
Table 1. The x- and y-axes of coordinates are set in the S–N and
E–W directions, respectively, and z is vertical and oriented upward.
Recall that the vertical component of the unit vectors n is taken as
positive.

Table 1. Fracturation event characteristics from the line surveys: P and x are the profile number and the location along the profile; Lf is the total corrected
profile length according to formula (31); n is the normal vector to the event plane; w is the event width along the profile and d is the typical spacing of fractures
within the event (d = 0 denotes an isolated fracture); Lt is the apparent trace length (+ indicates that the traces were truncated by the outcrop boundaries); and
Fis the family that the event belongs to. All distances are in metres.

P x Lf n w d Lt F

1 1 5 806.31 −0.1632 −0.9254 0.3420 10.00 0.50 1.00 1
2 1 85 858.06 0.1736 0.9848 0.0000 1.00 0.50 2.00 + 1
3 1 145 838.36 0.0000 1.0000 0.0000 10.00 0.20 2.00 + 1
4 1 155 858.06 0.1736 0.9848 0.0000 7.00 0.20 2.00 + 1
5 1 180 838.36 0.0000 1.0000 0.0000 20.00 1.00 2.00 + 1
6 1 200 526.37 0.0560 −0.6403 0.7660 2.00 0.50 2.00 + 2
7 1 205 858.06 0.1736 0.9848 0.0000 3.00 0.50 2.00 + 1
8 1 218 858.06 0.1736 0.9848 0.0000 1.00 0.50 2.00 + 1
9 1 230 254.40 0.4924 −0.4132 0.7660 3.00 1.00 2.00 + 3
10 1 245 838.36 0.0000 −1.0000 0.0000 50.00 2.00 2.00 + 1
11 1 290 93.80 0.6040 −0.2198 0.7660 10.00 ∼0.10–1.00 ∼0.10–2.0 3
12 1 295 838.36 0.0000 −1.0000 0.0000 50.00 1.00 2.00 1
13 1 300 489.44 0.1664 −0.6209 0.7660 5.00 1.00 2.00 + 2
14 1 320 509.85 0.1116 −0.6330 0.7660 5.00 1.00 2.00 2
15 1 335 858.06 0.1736 0.9848 0.0000 30.00 ∼1.00–2.00 1.00 1
16 1 345 316.32 −0.2500 0.4330 0.8660 20.00 ∼0.10–2.00 5.00 0
17 1 350 858.06 0.1736 0.9848 0.0000 10.00 1.00 2.00 + 1
18 1 370 627.30 0.0668 −0.7631 0.6428 10.00 1.00 2.00 2
19 1 385 521.57 0.3237 −0.6943 0.6428 10.00 2.00 2.00 2
20 1 450 484.63 0.3830 −0.6634 0.6428 10.00 0.50 2.00 2
21 1 470 314.10 −0.8627 −0.0755 0.5000 138.00 0.50 2.00 + 0
22 1 515 128.70 0.4330 −0.2500 0.8660 0.00 0.00 10.00 3
23 1 545 858.14 0.2588 0.9659 0.0000 2.00 0.50 2.00 + 1
24 1 555 858.14 0.2588 0.9659 0.0000 2.00 0.50 2.00 + 1
25 1 570 128.70 0.4330 −0.2500 0.8660 0.00 0.00 60.00 3
26 1 590 639.80 0.3971 −0.8517 0.3420 10.00 1.00 2.00 0
27 1 600 838.36 0.0000 1.0000 0.0000 10.00 0.10 1.00 1
28 1 625 544.64 0.5390 −0.7698 0.3420 50.00 2.00 4.00 + 0
29 1 675 544.64 0.5390 −0.7698 0.3420 10.00 1.00 1.00 0
30 2 15 838.36 0.0000 1.0000 0.0000 5.00 0.05 5.00 + 1
31 2 45 858.14 0.2588 0.9659 0.0000 30.00 0.50 5.00 + 1
32 2 70 409.72 −0.2500 −0.4330 0.8660 2.00 0.50 2.00 0
33 2 75 462.28 0.9397 0.3420 0.0000 0.00 0.00 10.00 4
34 2 80 323.62 1.0000 0.0000 0.0000 40.00 0.50 5.00 + 4
35 2 110 323.62 1.0000 0.0000 0.0000 10.00 0.50 5.00 + 4
36 2 115 462.28 0.9397 0.3420 0.0000 0.00 0.00 10.00 4
37 2 132 509.85 0.1116 −0.6330 0.7660 3.00 1.00 2.00 + 2
38 2 155 462.28 0.9397 0.3420 0.0000 0.00 0.00 5.00 4
39 2 185 362.86 0.2868 −0.4967 0.8192 5.00 1.00 10.00 + 2
40 3 35 858.06 0.1736 0.9848 0.0000 30.00 0.10 2.00 + 1
41 3 50 396.59 −0.0868 0.4924 0.8660 2.00 1.00 1.00 0
42 3 60 323.62 1.0000 0.0000 0.0000 20.00 0.10 1.00 + 4
43 3 60 858.06 0.1736 0.9848 0.0000 20.00 0.10 1.00 + 1
44 3 60 419.18 0.0000 −0.5000 0.8660 20.00 1.00 2.00 + 2
45 3 100 323.62 1.0000 0.0000 0.0000 10.00 0.10 2.00 + 4
46 3 100 396.59 0.0868 −0.4924 0.8660 0.00 0.00 10.00 2

The orientational distribution of the events is shown in Fig. 3.
The orientations were measured with a 5◦ resolution, but they were
slightly randomized in Fig. 3 in order to distinguish events with
identical orientations. Only very limited information regarding the
event extensions can be gained from the present line surveys, since
the observed trace lengths are very often truncated by the boundaries
of the outcrop along the roads as shown in Table 1.

Fig. 3 clearly shows that the events can be categorized into
four main families, which are referred to hereafter as F1 to F4 (see
Table 1). Two of them (F1 and F4) are sub-vertical, and roughly in the
E–W and N–S directions, whereas F2 and F3 have a slope of about
40◦–50◦. In addition, a few events do not belong to any of the four
families. They are denoted by zeros in the last column of Table 1.
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East  (y<0) 

South (x<0) 

North (x>0) 

West  (y>0) 

Figure 3. Orientation of the fracturation events in Table 1. Symbols corre-
spond to the position of the vector n on the unit sphere. Families 1, 2, 3 and
4 are denoted by �, ◦,♦ and ∇, respectively. The line spacing is 10◦ for the
radial angle and 5◦ for the inclination.

F1 results from the original stratification and from the strike- slip
motion that characterizes the Pyrenean orogeny. A direction near
10◦N close to F4 has been observed during unpublished microtec-
tonic works of Mangin and Paredes in the Baget basin. In addition,
F1, F2 and F4 are observed in the La Péreyre and St Catherine
caves together with numerous cracks of different orientations that
are not observed at the surface, and which could be related to the
mechanical heterogeneity induced by the cave itself.

3.3 Data analysis

3.3.1 Spatial distribution

For the sake of the subsequent simulations, it is important to de-
termine whether the fracturation events are spatially correlated. Al-
though the data set is too limited for a detailed analysis, some infor-
mation can be obtained from the 13 events of family F1 on profile
P 1. The spacings si between successive events i and i + 1 have an
average 〈s〉 = 43.3 m and a standard deviation σ s = 48.6 m. Recall
that if the events are Poissonian, i.e. without any spatial correlation
(see Kingman 1993), the spacing between their intersections with a
scan line obeys an exponential probability law proportional to exp
(−s/〈s〉), with 〈s〉 = σ s (Adler & Thovert 1999). In the present case,
σ s is slightly larger than the mean spacing, which indicates that the
events are slightly more clustered than in a random distribution.

The variogram of the spacing can be defined as the average (Long
& Billaux 1987)

γs(n) = 〈(si − si+n)2〉. (30)

For a Poisson distribution, the spacings are uncorrelated and γ s is
constant and equal to 〈s〉2. The variogram γ s is plotted in Fig. 4 for
family F1 in profile P 1. Deviations from 〈s〉2 are observed. However,
they are due in most part to the small size of the statistical data set.
For instance, if the spacing between the last observed event and the
end of the profile is included in the calculation, the deviations are
significantly reduced. In addition, this calculation does not take into
account the very different widths of the various events.
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Figure 4. Variogram (30) of the spacings of the intersections of events from
family F1 with profile P 1 without (– – ◦ – –) or with (· · · ◦ · · ·) inclusion
of the part of the profile following the last observed intersection. The thick
solid line corresponds to uncorrelated event locations.

No definite intercorrelation was found either between the event
width and location, or spacing.

Therefore, in the absence of any conclusive evidence of spatial
correlations, it is assumed in the following that the event location
and other characteristics are uncorrelated.

3.3.2 Volumetric density

The volumetric density of each of the 46 events in Table 1 is given
by (6), where Af ( f = 1 to 46) is the event area and Lf is given
by an obvious extension of (6) in order to take into account the
measurements along the three profiles

L f =
∑
j=1,3

L j |p j .nf |, (31)

where Lj and p j ( j = 1, 2, 3) are the length and orientation of profile
Pj, respectively. The length Lf is the reduced total length of profile
in the direction normal to each event and is given in Table 1.

It is worth noting that although families F1 and F2 yield the most
numerous events in the data set, this is mainly due to their favourable
orientations relative to the profile axes. In the directions normal to
their mean planes, the four families have similar frequencies, with
21, 21, 26 and 18 intersections per kilometre of profile for F1 to F4,
respectively.

Some information can be given on the area Af . In addition to the
event extensions compiled in Table 1, complementary observations
in a quarry in the same area showed that the traces of the fractures
generally extend throughout a 25 m high subvertical wall. Moreover,
it is believed that joints along the E–W direction, i.e. parallel to
the main regional tectonic feature in the Pyrénées, have a larger
extension than along the S–N direction. These indications will be
used as guidelines in the simulations.

3.4 Numerical reconstruction

Numerical samples of fractured rock are stochastically generated
according to the two-step procedure described in Section 2.3. The
cell size is generally equal to L = 600 m.
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The events and the fractures they contain are assumed to have
identical plane circular or polygonal shapes circumscribed by circles
of radius R. In the absence of precise experimental information, two
simple cases only are considered here: in the first case, all events
have the same size R; in the second case, the events are oriented
E–W with the exception of events 34 and 35 that have a size RM

twice as large as the Rm of the other events. The larger events are
essentially those in family F4, and events 11 and 21. Hereafter,
these two cases are referred to as monodisperse and bidisperse,
respectively.

It is important to note that the assumption about the size in the
second case is in agreement with large scale geological observation,
since only F1 and F4 are observed on satellite images or on regional
geological maps.

Given the size and shape of an event f , and thus its area
Af , the volumetric density ρf results from (31) and the num-
ber nf to be inserted in the unit cell is ρf L3. A number of
events equal to the integer part of nf is inserted first, and then
an additional one with a probability equal to the fractional part
of nf . According to the discussion in paragraph 3.3.1, they are
placed with their centers at random locations, without any spatial
correlation.

Various values of R have been considered, from 25 m to 100 m.
In the second step, each event is replaced by series of n f,p paral-

lel fractures, with the same size and shape, and their centers evenly
distributed on the normal axis of the event. n f,p can be derived
from the width w and fracture spacing d of the event, according
to (1). Since this can yield up to 300 fractures per event, f = 40,
n f,p , for instance for, was rescaled by a constant factor so that it
does not exceed a maximal value 1 + nmax. This is done by in-
troducing a factor β, equal for all the events, in the definition of
n f,p:

n f,p = 1 + Int

(
wf

βdf

)
, β = 300

nmax
. (32)

In order to check that the numerical samples actually comply with
the field observations, 500 random realizations were generated, and
line surveys were simulated through them. The scan line is 500 m
long, oriented 120◦ clockwise from north, in a horizontal plane at
z0 = L/4 in the samples. The intersections with each type of event
were recorded and averaged over the 500 realizations.

Monodisperse networks of circular events were considered first.
Examples of trace maps in a horizontal section are shown in Fig. 5,
with the events represented either by single fractures or by series of
parallel fractures. The number n f,i of event intersections with the
scan line was checked in the first type of network. It is compared
to the value expected from the scan line length, orientation and
from the event parameters Lf and nf in Fig. 6. The agreement is
quite satisfactory. Note that the statistical error bar is of the order
of

√
n f,i (1 − n f,i )/500 ∼ 0.02.

Fig. 7 shows examples of bidisperse networks. In this case, the
event radius is RM = 100 m for those oriented in the W–E direction,
and Rm = 50 m for the others. All other parameters are identical to
the previous case, except for the number of events, since it depends
on their size (see eq. 6). The comparison of the mean numbers of
event intersections with the scan line in the simulated networks with
the expected values was as good as in the monodisperse case.

For illustration, Fig. 8 shows a 3-D view of a bidispersed recon-
structed sample, with RM = 50 m for the W–E events, Rm = 25 m
for the others, and L = 200 m. The events are represented by single
hexagonal fractures.
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Figure 5. Trace maps obtained in an horizontal section through monodis-
perse reconstructed samples. The cell size is L = 600 m and the event radius
R = 100 m. The events are represented by single fractures in (a) and as series
of fractures in (b). The solid lines correspond to the traces of the events which
intersect the 120◦N, 500 m long scan line (thick solid line). Traces in dotted
lines do not intersect the scan line. Distances are in R units, i.e. 1:100 m.

3.5 Connectivity

The connectivity can now be easily quantified by the formulae de-
rived in Section 2.4. The sums in (11) and (12) can be directly cal-
culated from the line survey data, without any hypothesis regarding
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Figure 6. Mean number of event intersections with a 500 m long, 120◦N
scan line (see Fig. 5a). The abscissae correspond to the event number given
in the first row of Table 1. Data in (a) correspond to the average over 500
monodisperse reconstructed samples, with L = 600 m, R = 50 m. Data in
(b) are the expected values resulting from the field data.

the event size and shape. They are equal to∑
i

∑
j

sin γi, j

Li L j
= 8.081510−3 m−2

∑
i

1

Li
= 0.1078 m−1. (33)

The mean number ρ ′ of intersections per event is thus expressed as

ρ ′ = 2ρI

ρ
= 0.0477P, (34)

where P in the last equality is expressed in metres. This result shows
that the assumption made for the event shape in the modelization
has little influence on the connectivity, since, with R in metres, (13)
yields

ρ ′ = 0.300R(discs), ρ ′ = 0.286R(hexagons),

ρ ′ = 0.270R(squares). (35)

The global effective exclusion volume Vex can be derived from (14)

Vex = ρ ′

ρ
= 0.4424AP, (36)

a value which is slightly smaller than AP/2 obtained for isotropic
networks.

Hence, the present anisotropic distribution of the event orienta-
tions tends to decrease the connectivity, in terms of mean number of
connections per event given the global volumetric density, with re-
spect to the isotropic case. However, this is only a global statement,
which does not take into account the fact that events belonging to
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Figure 7. Trace maps obtained in a horizontal section through bidisperse
reconstructed samples. The cell size is L = 600 m and the event radius
RM = 100 m for those oriented W–E, and Rm = 50 m for the others. The
events are represented by a single fractures in (a) and as series of frac-
tures in (b). The solid lines correspond to the traces of the events which
intersect the 120◦N, 500 m long scan line (thick solid line). Traces in
dotted lines do not intersect the scan line. Distances are in RM units, i.e.
1:100 m.
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Figure 8. Example of bidisperse reconstructed sample, with RM = 50 m for the W–E events, Rm = 25 m for the others, and L = 200 m. The network contains
434 events represented by single fractures. Coordinates are in RM units, i.e. 1:50 m. The density ρ′ of the network is equal to 7.60.

the same family are unlikely to intersect, whereas events from fam-
ilies F1 and F2, which are nearly orthogonal, have a much greater
probability of intersection.

3.6 Probability of percolation

The numerical tools applied in this Section were originally devised
by Huseby et al. (1997), who gave a full description of the theoretical
framework and methods in use. Since, they have been significantly
improved in terms of computational efficiency, but without any ma-
jor change in the main features.

Let us insist again on the fact that the main focus of this paper is the
analysis of the connectivity as it is controlled by the dimensionless
density ρ ′; the role of the individual fracture permeability will be
briefly addressed in Section 4.2.

The percolation of the reconstructed samples was investigated
for hexagonal fractures, with circumscribed disc radius R. As pre-
viously mentioned (see eq. 35), the particular choice of the fracture
shape has a limited influence on the network connectivity: more
important is the size of the events, since it directly conditions the
volumetric density ρf , which corresponds to the intersection spacing
(or volumetric area) observed on the field.

The probability of percolation � p of these networks was studied
as a function of the density ρ ′ and of the relative sample size L/R,
since it is well-known that close to the percolation threshold, many
properties of the medium, including � p , are size-dependent (Fisher
1971); instead of the sudden transition to percolation at the threshold
of infinite systems, the probability of percolation of finite systems
gradually increases from zero to one, as ρ ′ increases. The transition
becomes sharper as the system size increases.

Percolation was studied along the x (S–N) and y (E–W) directions
assuming periodic boundary conditions in all directions. Recall that
because of the orientation of the Lachein river, flow is likely to be
east–west in the karstified limestone. The relative cell size L/R was
varied from 4 to 16, and the density ρ ′ was gradually increased. The
variations of ρ ′ can be interpreted either as variations of the event
size R with the field data kept unchanged (see eq. 13, with P = 6R
for hexagons), or as variations of the density for a constant size, with
all the lengths Li multiplied by a common coefficient in eq. (13). A
number N = 500 of random realizations were generated for each
value of the parameters, and the probability of percolation � p was
defined as the fraction of percolating configurations.

The critical density ρ ′
Lc is defined as the value for which � p(ρ ′)

is equal to 1/2. It is determined by fitting the data for � p(ρ ′) with
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Geometry, percolation and transport properties of fracture networks 927

Table 2. Parameters of the fitted scaling laws 38.

Configuration nmax Direction ρ′
c b ν

Mono 0 X, Y, Z 2.254 3.8165 0.854
Mono 10 X, Y, Z 3.004 5.5085 0.940
Bi 0 X 1.951 2.7567 1.068
Bi 0 Y 1.984 4.5424 0.888
Bi 0 Z 2.026 5.2961 0.839
Bi 10 X 3.014 9.1854 0.883
Bi 10 Y 3.117 8.5922 0.932
Bi 10 Z 3.031 8.7533 0.913

an error function of the form (Stauffer & Aharony 1994; Reynolds
et al. 1980):

�p(ρ ′) = 1√
2π

∫ ρ′

−∞

1

�L
exp

{
−

[
ξ − ρ′Lc

2�L

]2
}

dξ, (37)

where �L and ρ ′
Lc are fit parameters. Such a function provides an

excellent fit to the data obtained for monodisperse and bidisperse
networks with the presence or absence of parallel fractures.

Once �L and ρ ′
Lc have been evaluated for several values of L, the

asymptotic value of the density ρ ′
c for infinite systems can be derived

from the two scaling relations (Fischer 1971; Charlaix 1986):

ρ ′
Lc − ρ ′

c ∝ L−1/ν �L ∼ bL−1/ν . (38)

Plots of ρ ′
Lc as a function of �L were extrapolated to zero in order to

find ρ ′
c. Similarly, the critical exponent ν was obtained by plot-

ting �L as a function of L/R. The data obtained are summarized in
Table 2.

The results for monodisperse samples, with fracturation events
represented by a single fracture, are shown in Fig. 9(a), where the
sharpening of the transition to percolation as L/R increases is clearly
visible. The critical density ρ ′

c as �L → 0 was found to be ρ ′
c =

2.254, which is close to the result ρ ′
c � 2.26 of Huseby et al. (1997)

for randomly-oriented fractures. In view of (13), the fracturation in
the Baget basin has a density ρ ′ ∼ 2.4 if the event size is R ∼ 8.3 m.
Since trace lengths much longer than this value have been observed
many times when the outcrop geometry allowed for it, i.e. in the
quarry or when the traces were roughly parallel to the roads, the
connectivity of the fracture network is probably very large and it
percolates.

It is nevertheless interesting to investigate the percolation in this
low-density range, in order to assess the influence of size polydis-
persity and of the width of the fracturation events.

Fig. 9(b) shows results obtained with bidisperse networks. The
percolation was checked in the x (S–N) and y (E–W) directions. The
latter is parallel to the largest events and to the river, with a radius RM ,
whereas the former is in the orthogonal direction. The cell size L/RM

was varied from 4 to 8, causing the same sharpening of the transition
to unit percolation of probability as in the monodisperse case.

Recall that the fracturation is not only bidisperse, but also
anisotropic, since the largest events are all aligned in the E–W direc-
tion. The critical densities ρ ′

Lc measured along the two axes are in-
deed slightly different; they are equal to 2.17 (S–N) and 2.10 (E–W),
for L/RM = 8. However, this might result, at least partly, from dif-
ferent size effects in the x and y directions. The asymptotic values
found as �L → 0 (Table 2) are indeed very close in all the directions.
They were respectively ρ ′

c = 1.951 and 1.984 in the x and y direc-
tions. In any case, both values are smaller than for the monodisperse
case. This means that this anisotropic polydispersity improves the
efficiency of event connections to ensure global percolation.
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Figure 9. Probability of percolation Pp in the x direction as a function of the
density ρ′, for monodisperse (a) and bidisperse (b) networks of fractures. The
data are averages over 500 random realizations. In the bidisperse networks
(b) the size RM of the east–west fractures is twice the size Rm of the others.
The symbols ♦, ◦, ∇ and � correspond to cell sizes L/R = 16, 12, 10 and
8, respectively in (a), and to L/RM = 8, 6, 5 and 4 in (b).

The previous calculations were repeated for fracturation events
with non-zero width, represented by series of up to nmax parallel
fractures, according to the observed event width wf .

In this situation, the network connectivity can be quantified by
two dimensionless densities, namely the mean number ρ ′

e of inter-
sections per event, and the mean number ρ ′

p of fracture intersections
per fracture. If all events are single fractures, ρ ′

e = ρ ′
f . If wf > 0,

ρ ′
e can be easily estimated from the field data by modifying (8), as

noted in Section 2.4. On the other hand, it is difficult to generalize
the argument in Section 2.4 to predict ρ ′

p , since it only applies for
objects without spatial correlations. In the reconstructed samples,
ρ ′

p is determined according to (13), and ρ ′
e is determined likewise,

by considering that two events are intersecting if they contain a pair
of intersecting fractures.

In addition, two different percolation criteria can be introduced.
One may assume that all the fractures within an event are mutually
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connected: this may represent a situation where the whole event is
a high permeability region. On the other hand, one may consider
that the series of parallel fractures are unconnected, because they
are separated by layers of intact rock. Then, a cluster of overlapping
events may actually not contain a spanning cluster of connected frac-
tures. The latter point of view was adopted here, and the percolation
probability is analyzed in terms of the density ρ ′

p . The subscript p is
omitted in order to simplify the notations, but it should be remem-
bered that ρ ′ stands for ρ ′

p .
Size effects are much stronger than for networks of single frac-

tures: substantial variations of ρ ′
c still take place between L/R = 12

and L/R = 16, for the monodisperse case, and between L/RM =
6 and L/RM = 8 for the bidisperse case. Therefore, the asymptotic
value ρ ′

c (�L → 0) were estimated for networks containing series of
parallel fractures. For a monodisperse configuration, we found ρ ′

c =
3.042, which is a much larger value than the results found when we
did not consider parallel fractures. For the bidisperse configuration
with parallel fractures, we found ρ ′

c = 3.014 and 3.117 in the x and
y directions. These densities are clearly larger than the result ρ ′

c ∼ 2
obtained when the events are represented by a single fracture. This
is an expected result, since ρ ′ is evaluated from the total number
of fracture intersections. When two series of parallel fractures in-
tersect, many fracture intersections, which are largely redundant for
the network percolation, are created. The number of such intersec-
tions is roughly a quadratic function of the number of fractures in
the series, whereas the total number of fractures is a linear function.
Thus, ρ ′ should increase roughly linearly with the size of the series.

This is confirmed by the data in Fig. 10, which summarizes the
results for large cell size L/R = 16 for monodisperse networks
and L/RM = 8 for bidisperse networks. The fracturation events are
represented by a single fracture, or by series of up to nmax = 10 or
20 parallel fractures. The corresponding curves for � p are shifted
towards larger densities ρ ′, i.e. larger numbers of intersections per
fracture, when the size of the series increases; furthermore, the shift
for nmax = 20 is about twice the shift for nmax = 10.

3.7 Flow properties

The flow equations described in Section 2.6 were solved in the net-
works listed in Table 3. The unit cell size L was varied from 200 to
600 m and the event size R from 25 to 100 m. In addition, monodis-
perse and bidisperse size distributions and various values of nmax

were considered. As usual, in the bidisperse cases, the size RM of
the events in the E–W direction is twice as large as the size Rm of
the others. Finally, the dimensionless fracture permeability σ ′ was
generally taken constant, equal to unity, but in some cases, it was
set equal to unity for the events in the E–W direction and to 1/2 for
the others. This last case is discussed in Section 4.

As in the previous Section, it was considered that parallel fractures
belonging to the same event are mutually unconnected. Thus, when
nmax >1, the network permeability is analysed in terms of the density
of fractures, and ρ ′ stands for ρ ′

p .
As shown in Table 3, these samples generally contain ca Nf =

500–1000 of fractures. A 3-D view of one of these samples is dis-
played in Fig. 8.

The permeability can be evaluated first according to the model
elaborated by Snow (1969) (see eq. 27). It is known that this model is
valid only in the limit of very dense networks (Koudina et al. 1998),
but in view of the dimensionless densities ρ ′ in Table 3, it can be
expected to apply reasonably in the present case. This property is due
to the fact that the number of intersections per fracture ρ ′ increases
linearly with the fracture density; when ρ ′ is large, each fracture
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Figure 10. Probability of percolation Pp of monodisperse (————) and
bidisperse (– – – –) networks, in the x (S–N, a) and y (E–W, b) directions,
as a function of the density ρ′. The data are averages over 500 random
realizations. In bidisperse networks, the size RM of the east–west fractures is
twice the size Rm of the others. The cell size is L/R = 16 (monodisperse) or
L/RM = 8 (bidisperse). The events are represented by series of up to nmax =
10 (◦) or 20(�) parallel fractures, or by single fractures (∇).

behaves as if it were of infinite extension which is precisely the
conditions for the application of the Snow formula.

It should be recalled that (29) yields the same result for the perme-
ability of monodisperse and poydisperse networks. For instance, the
events that are twice as small in the bidisperse model are four times
more numerous (see eq. 6), in order to comply with the observed
value of Lf , and their volumetric area is unchanged.

In view of eq. (32), KSn can be written as

KSn = σ
∑

f

1

L f

[
1 + Int

(
nmaxwf

300 df

)]
(I − nf nf ), (39a)

≈ σ
[ ∑

f

1

L f
(I − nf nf )

+ nmax

∑
f

1

L f
Int

(
wf

300 df

)
(I − nf nf )

]
. (39b)

The two sums in (39b) are equal to∑
f

1

L f

(
I − nf nf

)

= 0.0719


 1.064 0.046 −0.178

0.046 0.996 0.230
−0.178 0.230 0.939


 m−1,

(40a)
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Geometry, percolation and transport properties of fracture networks 929

Table 3. Permeability calculations: (a) corresponds to monodisperse samples; the effects of the bidispersivity are considered in (b); and the effect of
multiple parallel fractures in the events are studied in (c). The cell and event sizes, L and R or RM , are given first, in metres. Column Cfg describes the
configurations, with monodisperse (M) or bidisperse (B) size distributions, and fracture permeabilities either constant (U) or set according to the fracture
orientation (V). nmax is the maximum number of parallel fractures in the events. Nf , ρ and ρ′ are the number of fractures, the density in fractures per

R3 volume, and the dimensionless density, respectively. K is the dimensional mean permeability, with K/σ in m−1, and K
′

is the dimensionless mean
permeability. ki is the normalized diagonal component of the permeability tensor, ki = Kii /K . Subscript Sn refers to Snow’s model (27).

L RM Cfg nmax Nf ρ ρ′ kx ky kz
102 K

σ
K

′
k Sn,x k Sn,y k Sn,z

102 K Sn
σ

K
′
Sn

(a)
1 200 25 M,U 0 532 1.04 7.15 1.09 1.03 0.93 2.68 0.67 1.07 0.99 0.94 7.20 1.80
2 300 37.5 M,U 0 802 1.57 10.9 1.04 1.00 0.95 3.89 1.46 1.07 1.00 0.94 7.23 2.71
3 200 50 M,U 0 136 2.13 14.7 1.10 0.94 0.96 4.68 2.34 1.07 0.98 0.94 7.36 3.68
4 400 50 M,U 0 1066 2.08 14.0 1.06 1.01 0.94 4.62 2.31 1.06 1.00 0.94 7.22 3.61
5 300 75 M,U 0 201 3.14 21.6 1.09 0.97 0.95 5.59 4.19 1.06 1.00 0.94 7.25 5.44
6 600 100 M,U 0 899 4.16 28.2 1.05 1.01 0.94 5.90 5.90 1.06 1.00 0.94 7.21 7.21

(b)
1 200 25 M,U 0 532 1.04 7.15 1.09 1.03 0.93 2.68 0.67 1.07 0.99 0.94 7.20 1.80
2 200 50 M,U 0 136 2.13 14.7 1.10 0.94 0.96 4.68 2.34 1.07 0.98 0.94 7.36 3.68
3 200 50 B,U 0 434 6.79 7.60 0.99 1.07 0.95 3.28 1.64 1.07 0.99 0.94 7.18 3.59
4 200 50 B,V 0 434 6.78 7.60 0.91 1.15 0.96 2.12 1.06 0.96 1.08 0.96 4.46 2.23
5 300 37.5 M,U 0 802 1.57 10.9 1.04 1.00 0.95 3.89 1.46 1.07 1.00 0.94 7.23 2.71
6 300 75 M,U 0 201 3.14 21.6 1.09 0.97 0.95 5.59 4.19 1.07 1.00 0.94 7.25 5.44
7 300 75 B,U 0 655 10.2 11.5 1.01 1.04 0.94 4.48 3.36 1.07 1.00 0.94 7.24 5.43
8 300 75 B,V 0 655 10.2 11.5 0.92 1.11 0.97 2.84 2.13 0.95 1.08 0.97 4.51 3.38

(c)
1 200 25 M,U 0 532 1.04 7.15 1.09 1.03 0.93 2.68 0.67 1.07 0.99 0.94 7.20 1.80
2 200 25 M,U 5 768 1.50 10.3 0.94 1.08 0.98 4.80 1.20 0.96 1.02 1.03 10.4 2.60
3 200 25 M,U 10 1065 2.08 14.0 0.91 1.08 1.01 6.96 1.74 0.89 1.01 1.09 14.4 3.60
4 200 50 M,U 0 136 2.13 14.7 1.10 0.94 0.96 4.68 2.34 1.07 0.98 0.94 7.36 3.68
5 200 50 M,U 5 192 3.00 20.6 0.97 1.04 0.99 7.22 3.61 0.95 1.03 1.02 10.4 5.20
6 200 50 M,U 10 264 4.13 27.6 0.92 1.09 0.99 9.66 4.83 0.89 1.03 1.09 14.3 7.14
7 200 50 B,U 0 434 6.79 7.60 0.99 1.07 0.95 3.28 1.64 1.07 0.99 0.94 7.18 3.59
8 200 50 B,U 5 577 9.02 11.5 0.90 1.08 1.02 5.84 2.92 0.96 1.02 1.03 10.5 5.18
9 200 50 B,V 0 434 6.78 7.60 0.91 1.15 0.96 2.12 1.06 0.96 1.08 0.96 4.46 2.23
10 200 50 B,V 5 577 9.02 11.5 0.80 1.15 1.05 3.90 1.95 0.81 1.13 1.08 6.88 3.44

∑
f

1

L f
Int

(
wf

300 df

) (
I − nf nf

)

= 0.007985


 0.682 −0.054 0.132

−0.054 0.980 0.054
0.132 0.054 1.338


 m−1. (40b)

The mean permeability K Sn over the three axes (one third of the
trace) is given by

K Sn ≈ σ (0.0719 + 0.007985nmax) m2. (41a)

The corresponding dimensionless value is

K
′
Sn ≈ RK Sn

σ
= R(0.0719 + 0.007985nmax). (41b)

However, it should be noted that the insertion of additional fractures
in the events, i.e. the increase of nmax, also modifies the anisotropy
of the network permeability tensor, since the two contributions in
eq. (40) have different anisotropies.

Again these different formulae make a clear distinction between
the geometric properties that are related to measured quantities, and
the individual fracture permeabilities that could be obtained by a
different set of measurements. Note that variable fracture perme-
abilities σ can easily be accounted for by keeping σ f under the
summation in (29).

The permeabilities obtained from (29) are given in Table 3, for
all the investigated cases. The data may slightly differ from (39–41),
because KSn was evaluated on the actual random realizations, instead

of from the data in Table 1, but the differences are always small,
both in magnitude and anisotropy: slight differences only occur for
the sample containing the smallest number of fractures (136), and
they are due to statistical fluctuations. Table 3(b) shows that K Sn is
identical for monodisperse and bidisperse networks, and the data in
Table 3(c) for nmax > 0 illustrate the increase in mean permeability
and the change in the anisotropy induced by the fracture series.

The permeabilities K calculated by solving the 3-D flow equa-
tions for monodisperse networks are given in Table 3(a). The two
calculations performed for R = 50 m (ρ ′ ≥ 14) in cells with sizes
L = 200 and 400 m yield similar results. This agrees with the ob-
servation of Koudina et al. (1998) that effects of cell size on the
permeability of periodic fracture networks vanish when ρ ′ ≥ 4 and
L/R ≥ 4. Hence, (4R)3 samples are large enough to obtain a rep-
resentative value of the network permeability. As expected, K is an
increasing function of the network density, quantified by ρ or ρ ′. It
appears that the model (29) overestimates the permeability, which
is natural since it assumes that the whole fracture area fully con-
tributes to the flow. However, the error is only of the order of 20–25
per cent for very connected networks (ρ ′ ≥ 20), which is a fair result,
considering that the model (29) does not require the solution of any
flow equation. Moreover, the anisotropy of K is very close to that
of KSn, even for the smallest density.

The various determinations of the mean permeability are plotted
in Fig. 11 as functions of the dimensionless network density ρ ′. For
ρ ′ > 10, K increases quasi-linearly with the density. The predic-
tion of (29) yields another straight line, parallel to the former, but
shifted vertically. Finally, the result (25) of Koudina et al. (1998)
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Figure 11. Dimensionless mean permeability K
′

of monodisperse net-
works as a function of the density ρ′. Data correspond to the numerical
solution of the 3-D flow equations (– – ◦ – –), to the prediction (29) (—
—–), and to the result (25) of Koudina et al. (1998) for isotropic net-
works (· · ·♦ · · ·). Data are for: monodisperse networks without parallel
fractures (– – ◦ – –), monodisperse networks with parallel fractures (nmax

= 5, +; and nmax = 10, �), bidisperse networks without parallel fractures
(×).

for isotropic networks is also presented for comparison. It is in good
agreement with the present calculations for small and intermediate
densities, but it seems to increase at a faster rate for large densities.
The numerical results for bidisperse networks are given in Ta-
ble 3(b). They give rise to several observations.

Consider first the pairs of cases in lines (2, 3) and (6, 7) in the
Table 3(b) , which have identical size L, radius RM , constant fracture
permeability σ , but are either monodisperse or bidisperse. Since the
volumetric areas of each type of event are identical, (29) results in
the same permeability tensor K Sn. However, the actual calculations
yield different permeabilities for the monodisperse and bidisperse
cases. K is smaller in the bidisperse networks. This is mostly due to
a lesser connectivity, with ρ ′ twice as small as in the monodisperse
case. The permeability anisotropy is also different in the monodis-
perse and bidisperse cases, with an increase of the permeability in
the y direction, parallel to the longer fractures, which is not predicted
by the model (29).

Consider next the pairs of cases in lines (1, 3) and (5, 7) in Ta-
ble 3(b), which have identical size L, constant fracture permeabil-
ity σ , but different radii RM , so that their dimensionless densities
ρ ′ are roughly equal. Again, the volumetric areas of each type of
event are identical and (29) results in identical permeability tensor
K Sn. However, the mean permeabilities K from the solution of the

flow equations are again different in the monodisperse and bidis-
perse cases. K is now larger in the bidisperse networks. The tensor
anisotropies are also different, though in a lesser respect than in the
previous comparison.

Thus, as expected, Snow’s model (29) poorly succeeds in account-
ing for the effect of size polydispersity.

The numerical results for monodisperse and bidisperse networks
where the fracturation events are represented by series of parallel
fractures are given in Table 3(c). In all cases, the presence of parallel
fractures increases the permeability of the networks.

The two sets of lines (1–3) and (4–6) in Table 3(c) are series
of identical cases, except for increasing values of nmax, equal to
0, 5 and 10. Accordingly, the number Nf increases, by factors of
about 3/2 and 2. Since Snow’s model (29) supposes perfect con-
nectivity, K Sn increases roughly in the same proportions, although
the anisotropy of K Sn changes according to (39). However, the frac-
ture connectivity, quantified by the number of intersections per frac-
ture ρ ′ also increases with nmax. For the first set (lines 1–3), ρ ′

increase from 7.15 to 10.3 and 14.0; therefore, the calculated per-
meabilities K increase in a larger proportion than Nf , by factors
about 1.8 and 2.6 for nmax = 5 and 10, respectively. For the second
set (lines 4–6), ρ ′ is always large (14.7–27.6), and its increase has
very little effect. Accordingly, K increases by the same factor as Nf .

Although the addition of parallel fractures in some of the events
increases the permeability, the increment is smaller than when the
same number of fractures is added by changing the density of events.
Compare for instance line 6 in Tables 3(a) and (c). The two samples
have nearly equal densities ρ and ρ ′; however, K is 22 per cent
larger when the fractures are evenly distributed among all the event
types (nmax = 0), than when many of them are concentrated in a few
types of events (nmax = 10). This is illustrated by the plot of K

′
as

a function of ρ ′ in Fig. 11, for nmax = 5 and 10, in comparison with
the data for nmax = 0 in Table 3(a).

The anisotropy of the permeability tensors also varies when nmax

increases. The x direction (N–S) is the most favourable to the flow
for nmax = 0, and becomes the least favourable for nmax = 10.
Conversely, the y direction becomes preferential. This last feature
is unexpected, in view of (40b), which shows that the additional
fractures are oriented mostly parallel to the z-axis. Accordingly,
the anisotropy of K Sn moves from the x to the z direction as nmax

increases. The different behaviour of K is probably due to the fact
that the series of fractures parallel to z help in connecting other ones
oriented parallel to y.

Two general remarks can be made to conclude this Section. They
will also make a useful transition to the next Section.

The macroscopic permeability of fracture networks depends on
many geometrical parameters, including the size, shape and ori-
entation distributions of the fractures, and in the present case on
the existence of regularly spaced parallel series. A full description
should account for all of these parameters. However, it appears that
a great part of their influences can be summarized by the dimension-
less density ρ ′, as was already shown by Koudina et al. (1998) for
isotropic networks, as indicated by the good agreement observed
in Fig. 11 between the present calculations and the result (25) of
Koudina et al. (1998).

Even though Snow’s model (29) fails to account accurately for
the effect of size polydispersity and of the presence of series of par-
allel fractures, it still provides a reasonable estimate of the network
permeability, considering its low computational cost, including the
influence of non-uniform fracture permeability. Of particular in-
terest is the fact that, aside from the fracture permeability, it only
requires a few geometrical parameters which are readily available
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Geometry, percolation and transport properties of fracture networks 931

from line surveys, without need for any assumption regarding the
size and shape of the fractures.

4 VA L I DAT I O N A N D E X T E N S I O N S

This Section is devoted to the validation and the extension of the
previous results.

4.1 Validation

There are not many examples in the literature where the fracture
network is perfectly known and where the previous technique can be
validated. However, recently we have studied a sample of fractured
granite (Gonzalez Garcia et al. 2000).

This study was conducted on a block of dark grey Hercynian
granite from La Peyratte, Deux-Sèvres, France. It is fine-grained
(1–2 mm long crystals) and is crosscut by numerous fractures sur-
rounded by discoloured alteration haloes. The primary acquisition
was undertaken by Ledésert et al. (1993). The granite block (about
52 × 35 × 36 cm3) was sawed into nine parallel plates, 4 cm in
thickness. Trace maps were drawn from the nine sections, by vi-
sual examination of the alteration zones, due to the circulation of
hydrothermal fluids (Fig. 12). Three examples of these traces are
given in Fig. 12. The fracture pattern appeared to be composed of
two main families A and B, at about ±30◦ inclination angle from
the vertical axis. These two sets are associated with one horizontal
fracture (fracture number 16, in Fig. 12).

This block and its properties were extensively studied by Gon-
zalez Garcia et al. (2000). For our purposes here, this paper can be
summarized as follows. The block of volume V = 0.066 m−3 con-
tains Nf = 90 fractures which are present in more than one plane.
This network possesses NI = 214 fracture intersections. Two basic
quantities can be derived from these numbers, namely the volumetric
fracture density ρ and the dimensionless fracture density ρ ′:

ρ = Nf

V
= 1364 m−3, ρ ′ = 2NI

Nf
= 4.76. (42)

Moreover, the total fracture area is equal to S = 2.05 m2; an es-
timation of the lateral extension of the fractures can be made by
assuming that they are equal discs of radius R. Then, S = Nf π R2,
and R is found to be equal to 0.085 m.

The transport properties of the block were also analysed. Using
the methodology explained in Section 2.6, the Darcy equation was
solved in the real network. The following dimensionless results were
obtained along the three axes:

Knu,xx = 0.66, Knu,yy = 1.89, Knu,zz = 0.26, (43)

where the permeabilities are made dimensionless by the factor σ/R,
where R is the previous value of the radius when the fractures are
assumed to be circular.

Let us now apply the line analysis detailed in Section 2.1 to this
granite sample. More precisely, as seen in Fig. 12, we have selected
three of the nine planes and measured the number of intersections
either along the horizontal or the vertical axis: in the former case,
one has a total of nh = 44 intersections for a total length Lh = 3 ×
0.52 m = 1.56 m; in the latter case, one has nv = 18 intersections
for a total length Lv = 3 × 0.35 m = 1.05 m.

For the sake of simplicity, we shall now assume that the fracture
network is made of an isotropic distribution of monodisperse discs
of radius R with a volumetric density ρ. (4) can be generalized in a
straightforward way. The total number nt of intersections between

Figure 12. Three of the nine successive trace maps. The traces of two
fractures (1 and 16) are indicated in each section. (Reprinted with permission
from Ledésert et al. 1993).

a line of length L and this network is given by

nt = π

2
ρL R2. (44)

Since the excluded volume of discs is equal to π2 R3, the dimen-
sionless density ρ ′ can be derived as

ρ ′ = 2πnt
R

L
= 2π (nh + nv)

R

Lh + Lv

. (45)

It is straightforward to make a numerical application of this formula:

ρ ′ = 12.7. (46)

This quantity should of course be compared to (42). It can also be
compared, and with a better agreement to the prediction ρ ′ =πRS/V
= 8.3, based on the global fracture area, but the latter requires a
knowledge that can only be obtained from 2-D or 3-D data.

Let us evaluate the dimensionless permeability of this equivalent
network. We can either use the percolation, like formula (25), or the
isotropic Snow formula (28) expressed for discs to obtain the two
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following evaluations denoted by K ′
p and K ′

S :

K ′
p = 1.9, KS = 2.7, (47)

values that have to be compared to the average one-and-a-half of the
three values given by (43).

Let us now summarize and critically evaluate our findings. It is
seen that the dimensionless density is overestimated by a factor
slightly smaller than 3. Despite this difference, the permeability
estimations are excellent since permeability is at most overestimated
by a factor 2.

The difference between (42) and (46) is at least partly due to trun-
cation effects. As seen in Fig.12, many fracture traces are truncated
by the sample boundaries, and quite a few of them probably intersect
out of these boundaries. These intersections are not accounted for in
NI , and therefore, ρ ′ in (42) is underestimated. Similarly, some frac-
ture intersections within the sample have not been detected because
of the relatively large spacing of the section planes. These effects
have a much smaller influence on the intersection count along a
profile which is basically a measurement of the odometric surface
area and thus on the prediction of Snow’s formula (28).

During the course of these comparisons, one should have in mind
the considerable experimental and numerical labor necessary in
Gonzalez Garcia et al. (2000) and the straightforward character of
the application of the line analysis which yields results in no time
within a factor 3 for the dimensionless density and within a factor
2 for permeability.

The comparison could be made more precise by using formulae
such as (29).

4.2 Extension to variable surface permeabilities

Let us come back to the problem of determining the surface per-
meability σ of the fractures. Note that the flow behaviour due to
the complexity of a fracture’s microscopic geometry, is not the fo-
cus of the present study. For practical purposes, we can summarize
previous works by Mourzenko et al. (1995, 2001). If the fractures
are viewed as homogeneous above some length, three major quanti-
ties are necessary to characterize them. The first one is the fracture
aperture bo as already used in (20). In order to be more precise, one
needs to know more about the statistical organization of the frac-
tures. Generally speaking, a fracture can be considered as two rough
surfaces put one on top of one another: the heights Z (r ) of these
surfaces are distributed according to a Gaussian law with zero mean
and variance σ 2

h . Another statistical ingredient is the correlated char-
acter, or not, of the two surfaces. Finally, one needs to characterize
the statistical organization within each fracture: this is usually done
by the covariance CZ (u) of the heights within the surfaces which is
defined as

CZ (u) = 〈Z (r )Z (r + u)〉, (48)

where the brackets denote the statistical average over the surface.
Very often, this covariance can be characterized by a Gaussian vari-
ation:

CZ (u) = σ 2
h exp

[
−u2

l2

]
, (49)

where l is a characteristic length.
Master curves were given by Mourzenko et al. (1995) in order

to estimate more precisely the fracture permeability as functions
of bo, σ h and l. Of course, this more precise estimation requires
more knowledge on the structure of the fractures than the simple
estimate (20).

It may also happen that the fracture characteristics depend on its
orientation. This can occur when the apertures depend for instance
on some regional orientation of the external stresses. Let us give a
few examples of how the previous approaches can be generalized to
such a case.

First, it should be noticed that the inclusion of a variable fracture
permeability does not present any difficulty in the numerical ap-
proach presented by Koudina et al. (1998). Each fracture is meshed
by triangles whose size is smaller than a typical size δ, which is
chosen by the user; typically, this size is smaller than R/5 if R is
an order of magnitude of the lateral extension of the fractures. A
different permeability can be assigned to each triangle.

Secondly, it should be noticed that the Snow formula (27) is valid
when the surface permeability depends on the orientation n. It is
also possible to include the case where fractures with the same
orientation have different permeabilities.

Thirdly, a whole series of calculations is conducted when the
fracture permeability is set equal to unity for the events in the E–W
direction and to 1/2 for the others. This specific study was motivated
by the geological setting as detailed in Section 3.1.

In this situation, (cases V in Tables 3b and c), K Sn decreases
and the anisotropy is modified, with an increase of the permeability
along the y-axis, which corresponds to the E–W direction.

Moreover, consider the pairs of cases in lines (3, 4) and (7, 8) in
Table 3(b). They differ only by the fracture permeabilities, which are
either constant and set equal to unity (case U), or set equal to unity
for the events in the E–W direction and to 1/2 for the others (case
V ). The permeability is of course smaller in the latter case, since σ

is equal or smaller than in case U , whereas the network geometry is
identical. Moreover, the permeability anisotropy in the y direction,
i.e. the direction of the fractures with a large permeability, is further
increased. It can be noted that the model (29) correctly predicts the
decrease in mean permeability and the change in anisotropy due to
the variations of σ , although it failed to account for the effect of
geometrical polydispersivity.

Finally, the four last lines in Table 3(c) compare bidispersed sam-
ples, with constant or variable fracture permeability, and nmax = 0
or 5. They give rise to the same remarks as the other previous tests.
Since the connectivity is intermediate (ρ ′ = 7.6 for nmax = 0), K
increases by a larger factor (about 1.8) than the number of fractures
Nf (4/3) or the density ρ ′ (3/2), whereas K Sn increases by about
3/2. Again, the x direction becomes the least favourable to the flow.
However, the permeability anisotropy is now shifted towards the z-
axis, instead of the y-axis. The prediction (29) is in fair agreement
with this trend. For instance, the shapes of the tensors K and K Sn in
the last line of Table 3(c), which corresponds to bidisperse networks
with non-uniform fracture permeabilities and series of parallel frac-
tures for some of the events, are in remarkable agreement.

In order to conclude this Subsection, it can be said that any extra
information can be used without any difficulty to estimate more
precisely the permeability of the fracture networks.

4.3 Extension to polydisperse networks

This is obviously an important issue since it has been seen in many
circumstances that the observed networks have sizes which are dis-
tributed according to power laws. This important property was first
noticed by Segall & Pollard (1983) and it has been confirmed in
many subsequent works. The probability density h(R) of the frac-
ture radius R is given by

h(R) = αR−a, (50)

where the exponent a is usually ranging between 1 and 3.
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In principle, it is contradictory to utilize a complex fracture size
distribution when measurements are only performed along a line.
This is the basic reason why we did not want to extend the numer-
ical applications too much in this direction; hence, we restricted
ourselves in Section 3 to bidisperse networks which represent only
a small complication with respect to the monodisperse case; more-
over, this bidisperse character is related to the general properties of
the fractures in this region which is characterized by discontinuities
running east–west.

However, it may be that one has extra information on a given
fracture field which has only been measured along a line: this in-
formation, which can come from an outcrop where trace distribu-
tions have been measured (Berkowitz & Adler 1998), may indicate
a strong polydispersity that may or may not be symbolized by the
power law (50). This information can be utilized to make the previ-
ous predictions more realistic.

First, it is not difficult to generalize the analysis made in Sec-
tion 2.2. (4) is valid for fractures of a given direction and a given
radius. If one considers fractures with a given unit normal n, one
has to simply add up the contributions of the various sizes weighted
by the probability density (50).

Secondly, it is not difficult to generalize the numerical calcu-
lations relative to the percolation threshold and the network per-
meability for this situation. It should be mentioned here that such
calculations are currently made in a systematic way and that general
results and master curves will be soon published.

For the time being, one can provide the reader with a simple
extension of the Snow formula (28). If the fracture sizes follow the
power law (50), the total volumetric area S is given by

S =
∫ RM

Rm

ρ Ap(R)h(R) d R = ρ〈Ap〉, (51)

where Rm and RM are the minimal and maximal radii of the discs,
respectively. Ap is equal to π R2.

This expression can be introduced into (27) and it yields

K iso
Sn = 2

3
ρσ 〈Ap〉. (52)

It is also possible to account in (51, 52) for a correlation between
the size R and the permeability σ of the individual fractures:

K iso
Sn = 2

3
ρ〈σ Ap〉, 〈σ Ap〉 =

∫ RM

Rm

σ (R)Ap(R)h(R) d R. (53)

5 C O N C L U D I N G R E M A R K S

Macroscopic properties such as the volumetric densities and the per-
colation properties of a fracture network, can be estimated from a
line survey provided that the orientation of the fractures are recorded.
One of the major merits of these estimations is to provide analytical
expressions where the measured and assumed quantities are clearly
distinguished. For instance, the percolation character (or not) of the
network can be estimated if the lateral extensions of the fractures are
known: such quantities cannot be derived from the line data them-
selves, but can be obtained from other sources such as measurements
on an outcrop.

Another important quantity which can be estimated is the macro-
scopic permeability; of course, this necessitates the creation of an
assumption (or possibly measurements or estimates) of the individ-
ual fracture permeability and of the lateral extensions of the frac-

tures. Whatever the formula used (see 25 and 29), it can be entirely
expressed in terms of measured quantities.

This approach has been validated on a granite block whose struc-
ture is known. Its connectivity and permeability properties are sat-
isfactorily estimated by the proposed approach. One can also ap-
preciate with this example, the drastic reduction in the amount of
work required to fully calculate these properties, compared to the
one necessary for the present technique.

Several extensions to variable fracture permeabilities and poly-
disperse networks are also proposed.

This work will be continued in several ways. The properties of
these anisotropic polydisperse networks composed of a series of
parallel fractures require a complete study. Moreover, the initial
motivation of this study, which was the evolution of these karstic
fields under the influence of dissolution, will be completed.
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