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SUMMARY

In most geological instances, 2-D or 3-D fracture distributions are not available from field
data. We show here that when data relative to fractures are collected along a line such as a road
or a well, estimations can be given to the major geometrical properties of the corresponding
fracture networks, such as the volumetric density of fractures, their percolation character and
their macroscopic permeability. All these formulae are analytical and can be split into two
parts; the first one can be derived from the measured data, while the second one requires
some assumption on the lateral extension of the fractures and on their permeability. All these
techniques are applied to fractures located in the Baget watershed. They are also validated on
a granite block whose structure is fully known. Extensions are proposed for networks with
variable permeabilities and polydisperse fractures.

Key words: fracture network, geometry, line data analysis, percolation, permeability,

reconstruction.

1 INTRODUCTION

The macroscopic properties of a fracture network consist of its ge-
ometrical and topological properties (such as connectivity and per-
colating character), and of its transport properties (such as perme-
ability).

The main objective of this work is to show how a fracture network
can be characterized by data collected along a line. This line can be
located at the surface of the ground, but it can also be a well. Net-
works can be subsequently reconstructed according to these data and
the geometrical properties, namely connectivity and percolation, can
be estimated; moreover, transport properties such as permeability
can be determined as well. In other words, we wish to show that rela-
tively important overall information can be extracted from relatively
poor data.

Fractures are usually generated in a random way (e.g. Koudina
et al. 1998), whereas their positions and characteristics are likely
to depend on the geological features of the region under study. An-
other technique is stereological analysis which was used for instance
by Berkowitz & Adler (1998); the input data were traces collected
on a plane surface. In this work, we focus on fractures located in
the Baget watershed (in the southeast of France) which presents
the peculiarity of being karstified so that an analysis of the fracture
distribution could provide some hints of the drainage pattern of the
basin (Pistre et al. 1999); this means that the transport properties
of the fracture networks will be dependent, to a great extent, on
phenomena such as deposition and dissolution. Due to bad outcrop-
ping conditions, fractures are only visible along recently excavated
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roads; hence, geometrical parameters of the fractures such as their
dips and strikes were mapped along these roads. These parameters
were then included into our network model. It should be stressed that
the karstified character will be studied in a different contribution.

This paper is organized as follows. Section 2 presents the major
theoretical considerations. After a few definitions, the volumetric
density of an event is determined as a function of measurable quan-
tities. Then, it is shown how the networks can be reconstructed
when the individual events are assumed to be randomly distributed
in space. The general percolation properties of these networks can
be derived from quantities such as the mean number of intersections
per event, which can be partly expressed in terms of the measured
data. The determination of the permeability of these networks is
presented and two general estimations are proposed: the first one
derived from percolation theory is valid close to the percolation
threshold, while the second one is valid for high densities. It should
be emphasized that many of these properties can be derived from
relatively straightforward analytical formulae whose simplicity is a
decisive factor for the applications.

Section 3 applies these concepts to the particular case of the Baget
watershed. After a detailed analysis of the line surveys, several types
of fracture networks are reconstructed; fractures may be of the same
size (monodisperse fractures) or of two different sizes (bidiperse
fractures), and each event can be composed of one or several parallel
fractures. Examples of networks are presented. Their percolation
properties are discussed as well as their flow properties.

The first part of Section 4 is devoted to the validation of the
methodology on a block of granite whose structure and properties
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(b)

Figure 1. Notations: (a) intersection of the observation line L with a series of fractures; (b) intersection of a fracture with an observation line and the

corresponding intersection volume.

are known extensively (Ledésert ef al. 1993; Gonzalez Garcia et al.
2000). In the second part of Section 4, it is first recalled how the
permeability of the individual fractures can be determined; the ap-
proach and the formulae presented in Section 2 are extended to net-
works with variable permeabilities, and applications to the Baget
watershed are detailed. Finally, the polydisperse character of the
fracture sizes is addressed; an extension of the classical Snow for-
mula is proposed.
Some concluding remarks end this paper.

2 THEORY

2.1 Definitions

Letus consideraline L (cf. Fig. 1a) which is crossed by fractures; the
line is parallel to the unit vector p. More generally, since these fea-
tures include single fractures, series of parallel fractures and possibly
faulted zones, these intersections are classified as events numbered
by f* for which the position x; along the profile and the width w,
can be measured; wy is of course equal to zero when the event con-
tains a single fracture. In the opposite case, the event f contains 7 1,
fractures which are more or less parallel with an average spacing dy
with the obvious relation

wy=nyg,dy. 1

In addition to this, the orientation of each fracture should be mea-
sured. Instead of the strike and dip angles, we use directly the unit
vector n; perpendicular to the fracture plane, which can be deduced
from the information above; the vertical component of these unit
vectors is taken as positive.

Another useful quantity is the spacing s; between two successive
eventsiandi + 1 along L

§i = Xip1 — Xi- (2)

2.2 Spatial distributions and volumetric density

In the subsequent simulations, we aim at generating random realiza-
tions of fracture networks in agreement with the field observations.
To this end, it is necessary to know how many events of each type
are to be inserted in a given sample volume.

To determine this from the line surveys, we need to know the
density of a given event characterized by the subscript /. Suppose
that this event is a fracture of area 4, and of normal n,. This fracture
intersects a segment of length L on a line parallel to p if its center

belongs to the cylinder of base 4, and length L as illustrated in
Fig. 1(b). The volume of this cylinder is

V:LApr.nf\. (3)
If p; is the number of such events per unit volume, the number

of intersections 7, of this type of event with L is given by

ny=prLAslp-nyl. )

Therefore, the average spacing s, between two intersections is given

by

L 1

ny prdslpongl

Actually, this quantity s, is measurable along the profile L. It can be

used to express the volumetric density of the event f as

sp= (%)

This apparently formal decomposition has the great advantage of
dividing p, into two terms, namely L, which is known from the
measurements along the line and 4, whose value has to be hypoth-
esized. Such a decomposition will be used repeatedly in this paper,
and it can be considered as one of the major contributions of this
work.

Note that according to (5), 1 /Ly is also equal to py Ay, i.e. to the
area of the event /" per unit volume.

The main problem for the determination of p; is the estimation
of the area 4y. Here, it will remain an unknown quantity since data
collected along a line cannot give any information on their extent.
Note that when 2-D trace maps are available, these quantities can be
estimated after a stereological analysis (Berkowitz & Adler 1998).

2.3 Numerical reconstruction

It is useful to give some general information on the reconstruction
procedure which involves two steps.

First, the events are assumed to be Poissonian (a hypothesis sub-
ject to verification) and they are inserted at random locations: their
number results from the volumetric density o, in (6) and from the
sample volume. Secondly, whenever it is relevant, each event is de-
composed into series of parallel fractures, the number and spacing
of which are deduced from the data w and d.

The first step of the generation follows the procedure of Huseby
et al. (1997). The generated samples are made up of cubic unit cells
of size L. In order to minimize size effects in the determination of
the network transport properties, periodicity conditions are applied,
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so that an infinite medium results from the juxtaposition of identical
unit cells.

The events and the fractures they contain are assumed to have
identical plane circular or polygonal shapes. Their size is quantified
by the radius R of the circumscribed circle.

2.4 Connectivity

Within the framework of Poissonian spatial distribution of the frac-
turation events, much can be deduced about the connectivity of the
network from the line survey data.

Recall firstly the definition of the exclusion volume V,.(1, 2)
of two objects f; and f, (Balberg e al. 1984). It is the volume
surrounding f; in which the center of f, must be located in order
for them to intersect. Note that the definition is symmetric, with
Ver(1,2) = Vor(2, 1). Thus, if p; is the volumetric density of objects
fi» Pi Vex(i, j) is the mean number of f; objects intersecting f;. By
simple summation, the total number p; of object intersections per
unit volume is

pr=5 3 puog Vil ). ™
i J

For the sake of simplicity, we suppose that the fracturation events
can be regarded as plane convex polygons, i.e. that their width wy
is small compared to their extension. The argument can be easily
generalized to events with non-zero thickness, by modifying the
expression (8) below for the excluded volume.

It can be shown (Adler & Thovert 1999) that if the objects f; are
plane convex polygons, with areas 4;, perimeters P;, and relative
orientations given by the angle y; ; between their normal vectors,
the excluded volume is given by

y[/

Ver(i, j) = ——=(A4; P; + A; P;) with cos y; ; = n; - n;. ®)

By injecting (8) into (7), the density of intersections reads

1 siny;
pr = EZZP:‘R/ - L(Ai P; + A P). ©)
i

However, p; is directly related to the volumetric area 1/L; by eq. (6).
Hence,

REERGD) o

l

If the shapes and sizes of the various events are known, they can be
used in the fully general expression (10). Partial summations can
also provide more detailed statistics, such as the mean numbers of
intersections between specific events or families of events.

In the absence of such information, we suppose here that all the
fracturation events have the same shape and size, and thus, the same
area 4 and perimeter P. The density of intersections then reads

Zzsmy,j (11

On the other hand, the total volumetric density p of events, i.e.
the number of fractures per unit volume, is simply the sum of the
densities p;:

1 1
:ZZL_,-' (12)
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Moreover, the mean number p’ of intersections per event, which
directly quantifies the connectivity of the network and will be used
hereafter as a dimensionless measure of the network density is

siny; ;
2p0; 2P Zi Zj L,-Lj,
— =
o T 21
where the factor 2 comes from the fact that an intersection neces-
sarily belongs to two different fractures.

A global effective exclusion volume ¥, can be defined from p
and p/, as

!

(13)

X
Vo = — = —AP;LII;’.
1] T 1
(22)

For an isotropic distribution of monodisperse objects, V,, = AP/2
(Adler & Thovert 1999).

As (0), all these formulae can be decomposed into a measurable
part and a part which has to be hypothesized.

(14

2.5 Probability of percolation

It was shown in Section 2.4 that the connectivity depends both on
the density and size of the fractures. However, percolation is a topo-
logical property, and it is therefore desirable to quantify the event
density by an intrinsic, topological, dimensionless parameter.

The mean number of intersections p” defined by (13) is the ideal
quantity in this respect. It can be regarded both as a topological pa-
rameter, which directly measures the connectivity of the network,
and as a dimensionless density, since it is the mean number of ob-
jects per volume V,, (see eq. 14). It has been successfully used by
Huseby et al. (1997) to describe and unify the topological and geo-
metrical properties of isotropic fracture networks, and by Koudina
et al. (1998) for the flow properties of such networks. In the follow-
ing numerical results, it is directly measured on the reconstructed
samples as the ratio of the actual number of fracture intersections
Nj to the number of fractures Ny
p = 2ﬂ (15)

Ny
The factor 2 is due to the fact that an intersection belongs to two
fractures.

Percolation is defined as the existence of a spanning continuous
path, where a fluid can circulate, across the medium. Percolation is
a crucial topological property which controls many geometrical and
transport properties of the network. This concept originated and was
closely studied in discrete sites or bonds lattices (see, e.g. Stauffer
& Aharony 1994), where the density of occupied (or conducting)
sites or bonds is measured by a probability (or concentration) p. In
large systems, percolation occurs when p exceeds a critical value
e, known as the percolation threshold. For p close to p., many
geometrical or transport coefficients are known to scale as power
laws of the difference p — p., according to the standard form

X oc(p = pe)*. (16)

The quantity X may represent the correlation length, the fraction
of sites connected to the infinite cluster, or the transport coefficients
of the system. Different exponents are associated with the various
quantities, but each is generally believed to be universal, i.e. insen-
sitive to the details of the underlying lattice.

It is one of the great merits of the concept of excluded volume and
of the dimensionless density p’, to allow for a transposition of the
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on-lattice percolation theory in terms of p to continuous percolation
systems, with a formulation in terms of p’. A survey of this topic is
provided by Adler & Thovert (1999). In particular, a critical density
p.. exists for a given class of continuous systems, which plays the
role of p. in lattice systems. For networks of randomly-oriented
fractures, Huseby ef al. (1997) determined this percolation threshold
to be

p. ~2.26. (17)

Of course, this threshold is different for non-isotropic networks.
However, it provides an order of magnitude to which the estimation
(13) can be compared; it can be easily decided a priori if a given
fracture network is likely to percolate or not.

2.6 Flow properties

The flow properties of these networks can be studied by the methods
and numerical tools described by Koudina et al. (1998). The solid
matrix containing the fractures is assumed to be impervious.

Let us first consider a single fracture at a local scale characterized
by a typical aperture b, which is assumed to be much smaller than
the lateral extent R of the fracture. Then, the flow of a Newtonian
fluid at low Reynolds number is governed by the Stokes equations.

Ata scale £, which is intermediate between b, and R, the flow is
governed by the Darcy equation

1 —
j=——0o.Vp, (18)
m

where j and Vp are the locally averaged flow rate per unit width
[L>T '], and the pressure gradient o[ L?] is the fracture permeabil-
ity tensor. The mass conservation equation reads

Vs.j =0, (19)

where V is the 2-D gradient operator in the mean fracture plane.
Because of the classical Poiseuille law, the permeability o of a
fracture is expected to be of the order of

by
~ oy = 2. 20
o ~ 09 2 (20)
The dimensionless fracture permeability o’ is defined by
, 1
o' = —o. 21)
0o

Note that if electrical conductivity is addressed, the shape of (18)
and (19) remains the same: p should be replaced by the electric
potential {; o would be the fracture conductivity tensor.

It is known that natural fractures are more complex than plane
channels. However, the flow behaviour due to the complexity of
fracture geometry is not the focus of the present study. This topic was
specifically addressed by Mourzenko et al. (1995, 2001). In most of
this paper, o is taken to be uniform over each fracture and generally
identical for all the fractures. A more complex estimation of the
fracture permeability will be given in Section 4.2: in addition some
calculations with non-constant fracture permeabilities are described
and discussed.

These equations must be supplemented with non-flux conditions
at the fracture edges and conservation (for the flux) and continuity
(for pressure) equations along the fracture intersections.

Any standard overall boundary condition can be applied to the
network. For instance, pressures or fluxes could be applied along
inlet and outlet lines drawn on fractures of the network. In the case

where the fracture network can be considered as statistically homo-
geneous at the field scale, which is assumed to be large with respect
to the lateral dimensions R of the fractures, a macroscopic pres-
sure gradient V p induces an average flux @,, which is related to the
pressure gradient by Darcy’s law (Adler 1992)

1 -
v, =——K.Vp. (22)
m
K is the network permeability tensor [L2]. For isotropic networks,
it is a spherical tensor

K=KI (23)

Since the generated numerical samples are spatially periodic in the
present case, it is a simple matter to impose a macroscopic pres-

sure gradient V p on the infinite periodic medium, and to derive the
corresponding components of K from the mean flux ,.

It is convenient to introduce a dimensionless permeability tensor
K,
— 1 — (o))
K =—K, Ky=—. (24)

Ky R

Koudina et al. (1998) developed general numerical tools to solve
the local flow equations in fracture networks described by a 3-D
triangular mesh, and systematically investigated the flow properties
of the same class of random networks of plane fractures as Huseby
et al. (1997). They showed that the permeability varies as

K =0.0455(p' — p))'>" (3.5 < p' <20). (25)

Snow (1969) considered networks where all the fractures are in-
finite plane channels with an arbitrary orientation distribution. This
is equivalent to assuming that the whole surface of all the fractures
in the network may contribute to the flow and can be valid only
in the limit of very dense networks. For an isotropic network, the
permeability tensor is given by

W2
Ky = o1, (26)

where S is the volumetric surface area of fractures, i.e. the inverse
of the length L, in eq. (6). This result is easily generalized for
anisotropic networks by introducing the fracture orientation distri-
bution, which yields a non-spherical tensor K,

K, = / fQ o (n)S(n)(I — nn)d*n, (27)

where Q is the unit sphere and S(n)d?n is the volumetric surface
area of fractures with normal vector in the solid angle ¢?n around
n, with permeability o (n).

For finite polygons, S can be expressed in terms of the surface
A and perimeter P of the polygons. Hence, the dimensionless per-
meability in Snow’s (1969) model network with the same surface
density is

« 4R
Ksi =3 P (28)
where R/P is a shape factor, equal, for instance, to V2 /8,1/6, and
1/2n for square, hexagonal, and circular fractures, respectively. The
numerical calculations of Koudina et al. (1998) showed that (28) is
indeed a possible asymptote for networks of finite fractures with
very large densities.

This analytical approach can be applied to line data. If the n;,
fractures representing each event /" have identical size and shapes,
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Figure 2. Geological setting of the Baget area. A north—south cross-section of the surveyed area is displayed in the upper left. A geological map is also

displayed where the geological formations north of the Alas fault are not detailed.

and if the volumetric area of each event type is simply 1 /L, eq. (27)
can be rewritten as a sum over the events:

n
Kso=0)_ %(1 — nyny). (29)
;o

It is remarkable that except for o, all the quantities in (29) are again
geometrical parameters which are readily available from the line
surveys. In particular, no assumption regarding the size or shape of
the fracture is required since they are assumed to be infinite. As a
corollary, eq. (29) yields the same prediction of the permeability of
monodisperse and polydisperse networks.

This presentation of the flow properties can be summarized as
follows. The permeability of a given network can be determined in
three different ways: it can be numerically calculated by the tool
developed by Koudina et al. (1998); more conveniently, it can be
estimated by (25) or (29).

3 FIELD DATA

3.1 Geological setting

The Baget watershed (see Fig. 2) is located inside the north Pyrenean
zone that was highly deformed during late Cenomanian to Tertiary
Pyrenean orogeny induced by the transpressional strike-slip mo-
tion of the Iberic and European plates along the north Pyrenean
fault (see Choukroune 1992, for a review paper on the tectonics of
the Pyrenees). Our study concerns the karstified part of the basin
consisting of a slice of alternating metamorphic Jurassic to Creta-
ceous dolomites, limestones and calcareous marls, dipping 70° to
90° southwards under the slaty Albian-Cenomanian Ballongue fly-
sch, remnant of a Cretaceous pull-apart basin opened during strike-
slip motion along the Pyrenean margin (Johnson & Clarence 1989).

© 2004 RAS, GJI, 157, 917-934

The Baget drainage basin is limited to the north by the Alas ver-
tical fault, a satellite of the north Pyrenean fault, running mainly
west—east. The original stratification is easily seen at the outcrop as
ubiquitous open discontinuities running mainly east—west. The same
direction is also recognized as the cleavage direction in Ballongue
flysch and so produces a major source of anisotropy. A second dis-
continuity direction is recognized from satellites images, running
170°N to 10°N (Debroas 1987). The present state of stress of the
basin is poorly constrained. Goula et al. (1999) proposed that the
regional main (compressive) stress is N—S in the eastern Pyrenees
from an inversion of focal mechanisms and striation data. However,
the world stress map of Reinecker ez al. (2003) exhibits only sparse
and highly dispersed data around the Baget area. Souriau & Granet
(1995) and Souriau et al. (2001) proposed that a rigid block cen-
tered around St Gaudens and bordering westward the Baget drainage
basin, could explain the lack of seismicity in this area. Hence, the
local stress field around the Baget area can only be deduced from lo-
cal field work. Due to metamorphism, matrix porosity is reduced to
less than 1 per cent (Mangin 1974) and voids consist in dissolution
caves and in an open fractures and joints. Several caves have been
recognized on both sides of the Baget valley. Two of them have been
mapped: La Péreyre to the north and St Catherine to the south of
the valley. However, the underground drainage system of the Baget
valley is far from being completely explored.

Finally, it is worth noting that the river is oriented east-west,
a direction which is likely to be followed by most underground
waters.

3.2 Line surveys

Open cracks orientation and extension have been mapped along
three roads: these line surveys correspond to sub-horizontal profiles,
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referred to as P;, P, and P;, oriented 110°, 70° and 120° clockwise
from the north, with lengths 700 m, 200 m and 100 m, respec-
tively. In addition, fractured zones consisting in series of subparallel
cracks have been characterized by their width and their mean crack
spacing.

Some data collected in the La Péreyre and St Catherine cave
system have not been included in this survey, but they were used to
check the consistency of the data set.

The characteristics of all the recorded events are summarized in
Table 1. The x- and y-axes of coordinates are set in the S-N and
E—W directions, respectively, and z is vertical and oriented upward.
Recall that the vertical component of the unit vectors n is taken as
positive.

The orientational distribution of the events is shown in Fig. 3.
The orientations were measured with a 5° resolution, but they were
slightly randomized in Fig. 3 in order to distinguish events with
identical orientations. Only very limited information regarding the
event extensions can be gained from the present line surveys, since
the observed trace lengths are very often truncated by the boundaries
of the outcrop along the roads as shown in Table 1.

Fig. 3 clearly shows that the events can be categorized into
four main families, which are referred to hereafter as F| to F, (see
Table 1). Two of them (F] and F}) are sub-vertical, and roughly in the
E—~W and N-S directions, whereas F, and F; have a slope of about
40°-50°. In addition, a few events do not belong to any of the four
families. They are denoted by zeros in the last column of Table 1.

Table 1. Fracturation event characteristics from the line surveys: P and x are the profile number and the location along the profile; Ly is the total corrected
profile length according to formula (31); n is the normal vector to the event plane; w is the event width along the profile and d is the typical spacing of fractures
within the event (¢ = 0 denotes an isolated fracture); L, is the apparent trace length (4 indicates that the traces were truncated by the outcrop boundaries); and

Fis the family that the event belongs to. All distances are in metres.

P X Lf n
1 1 5 806.31 —0.1632 —0.9254
2 1 85 858.06 0.1736 0.9848
3 1 145 838.36 0.0000 1.0000
4 1 155 858.06 0.1736 0.9848
5 1 180 838.36 0.0000 1.0000
6 1 200 526.37 0.0560 —0.6403
7 1 205 858.06 0.1736 0.9848
8 1 218 858.06 0.1736 0.9848
9 1 230 254.40 0.4924 —0.4132
10 1 245 838.36 0.0000 —1.0000
11 1 290 93.80 0.6040 —0.2198
12 1 295 838.36 0.0000 —1.0000
13 1 300 489.44 0.1664 —0.6209
14 1 320 509.85 0.1116 —0.6330
15 1 335 858.06 0.1736 0.9848
16 1 345 316.32 —0.2500 0.4330
17 1 350 858.06 0.1736 0.9848
18 1 370 627.30 0.0668 —0.7631
19 1 385 521.57 0.3237 —0.6943
20 1 450 484.63 0.3830 —0.6634
21 1 470 314.10 —0.8627 —0.0755
22 1 515 128.70 0.4330 —0.2500
23 1 545 858.14 0.2588 0.9659
24 1 555 858.14 0.2588 0.9659
25 1 570 128.70 0.4330 —0.2500
26 1 590 639.80 0.3971 —0.8517
27 1 600 838.36 0.0000 1.0000
28 1 625 544.64 0.5390 —0.7698
29 1 675 544.64 0.5390 —0.7698
30 2 15 838.36 0.0000 1.0000
31 2 45 858.14 0.2588 0.9659
32 2 70 409.72 —0.2500 —0.4330
33 2 75 462.28 0.9397 0.3420
34 2 80 323.62 1.0000 0.0000
35 2 110 323.62 1.0000 0.0000
36 2 115 462.28 0.9397 0.3420
37 2 132 509.85 0.1116 —0.6330
38 2 155 462.28 0.9397 0.3420
39 2 185 362.86 0.2868 —0.4967
40 3 35 858.06 0.1736 0.9848
41 3 50 396.59 —0.0868 0.4924
42 3 60 323.62 1.0000 0.0000
43 3 60 858.06 0.1736 0.9848
44 3 60 419.18 0.0000 —0.5000
45 3 100 323.62 1.0000 0.0000
46 3 100 396.59 0.0868 —0.4924

w d L, F
0.3420 10.00 0.50 1.00 1
0.0000 1.00 0.50 2.00 + 1
0.0000 10.00 0.20 2.00 + 1
0.0000 7.00 0.20 2.00 + 1
0.0000 20.00 1.00 2.00 + 1
0.7660 2.00 0.50 2.00 + 2
0.0000 3.00 0.50 2.00 + 1
0.0000 1.00 0.50 2.00 + 1
0.7660 3.00 1.00 2.00 + 3
0.0000 50.00 2.00 2.00 + 1
0.7660 10.00 ~0.10-1.00 ~0.10-2.0 3
0.0000 50.00 1.00 2.00 1
0.7660 5.00 1.00 2.00 + 2
0.7660 5.00 1.00 2.00 2
0.0000 30.00 ~1.00-2.00 1.00 1
0.8660 20.00 ~0.10-2.00 5.00 0
0.0000 10.00 1.00 2.00 + 1
0.6428 10.00 1.00 2.00 2
0.6428 10.00 2.00 2.00 2
0.6428 10.00 0.50 2.00 2
0.5000 138.00 0.50 2.00 + 0
0.8660 0.00 0.00 10.00 3
0.0000 2.00 0.50 2.00 + 1
0.0000 2.00 0.50 2.00 + 1
0.8660 0.00 0.00 60.00 3
0.3420 10.00 1.00 2.00 0
0.0000 10.00 0.10 1.00 1
0.3420 50.00 2.00 4.00 + 0
0.3420 10.00 1.00 1.00 0
0.0000 5.00 0.05 5.00 + 1
0.0000 30.00 0.50 5.00 + 1
0.8660 2.00 0.50 2.00 0
0.0000 0.00 0.00 10.00 4
0.0000 40.00 0.50 5.00 + 4
0.0000 10.00 0.50 5.00 + 4
0.0000 0.00 0.00 10.00 4
0.7660 3.00 1.00 2.00 + 2
0.0000 0.00 0.00 5.00 4
0.8192 5.00 1.00 10.00 + 2
0.0000 30.00 0.10 2.00 + 1
0.8660 2.00 1.00 1.00 0
0.0000 20.00 0.10 1.00 + 4
0.0000 20.00 0.10 1.00 + 1
0.8660 20.00 1.00 2.00 + 2
0.0000 10.00 0.10 2.00 + 4
0.8660 0.00 0.00 10.00 2
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Figure 3. Orientation of the fracturation events in Table 1. Symbols corre-
spond to the position of the vector n on the unit sphere. Families 1, 2, 3 and
4 are denoted by A, o, ¢ and V, respectively. The line spacing is 10° for the
radial angle and 5° for the inclination.

F1 results from the original stratification and from the strike- slip
motion that characterizes the Pyrenean orogeny. A direction near
10°N close to F4 has been observed during unpublished microtec-
tonic works of Mangin and Paredes in the Baget basin. In addition,
F1, F2 and F4 are observed in the La Péreyre and St Catherine
caves together with numerous cracks of different orientations that
are not observed at the surface, and which could be related to the
mechanical heterogeneity induced by the cave itself.

3.3 Data analysis

3.3.1 Spatial distribution

For the sake of the subsequent simulations, it is important to de-
termine whether the fracturation events are spatially correlated. Al-
though the data set is too limited for a detailed analysis, some infor-
mation can be obtained from the 13 events of family F; on profile
P . The spacings s; between successive events i and i + 1 have an
average (s) = 43.3 m and a standard deviation oy = 48.6 m. Recall
that if the events are Poissonian, i.e. without any spatial correlation
(see Kingman 1993), the spacing between their intersections with a
scan line obeys an exponential probability law proportional to exp
(—s/(s)), with (s) = o, (Adler & Thovert 1999). In the present case,
o, is slightly larger than the mean spacing, which indicates that the
events are slightly more clustered than in a random distribution.

The variogram of the spacing can be defined as the average (Long
& Billaux 1987)

Vo(n) = (5 = 5i40)°). (30)

For a Poisson distribution, the spacings are uncorrelated and y is
constant and equal to (s)?. The variogram y  is plotted in Fig. 4 for
family F inprofile P . Deviations from (s)? are observed. However,
they are due in most part to the small size of the statistical data set.
For instance, if the spacing between the last observed event and the
end of the profile is included in the calculation, the deviations are
significantly reduced. In addition, this calculation does not take into
account the very different widths of the various events.

© 2004 RAS, GJI, 157, 917-934

2
ys(n) /Gs

1.2 - 7

0.4F | i

G I I I I I I I

0 1 2 3 4 5 6 7 n 8
Figure4. Variogram (30) of the spacings of the intersections of events from
family F; with profile P without (— — o — —) or with (--- o - -) inclusion
of the part of the profile following the last observed intersection. The thick
solid line corresponds to uncorrelated event locations.

No definite intercorrelation was found either between the event
width and location, or spacing.

Therefore, in the absence of any conclusive evidence of spatial
correlations, it is assumed in the following that the event location
and other characteristics are uncorrelated.

3.3.2 Volumetric density

The volumetric density of each of the 46 events in Table 1 is given
by (6), where 4, (f = 1 to 46) is the event area and L, is given
by an obvious extension of (6) in order to take into account the
measurements along the three profiles

Ly= Y L;lp,nl. @1

=13

where L;and p ; (j =1, 2, 3) are the length and orientation of profile
P;, respectively. The length L is the reduced total length of profile
in the direction normal to each event and is given in Table 1.

It is worth noting that although families F} and F; yield the most
numerous events in the data set, this is mainly due to their favourable
orientations relative to the profile axes. In the directions normal to
their mean planes, the four families have similar frequencies, with
21,21, 26 and 18 intersections per kilometre of profile for F} to Fj,
respectively.

Some information can be given on the area 4. In addition to the
event extensions compiled in Table 1, complementary observations
in a quarry in the same area showed that the traces of the fractures
generally extend throughout a 25 m high subvertical wall. Moreover,
it is believed that joints along the E-W direction, i.e. parallel to
the main regional tectonic feature in the Pyrénées, have a larger
extension than along the S-N direction. These indications will be
used as guidelines in the simulations.

3.4 Numerical reconstruction

Numerical samples of fractured rock are stochastically generated
according to the two-step procedure described in Section 2.3. The
cell size is generally equal to L = 600 m.
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The events and the fractures they contain are assumed to have
identical plane circular or polygonal shapes circumscribed by circles
ofradius R. In the absence of precise experimental information, two
simple cases only are considered here: in the first case, all events
have the same size R; in the second case, the events are oriented
E-W with the exception of events 34 and 35 that have a size Ry,
twice as large as the R, of the other events. The larger events are
essentially those in family F4, and events 11 and 21. Hereafter,
these two cases are referred to as monodisperse and bidisperse,
respectively.

It is important to note that the assumption about the size in the
second case is in agreement with large scale geological observation,
since only F1 and F4 are observed on satellite images or on regional
geological maps.

Given the size and shape of an event f, and thus its area
Ay, the volumetric density p, results from (31) and the num-
ber n; to be inserted in the unit cell is p,L°. A number of
events equal to the integer part of ny is inserted first, and then
an additional one with a probability equal to the fractional part
of ny. According to the discussion in paragraph 3.3.1, they are
placed with their centers at random locations, without any spatial
correlation.

Various values of R have been considered, from 25 m to 100 m.

In the second step, each event is replaced by series of n £, paral-
lel fractures, with the same size and shape, and their centers evenly
distributed on the normal axis of the event. n,, can be derived
from the width w and fracture spacing d of the event, according
to (1). Since this can yield up to 300 fractures per event, f = 40,
n . p, for instance for, was rescaled by a constant factor so that it
does not exceed a maximal value 1 + np,c. This is done by in-
troducing a factor B, equal for all the events, in the definition of

nyp:

- 300
np, =1 +Int<%) L B=— (32)

In order to check that the numerical samples actually comply with
the field observations, 500 random realizations were generated, and
line surveys were simulated through them. The scan line is 500 m
long, oriented 120° clockwise from north, in a horizontal plane at
zo = L /4 in the samples. The intersections with each type of event
were recorded and averaged over the 500 realizations.

Monodisperse networks of circular events were considered first.
Examples of trace maps in a horizontal section are shown in Fig. 5,
with the events represented either by single fractures or by series of
parallel fractures. The number 7 ;; of event intersections with the
scan line was checked in the first type of network. It is compared
to the value expected from the scan line length, orientation and
from the event parameters L, and n, in Fig. 6. The agreement is
quite satisfactory. Note that the statistical error bar is of the order

ngi(1 —ngi)/500 ~ 0.02.

Fig. 7 shows examples of bidisperse networks. In this case, the
event radius is Ry, = 100 m for those oriented in the W—E direction,
and R,, = 50 m for the others. All other parameters are identical to
the previous case, except for the number of events, since it depends
on their size (see eq. 6). The comparison of the mean numbers of
event intersections with the scan line in the simulated networks with
the expected values was as good as in the monodisperse case.

For illustration, Fig. 8 shows a 3-D view of a bidispersed recon-
structed sample, with Ry, = 50 m for the W—E events, R,, = 25 m
for the others, and L = 200 m. The events are represented by single
hexagonal fractures.

(b)

Figure 5. Trace maps obtained in an horizontal section through monodis-
perse reconstructed samples. The cell size is L = 600 m and the event radius
R =100 m. The events are represented by single fractures in (a) and as series
of fractures in (b). The solid lines correspond to the traces of the events which
intersect the 120°N, 500 m long scan line (thick solid line). Traces in dotted
lines do not intersect the scan line. Distances are in R units, i.e. 1:100 m.

3.5 Connectivity

The connectivity can now be easily quantified by the formulae de-
rived in Section 2.4. The sums in (11) and (12) can be directly cal-
culated from the line survey data, without any hypothesis regarding
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Figure 6. Mean number of event intersections with a 500 m long, 120°N
scan line (see Fig. 5a). The abscissae correspond to the event number given
in the first row of Table 1. Data in (a)