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S U M M A R Y
Observed orbit perturbations of the near-Earth orbiting satellite CHAMP are analysed to re-
cover the long-wavelength features of the Earth’s gravitational potential. More precisely, by
tracking the low-flying satellite CHAMP using the high-flying satellites of the Global Po-
sitioning System (GPS) the kinematic orbit of CHAMP is obtainable from GPS tracking
observations, i.e. the ephemeris in Cartesian coordinates in an Earth-fixed coordinate frame
(WGS84) becomes available.

In this study we are concerned with two tasks: first we present new methods for pre-
processing, modelling and analysing the emerging tracking data. Then, in a first step we
demonstrate the strength of our approach by applying it to simulated CHAMP orbit data. In a
second step we present results obtained by operating on a data set derived from real CHAMP
data.

The modelling is mainly based on a connection between non-bandlimited spherical splines
and least-square adjustment techniques to take into account the non-sphericity of the trajectory.
Furthermore, harmonic regularization wavelets for solving the underlying satellite-to-satellite
tracking (SST) problem are used within the framework of multiscale recovery of the Earth’s
gravitational potential leading to SWITCH-03 (Spline and Wavelet Inverse Tikhonov regular-
ized CHamp data). Further we show how regularization parameters can be adapted adequately
to a specific region thereby improving a globally resolved model. Finally we compare the
developed model with the EGM96 model, model UCPH2002 02 0.5 from the University of
Copenhagen and the GFZ models EIGEN-1s and EIGEN-2.

Key words: CHAMP post-processed science orbit data, regional gravitational field recovery,
spherical splines, Tikhonov wavelet regularization.

1 I N T RO D U C T I O N

Since the beginning of the space age, observed satellite orbit pertur-
bations have been exploited to recover the long-wavelength features
of the Earth’s gravity field (see e.g. Barlier et al. 2000; Reigber
et al. 1996, 2002, and references therein). Analysis of satellites’
orbit perturbations are an essential tool for precise determination of
the long-wavelength gravity field. Long-wavelength gravity mod-
els are of importance when studying deep-seated mass inhomo-
geneities and dynamics. In oceanography, long-wavelength geoid
models give the reference surface for deriving the sea surface topog-
raphy from altimetry, sea surface topography being a direct measure
of the geostrophic flow (see e.g. Freeden & Hesse 2002).

The German Space Agency (DARA), the GeoForschungsZen-
trum (GFZ) and the German Aerospace Center (DLR) funded the
CHAMP satellite mission (the satellite being launched in 2000),
which was designed to bring about a breakthrough in long-to-

mesoscale gravity field recovery by exploiting the near-polar orbit.
Continuous coverage of the orbit data is provided by GPS satellite-
to-satellite tracking data, while the non-gravitational orbit perturba-
tions are directly measured by an onboard three-axis accelerometer.
GFZ have performed numerical simulations in the spectral domain
through an expansion of the gravitational potential in terms of spher-
ical harmonics, taking into account suitable error models; these have
proved that with CHAMP the accuracy of the gravity field model
up to degree/order 30 can be improved by more than one decimal
compared with the former models. Details of this globally oriented
spherical harmonic modelling technique have been described sev-
eral times in the literature (e.g. Reigber et al. 2002).

In this paper hi-lo SST (high–low satellite-to-satellite tracking)
for the low Earth orbiter (LEO) CHAMP is discussed as proposed
by Freeden (1999) from an alternative point of view. More precisely,
hi-lo SST is understood as the problem of determining the external
gravitational field of the Earth via a given set of gradient vectors
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Figure 1. Illustration of the geometrical configuration.

at the altitude of CHAMP, which can be computed by numerically
differentiating a kinematic orbit (see Section 2.2). In order to trans-
late hi-lo SST into a mathematical formulation we start from the
following geometrical situation (cf. Fig. 1).

Let the surface � of the Earth and the orbital set � of the LEO
be given in such a way that � is a strict subset of the Earth’s exterior
�ext. Further we denote by �R a Bjerhammar sphere inside the Earth
located at the origin of the Earth-fixed reference frame, and by �r

we denote a ‘mean’ orbit sphere going through the measurements.
Loosely speaking, the mathematical formulation of the hi-lo SST

problem (see Freeden 1999) now reads as follows:
Let there be known the gradient vectors v(x) = (∇V )(x), x ∈ �,

for a subset � ⊂ �ext of points at the flight positions of the LEO.
Find an approximation u of the geopotential field v on �ext , i.e.
on and outside the Earth’s surface, such that the difference of the
geopotential field v and its approximation u is arbitrarily small on
�ext in terms of the underlying function spaces. In addition, the
values v(x), x ∈ �, should be consistent with the values u(x), ∈ �.

The existence, uniqueness and well-posedness of the problem are
discussed in Freeden et al. (2002). From the point of view of scien-
tific computing the essential difficulties which must be overcome,
are as follows:

(1) The data are error affected, i.e. we are confronted with the
problem of operating on noisy CHAMP data. Hence, de-noising
techniques have to be adapted to come closer to the ‘real data set’.

(2) The data are given on a non-spherical orbit, thus ‘downward
continuation’ is a much more difficult problem than in case of a
spherical orbit. As a consequence the data must be transferred from
the real orbit to a spherical reference orbit (see Fig. 1).

In what follows, both problems will be investigated intensively
from a numerical point of view. In particular we are interested in
getting regional and locally improved models from real (de-noised)
CHAMP data sets. The latter case in particular will demonstrate the
strength of our wavelet method, since local adaptation of regular-
ization parameters is much easier than using spherical harmonic ex-
pansions because of their non-space localizing character. Instead we
are concerned with locally oriented regularization by virtue of mul-

tiresolution analysis using adequately constructed wavelets. These
concepts will be introduced in Sections 2.4.2 and 2.5.

2 P R E L I M I N A R I E S

In order to translate the satellite-to-satellite tracking problem as
required for the CHAMP mission into a mathematical formulation
we need some mathematical pre-requisites that should be explained
now:

Each point of the three-dimensional Euclidean space R
3, x =

(x1, x2, x3)T, |x | �= 0, allows a unique representation of the form
x = rξ , r = |x |, ξ = (ξ 1, ξ 2, ξ 3)T, where ξ ∈ R

3, |ξ | = 1, is the
uniquely determined directional unit vector of x ∈ R

3. Throughout
this work we may regard this coordinate system as the usual Earth-
fixed reference frame in which the CHAMP ephemerides are given,
e.g. WGS84. The sphere in R

3 with radius r around the origin is
denoted by �r , i.e. �r = {x ∈ R

3||x | = r}. For later use we reserve
the notation �R to denote the Bjerhammar sphere inside the Earth
(see Fig. 1). With �ext

r we denote the exterior of �r , while �int
r is

the interior of �r . By definition, we let � be the unit sphere �1, if
no confusion is likely to arise.

As usual, we introduce the spherical harmonics as restrictions
of homogeneous harmonic polynomials to �. To be specific, let
Hn : R

3 → R be a homogeneous harmonic polynomial of degree
n, then the restriction Yn = Hn|� is called a spherical harmonic of
degree n. The space of all spherical harmonics of degree n is denoted
by Harmn(�), and its dimension dim(Harmn(�)) is known to be
2n + 1, see Müller (1966). Further we mean by Harm p,...,q (�) the
space of all spherical harmonics from degree p up to q. Spherical
harmonics of different degrees are orthogonal in the sense of the
L2(�)-inner product

(Yn, Ym)L2(�) =
∫

�

Yn(ξ )Ym(ξ ) dω(ξ ) = 0, n �= m,

where dω is the surface element on �. Any spherical harmonic
Yn, n ∈ N0, is an infinitely often differentiable eigenfunction of the
Beltrami operator 
∗ corresponding to the eigenvalue (
∗)∧(n),
n ∈ N0:


∗
ξ Yn(ξ ) = (
∗)∧(n)Yn(ξ ), ξ ∈ �, Yn ∈ Harmn(�),

where the spherical symbol {(
∗)∧(n)}n∈N0 of the operator 
∗ is
given by (
∗)∧(n) = −n(n + 1), n = 0, 1, . . . , Separating the
longitude-independent part of the Beltrami operator yields the Leg-
endre operator Lt = ( d

dt )(1 − t2)( d
dt ). The well-known Legendre

polynomials Pn : [−1, +1] → R of degree n are defined as the
infinitely often differentiable eigenfunctions of the Legendre op-
erator Lt corresponding to the eigenvalue −n(n + 1), which are
bounded for t = 1 and satisfy Pn(1) = 1, n ∈ N0. They form an
orthogonal system with respect to the L2([−1, +1])-inner product.
A connection between the spherical harmonics {Y n,k}k=−n,...,n and
the Legendre polynomials is provided by the well-known addition
theorem, which will turn out to be the essential key for the whole
method presented in this paper (e.g. Freeden et al. 1998). For later
use we introduce here Y R

n,k = 1
R Yn,k .

2.1 Spherical grids

The literature contains a variety of adequate lattices used for numer-
ical integration to determine integral expressions for a continuous
function V on the sphere, such that∫

�

V (x) dω(x) ≈
M∑

i=0

ωi V (xi ).
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Most common techniques profit by discretization from an equidis-
tribution of the used lattice leading to low-discrepancy methods,
e.g. the Reuter or Brandt grid (see, e.g. Freeden et al. 1998). But
for a spherical harmonic exact integration formula (see e.g. Freeden
1999) one has to determine the integration weights even for moder-
ate point systems by solving highly ill-conditioned linear systems.
Thus, for simplicity, we are led to use for approximate integration
an equiangular longitude–latitude grid, as discussed, for example,
by Driscoll & Healy (1994).

In our approach an equidistributed grid, due to Reuter (1982), is
of particular importance for the data selection strategy.

Definition 2.1 (Reuter grid)
A pointset X N (γ ), called the Reuter grid on the unit sphere and

dependent on the choice of a control parameter γ ∈ N, is given by
the points (φ i j , θ i ) as follows:

(i) θ 0 = 0, φ01 = 0 (North Pole)
(ii) 
θ = π/γ

(iii) θ i = i
θ , 1 ≤ i ≤ γ − 1
(iv) γi = 2π/ arccos[(cos 
θ − cos2 θi )/ sin2 θi ]
(v) φi j = ( j − 1

2 )(2π/γi ), 1 ≤ j ≤ γi

(vi) θ γ = π , φγ 1 = 0 (South Pole).

2.2 Numerical differentiation

As pointed out in our introduction, by modelling the acceleration, i.e.
the gradient (∇ V ) of the gravitational potential V , we are confronted
with determination of the second-order derivative numerically from
discrete (noisy) CHAMP ephemeris. As is well-known, numerical
differentiation is an ill-posed problem in the sense of Hadamard’s
definition, e.g. the uniqueness cannot usually be assured. Never-
theless, there do exist algorithms and methods including error esti-
mates to solve the underlying problem: for some theoretical issues
see Ahlberg et al. (1967), Engeln-Müllges & Reutter (1988), Press
et al. (1992), Werner (1992) and Schwarz (1997) and with appli-
cation to satellite missions Austen & Reubelt (2000), Grafarend &
Shen (2000), Glockner (2001) and Reubelt et al. (2003).

Since numerical differentiation techniques are well known we
present only two methods which proved to have good behaviour in
practice and which can be recommended for future work in hi-lo
SST (cf. Fengler 2002; Reubelt et al. 2003).

The first technique is based on Newton interpolation and gives
us the so-called Newton–Gregory method (cf. Engeln-Müllges &
Reutter 1988; Grafarend & Shen 2000). For our purpose the methods
for determining the second derivative are of special interest, and can
be written down for seven and nine adjacent time-steps ti as listed
below:

f ′′(ti ) ≈ 1

h2

(
1

90
f (ti−3)− 3

20
f (ti−2)+ 3

2
f (ti−1)

−49

18
f (ti )+ 3

2
f (ti+1)− 3

20
f (ti+2)+ 1

90
f (ti+3)

)
f ′′(ti ) ≈ 1

h2

(
− 1

560
f (ti−4)+ 8

315
f (ti−3)− 1

5
f (ti−2)

+8

5
f (ti−1)− 205

72
f (ti )+ 8

5
f (ti+1)− 1

5
f (ti+2)

+ 8

315
f (ti+3)− 1

560
f (ti+4)

)
. (1)

2.2.1 Spline differentiation techniques

Due to numerical round-off errors that usually occur with increasing
polynomial degree of the underlying Newton interpolation formula,

it also seems to be reasonable to consider an approximating spline
approach as explained in Engeln-Müllges & Reutter (1988). A de-
tailed algorithmic formulation to determine the spline coefficients
from a band-diagonal matrix formulation can be found in Fengler
(2002) and is omitted here.

In this context it should be mentioned that a good a priori choice
for the weights in practice depends greatly on knowledge about
the underlying noise model. However, there do exist several alter-
native strategies to find appropriate weights (e.g. cross-validation
Kusche 2002; Green & Silvermann 1994).

For numerical differentiation one computes in a first step an ap-
proximating natural cubic spline through the data, getting immedi-
ately two different possibilities for continuing:

(1) Calculate analytically the first- and second-order derivative
of the spline at the orbit positions. We call this spline differentiation
(SPD).

(2) Calculate analytically the first-order derivative in the orbit
positions and fit another natural cubic spline through these first-
order derivatives. Afterwards calculate from this spline the first-
order derivative analytically and thus one gets an approximation
to the second-order derivative of the initial problem. This is called
spline-on-spline differentiation (SPS).

As it is shown in Ahlberg et al. (1967) and with application to the
ephemeris in Fengler (2002) the SPS concept beats SPD with respect
to accuracy, especially on noisy data. Beyond this, it is shown in
Fengler (2002) that with application to noise-free simulated
CHAMP ephemerides the error induced by the numerical differen-
tiation SPS scheme is of the same order as the seven- and nine-point
Newton–Gregory formulae.

2.3 Noise model

To demonstrate the efficiency of our later formulated method it is
necessary to simulate a realistic noise model and test additionally
corresponding de-noising methods. Grafarend & Shen (2000) pre-
sented a noise model study and proposed an autoregressive (AR(1))
process producing a small but highly correlated noise for adjacent
ephemerides. This model assumes that measurements in a certain
spatial and time interval are mostly effected by the same noise
sources, e.g. a highly correlated noise originating from the GPS
measurements.

Remark 2.1 (Noise model)
Let ε t be Gaussian (strictly stationary) white noise, with vari-

ance σ 2
ε . Then the sequence of random variables Xt of an AR(1)

process is given by Xt = α X t−1 + ε t . There exists for |α| < 1 a
unique stationary solution to the AR(1) process. Further we know

that E Xt = 0, varXt = σ 2
ε

1−α2 , rt = σ 2
ε

α|t |
1−α2 and ρ t = α|t |, where

rt denotes the autocovariance and ρ t the autocorrelation function
(cf. Stockis 2001). In other words, we are able to conclude that high
correlations are induced for α close to 1.

In Austen & Reubelt (2000) and Reubelt et al. (2003) it is shown
that the Newton–Gregory formulae are able to significantly reduce
measurement errors due to their formulation by coordinate differ-
ences. The AR(1) process itself inherits its autocorrelation function
to the coordinate differences. In practice great importance lies in
removing a bias.

By determining a smoothing factor via cross-validation of the nu-
merical differentiation with approximating splines one can achieve
the same error order (or more details see Fengler 2002).

Gravitational forces acting on the satellite should also be mod-
elled, e.g. gravitational forces induced by the Moon and Sun, but
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also non-gravitational forces, e.g. those induced by solar pressure,
air drag etc. This has been neglected since the ‘real data’ are as-
sumed to be pre-processed with regard to those conservative and
non-conservative effects, e.g. by using the accelerometer on board
CHAMP (see Reigber et al. 1996, 2002).

2.3.1 De-noising methods

In our concept of modelling the emerging tracking data we have
to apply numerical differentiation to evaluate the radial derivative.
Since the aforementioned concepts of numerical differentiation are
both linear in the observations, we apply the de-noising step after
having differentiated. Both methods profit essentially from a formu-
lation of coordinate differences, so that in practice they are able to
remove biases.

To remove the noise from the data we use translation-invariant
wavelet de-noising (TI de-noising) (see Daubechies 1988; Sweldens
& Jawerth 1994). Hard and soft thresholding with application to sim-
ulated ephemerides have also been studied, but they turned out to
be worse (compare the results in Fengler 2002). A detailed intro-
duction to these de-noising concepts can be found in Mallat (1999).
Coifman & Donoho (1995) show that TI de-noising has decorre-
lating properties and can significantly reduce the noise-containing
wavelet coefficients if there is an a priori known error distribution.

As an alternative approach we studied cubic smoothing splines,
where we determined a global smoothing parameter by cross-
validation (cf. Fengler 2002; Kusche 2002; Green & Silvermann
1994).

Now let us recapitulate the concept of (least-square) H-splines,
which in geophysics is also known as least-square collocation
(Moritz 1980). These H-splines allow us to take into account the
non-sphericity of the geometry of the orbit. Thus, the main motiva-
tion for using H-splines within our method lies in extrapolating the
measurements to a mean orbital sphere, see Fig. 1.

2.4 H-splines

The following definitions and theorems including proofs are mainly
based on results which can be found in Freeden (1981a, 1999) and
Glockner (2001) and references therein. A reproducing kernel struc-
ture on the underlying Hilbert space is essential for constructing
spherical splines:

Definition 2.2 The reproducing kernel
Let D ⊂ R

n and H be a Hilbert space of functions F : D → R,
equipped with the inner product (·, ·)H. Then a function KH(·, ·) of
two variables in D is called the reproducing kernel function for the
space H, if

(i) for each fixed x ∈ D, KH(x, ·) and KH(·, x) are members of
H,

(ii) for every F ∈ H and for every x ∈ D, the reproducing
property

F(x) = (F, KH(x, ·))H
holds.

The definition of H-splines reads as follows:
Definition 2.3 H-spline
Suppose thatL1, . . . ,LN is a set of linearly independent bounded

linear functionals on a reproducing kernel Hilbert space H(�ext
R ),

which we denote briefly by H, with reproducing kernel KH(·, ·).

Then we call any function of the form

S(x) =
N∑

i=1

aiLiKH(·, x), x ∈ �ext
R ,

an H-spline relative to the system L1, . . . ,LN . The space of all H-
splines relative to L1, . . . ,LN is an N-dimensional linear subspace
of H and is briefly denoted by SH(L1, . . . ,LN ).

In the following we state briefly the most important result derived
for H-splines, (cf. Freeden 1981a, 1983; Freeden et al. 1997).

Theorem 2.1 Suppose that F ∈ H. The spline interpolation
problem∥∥SF

L1,...,LN

∥∥
H = inf

H∈H
Li H=Li F,i=1,...,N

‖H‖H

is well-posed in the sense that its solution exists, is unique, and
depends continuously on the data Li F, i = 1, . . . , N . The uniquely
determined solution is given in the explicit form

SF
L1,...,LN

(x) =
N∑

i=1

aN
i Li KH(·, x), x ∈ �ext

R ,

where the coefficients aN
1 , . . . , aN

N satisfy the linear equations:

N∑
j=1

aN
j LiL j KH(·, ·) = Li F, i = 1, . . . , N .

By focusing on Sobolev spaces and pseudodifferential operators
(PDO) in Sections 2.4.2 and 2.4.3 we are led to certain criteria for
choosing the reproducing kernel and the linear functionals.

2.4.1 Least-squares adjustment

Motivated by the theory of H-splines we can view certain repro-
ducing kernels from another very practical point of view: we may
regard the H-spline just as a special function of two variables, and
in connection with the addition theorem of spherical harmonics
shaped most commonly on a sphere as a symmetric hat. Further,
applying H-spline interpolation requires us to solve a linear sys-
tem, whose size increases quadratically with increasing number of
measurements. We assume that we have a kinematic orbit of 10 days
from CHAMP, which implies a good ‘first coverage’ of the Earth
by providing us a (position) measurement every 30th second. Then
we have to solve a linear system of about 28 8002 elements. Rea-
sonable methods exist for carrying out this task, e.g. starting from
storing only the upper part of the matrix and ending in fast multi-
pole methods or domain decomposition methods (Glockner 2001;
Michel 2001; Gutting 2002). The essential task is that one has to find
a spline coefficient via a large and (usually) highly ill-conditioned
system for each point of the measurement.

In the case of noisy data smoothing (regularization) parameters
have to be found, and probably the system has to be solved more than
once. Additionally, if we consider satellite missions concerned with
gravity field evaluation we a priori know that these missions only
have a physically relevant precision up to a certain degree, e.g. the
spherical harmonic degree. For CHAMP, for example, the precision
of the missions with respect to gravitational field recovery is said to
be at least degree 90 up to degree 120 (cf. Reigber et al. 1996).

Thinking about the expansion in terms of outer harmonics it is
obvious that we would need only a system with a small selection of
the 10-day orbit for about 1212 = 14 641 unknowns to fit a solu-
tion. But then we omit the information which is probably somehow
contained in the remaining data.
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The point of departure in our approach is a least-squares adjust-
ment procedure as proposed in the following.

Definition 2.4 (Least-squares adjustment)
Denoting byKH(·, ·) a reproducing kernel, by P = {yj, j=1, . . . ,

N |yj ∈ �R} a (fundamental) system locating the kernels, and by M
= {xj, j = 1, . . . , M |xj ∈ �} the set of measurement positions, we
find with S̃ by

S̃(x) =
N∑

j=1

aN
j KH(x, y j ), x ∈ �ext

R ,

a (discrete) least-squares approximation to the measurements Fi,
i = 1, . . . , M at the measuring positions where the coefficients aN

j

are the least-squares solution of the overdetermined (i.e. M > N )
linear system defined by

N∑
j=1

aN
j KH(xi , y j ) = Fi , i = 1, . . . , M.

The set P is later called a park grid due to the fact that it refers the
kernels to particular locations.

Remark 2.2
P is a fundamental system if and only if it provides the full column

rank of the linear system (cf. Freeden 1999). Good choices of P
minimize the condition number and take care of a physically relevant
distribution of the located kernels (for example, the Reuter grid as
stated in Definition 2.1).

2.4.2 Sobolev spaces

For our modelling we need some more specified tools which are
well-known from the theory of Sobolev spaces (see Freeden 1981b;
Freeden 1999).

Definition 2.5
Let A be a PDO with the singular value decomposition AYn,k =

A∧(n)Yn,k ; n ∈ N0, k ∈ {−n, . . . , n}, i.e. A is isotropic and we
briefly write An = A∧(n).

The Sobolev space H(A, �R) is defined by

H(A, �R) = {
F ∈ C (∞)(�R)|AF ∈ L2(�R)

}‖·‖H(A,�R )

=
{

F ∈C (∞)(�R)

∣∣∣∣∣ ∞∑
n=0

n∑
k=−n

A2
n

(
F, Y R

n,k

)2

L2(�R )
< ∞

}
,

‖·‖H(A,�R )

where we let ‖F‖H(A,�R ) = ‖AF‖L2(�R ). Obviously H(A, �R)
equipped with the inner product (F, G)H(A,�R ) = (AF, AG)L2(�R )

is a separable Hilbert space.
The Abel–Poisson kernel is the uniquely determined reproducing

kernel of the Sobolev spaceH(A, �R) with symbol An = h−n/2, n ∈
N0, 0 < h < 1. We use this kernel in our computation for the follow-
ing reasons: first, the rotational invariance of the kernel (spherical
radial basis function) allows us to shift the maximum (the ‘hat’)
to the knots given by the park grid. Second, the parameter h con-
trols the width of the hat in the sense of a dilation of the kernel,
which corresponds to a frequency modulation due to the uncertainty
principle (see Freeden & Michel 1999). Moreover, we assume the
Abel–Poisson kernel to be physically relevant by identifying it with
the downward continuation operator. For many other kernels, e.g.
the singularity kernel, we refer to Freeden et al. (1997) and the
considerations therein.

Some nice numerical properties of the Abel–Poisson kernel
should be outlined: one bonus for an ease of computation is that the
Abel–Poisson kernel possesses an elementary representation given

−1.5 −1 −0.5 0 0.5 1 1.5
0

5

10

15

θ ∈ [ −π/2,π/2]

Figure 2. Sectional representation of the Abel–Poisson scaling function on
� with h ∈ {0.8, 0.85, 0.9}.

as

KH(A,�R )(x, y) =
∞∑

n=0

2n + 1

4π R2
hn Pn

(
x

|x | · y

|y|
)

= 1

4π R2

1 − h2

(Lh(x, y))3/2

(2)

with

Lh(x, y) = 1 + h2 − 2h(x · y).

Of course, this has the advantage that an infinite series need not
to be evaluated by summation. But this point should be further out-
lined from a computational point of view: using any non-elementary
representation, e.g. even bandlimited kernels such as the Shannon
or cubic polynomial (CuP) kernel (see Freeden et al. 1998), results
in a very expensive computational effort which must be avoided.
Although fast algorithms exist for evaluating the Legendre polyno-
mials the time required for the matrix initialization dominates the
solution process.

Another advantage of stabilizing the linear systems is the sym-
metry, positivity and smoothness of the Abel–Poisson kernel, which
can easily be controlled by the parameter h, in particular on a spher-
ical shell (see Fig. 2). It is a task for the future to find out under what
circumstances the spline matrix is best conditioned by changing to
different physically relevant kernels under fixing the point set.

Moreover, Glockner (2001) and Michel (2001) have developed
highly efficient algorithms for solving spline systems induced by
single poles in linear amounts using fast multipole methods. Finally,
we want to make the spline approach more concrete with respect to
computational aspects by choosing the evaluation functional as a
bounded linear functional.

2.4.3 SST operator

Observing the results above we can extend the introduced PDO
concept involving the (negative) first radial derivative of a function
V ∈ H(A, �R) to the outer space at height r > R, by connecting it
with the upward continuation operator (for more details see Freeden
1999). More explicitly, we have

−x ·(∇x V )(x)=
∞∑

n=0

n∑
k=−n

V ∧(n, k)(n + 1)

(
R

|x |
)n+1 1

An
Y R

n,k, (3)
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504 M. J. Fengler, W. Freeden and V. Michel

for all x ∈ �ext
R . The SST operator for the CHAMP mission

�SST : H
(

A,�ext
R

) → H
(
�−1

SST A, �ext
r

)
,

x �→ �SST(V )(x) = −x · (∇x V )(x),

can be interpreted as a PDO defined on H(A, �ext
R ) with the symbol

(�SST)∧(n) = (n + 1)

(
R

r

)n+1

. (4)

As the reader has probably noticed, we did not really introduce
the radial derivative formally given by the operator x

|x | · ∇x but the
expression x · ∇ x . The obvious reason for this (see Freeden 1999)
is that by neglecting the denominator we enforce harmonicity of
the ‘radial’ derivative, which is very important for our approach
later on where we use the Abel–Poisson splines as harmonic func-
tions for approximating the data (cf. Fengler 2002). Therefore, when
we speak in what follows of the radial derivative, we in fact mean
x �→ x · ∇ x V (x), x ∈ �ext

R .

2.5 Tikhonov regularization wavelets

Next we deal with the solution of the SST problem based on the
operator defined by (4). If no confusion is likely to arise we denote
�SST simply by � : H(�ext

R ) → H(�ext
r ),

�V = G, V ∈ L2(�R), G ∈ L2(�r ).

As we know from the literature (cf. Freeden 1999; Glockner 2001),
the latter equation is an exponentially ill-posed pseudodifferential
equation with an unbounded inverse operator �−1. The idea of reg-
ularization is now to replace the inverse operator by another more
suitable operator to approximate the solution. By operating directly
on the singular values of �−1, wavelets turn out to be a very appro-
priate tool for solving the underlying inverse problem.

Definition 2.6
A family of linear operators Sj : H(�ext

r ) → H(�ext
R ), j ∈ N0, is

called a regularization of �−1, if it satisfies the following properties:

(i) Sj is bounded on H(�ext
r ) for all j ∈ N0,

(ii) for any member G ∈ im(�), the limit relation

lim
j→∞

Sj G = �−1G

holds in ‖ · ‖H(�ext
R ) topology.

Since we are only interested in the potential values on �R we
can reduce the bilinear case (as given in Freeden et al. 1999) to
a linear wavelet approach. Thus, we obtain the J -level regular-
ization of the potential V on �R by evaluating the convolution
VJ = �J ∗ G = ∫

�r
�J (·, η)G(η) dωr (η), where � J denotes the

J -level regularization and reconstruction Tikhonov scaling function.
This scaling function is defined as follows:

Definition 2.7
For a given decreasing positive sequence γ j , j ∈ N0 with

lim j→∞γ j = 0, the SST Tikhonov regularization scaling function
is defined by

� j (x, y) =
∞∑

n=0

φ j (n)
2n + 1

4π Rr

(
Rr

|x ||y|
)n+1

Pn

(
x

|x | ·
y

|y|
)

,

for all x ∈ �R , y ∈ �r , where the symbol φ j (n) is given by

φ j (n) = �∧(n)

(�∧(n))2 + γ j
, n = 0, 1, . . . ; j ∈ N0,

corresponding to the singular values

�∧(n) = (n + 1)

(
R

r

)n+1

.

Due to the decreasing symbol for large n, we may regard these
functions as low-pass filters similar to Tikhonov regularization as
known for ill-conditioned linear systems. The SST Tikhonov regu-
larization wavelets are analogously obtained as bandpass filters, i.e.
by the difference of two subsequent low-pass filters (see Freeden
1999):

Definition 2.8
For a given decreasing sequence γ j , j ∈ N0 of positive values we

define the SST regularization wavelet by

� j (x, y) =
∞∑

n=0

ψ j (n)
2n + 1

4π Rr

(
Rr

|x ||y|
)n+1

Pn

(
x

|x | ·
y

|y|
)

,

for all x ∈ �R , y ∈ �r , where the symbol ψ j (n) is given by

ψ j (n) = φ j+1(n) − φ j (n), n = 0, 1, . . . ; j ∈ N0.

Thus, we obtain the J -level detail (bandpass) level of the
potential V on �R by evaluating the convolution �J ∗ G =∫

�r
�J (·, η)G(η) dωr (η). This convolution is also called the linear

wavelet transformation.

3 M O D E L L I N G O F T H E
C H A M P M I S S I O N

3.1 Simulation

Since CHAMP is tracked by the GPS we can assume that its (dis-
crete) ephemeris E = {(ti , xei ), i = 1, . . . , N : ti ∈ R, xei ∈ �},
where � ⊂ �ext as illustrated in Fig. 1, is describable in an Earth-
fixed reference frame with the origin centred at the centre of gravity
of the Earth, with the z-axis pointing along the axis of rotation
(‘North Pole’), and the x-axis towards the intersection point of the
equator and the zero meridian (Greenwich) at longitude 0◦. In our
simulations we neglected nutation and precession of the Earth. With
the program MOVSAT from Balmino & Barriot (1989) we simu-
lated a 90-day orbit of CHAMP based on an EGM96 gravity field
model up to degree 200 sampled every 10th of a second. We used
CHAMP’s Kepler elements provided by the GFZ for the launch
as the initial start configuration (cf. Reigber et al. 1996). For the
prediction from the equation of motion MOVSAT uses the Adams–
Moulton–Cowell method, which is a multistep predictor-corrector
method. This program is well known and has been tested over more
than 20 yr of use: for example, see other publications in a similar
context by Glockner (2001) and Kusche (2002). We added to each
Cartesian component independently the noise generated from the
introduced model of Section 2.3 with α = 0.8 and a standard devi-
ation of σ ε = 1 m (see the proposed example by Grafarend & Shen
2000). This produces highly correlated perturbations in the simu-
lated trajectory of ±1.7 m. This seems to be a realistic noise with
respect to all other error sources, e.g. errors in GPS measurements,
accelerometer drifts, non-modelled third-body forces etc. (see also
Grafarend & Shen 2000; Reigber et al. 1996).

3.2 Pre-processing

For the evaluation of the gradient (∇V ) of the potential we transform
the ephemeris E into a quasi-inertial system of CHAMP. The set E
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Multiscale geopotential model SWITCH-03 505

then becomes the so-called space-fixed ephemeris S = {(ti , xs i ), i =
1, . . . , N : ti ∈ R, xs i ∈ �ext

R }, where x si denotes the locations in
the inertial frame.

In our model the transformation is explicitly done by applying
an orthogonal transformation matrix R(t) to the ephemeris. R(t) de-
pends here on the fixed angular velocity ω of the Earth, which is
given via the siderial time and an initial angular configuration de-
pending of the Julian date t (cf. Austen & Reubelt 2000; Grafarend
& Shen 2000).

By numerically differentiating the elements of S twice with re-
spect to t given by (1) or SPS and applying Newton’s law of in-
ertial motion we determine the gradient (∇V ) (cf. Fengler 2002;
Grafarend & Shen 2000; Reubelt et al. 2003).

Equipped with the gradient we are able to determine the radial
derivative in the Earth-fixed coordinate system by the relation from
the inertial system:

xs

|xs | · (∇V )(xs) = xs

|xs | · ẍs = ∂

∂r
V (xe),

where xe = r · ξ , with r = |xe|.
When dealing with real data it is of essential importance to ap-

ply after the last step a despiking process to eliminate massively
disturbed measurements due to orbital manoeuvres etc.

Next we build pairs of (xe,
∂

∂r V (xe)) from which we select in a
next pre-processing step only those data which are the closest to
the nodes of a Reuter grid on �r as given in Definition 2.1. This
provides us with an equidistributed set of measurements. Then we
subtract a known gravitational field model for the low-frequency
part, e.g. globally for degree 0–2 and locally, e.g. here over South
America, up to degree 35.

3.3 Data fitting with splines

Using the Abel–Poisson kernel introduced by eq. (2) with h = 0.95
as a least-square adjustment or spline fitted to the data given on the
satellite’s orbit we extrapolate the radial derivative to a Driscoll–
Healy (integration) grid on a sphere �r going through the mean
or median flight altitude of CHAMP (see Fig. 1). This essential
step reserves the harmonicity in the data in contrast to methods
of averaging, statistical selection strategies or projection methods.
Due to the underlying inverse problem the linear system is usually
ill-conditioned. Since the systems are in our modelling are of mod-
erate size, e.g. (50 832 × 12 684) up to (679 200 × 12 684), we
use the well-known parallel QR-algorithm PDGELS from ScaLA-
PACK to solve them (cf. Anderson et al. 1992; Blackford et al.
1997; Schwarz 1997). By using orthogonal transformations the QR
algorithm does not additionally deteriorate the condition number
but stabilizes the whole solution process, as it is not done by other
direct or iterative methods, for example Cholesky, LU, CG etc. (cf.
Press et al. 1992; Werner 1992). Running on up to 256 processors
of a CRAY-T3E(1200) it takes us less than 50 min to solve such a
system explained above.

3.4 Solving the inverse problem and reconstruction

By evaluating the H-spline we can now assume that the predicted
measurements are given on an integration grid on the sphere �r . By
convolving these predicted measurements as stated in Section 2.5
with the regularization scaling functions and wavelets, we are able
to regularize the inverse problem and to reconstruct the potential
on �R . By applying a regularization in terms of multiresolution,
wavelets allow us to manipulate directly the singular values of the

SST operator. To define an appropriate criterion for stopping the reg-
ularization we use the standard L-curve method (for more details
the reader is referred to Grafarend & Shen 2000; Kusche 2002).
To be more specific, we take the recovered potential and predict
the measurements shifted to the spherical integration grid on �r .
Since ‖ · ‖H(A,�R ) as introduced above is calculated in the spec-
tral domain, for our local purpose we prefer here for the L-curve
the L2(�R) norm. We plot the norm of the reconstructed potential
(within Harm25,...,90(�R)) on the y-axis against the prediction error
from this potential to the orbit data on the x-axis (cf. Figs 18 and
20). Locally we calculate the rooted mean square sum of the recon-
structed potential values (RMS), resp. the error between the mea-
surements and the predicted orbit values on a smaller grid, which ap-
proximates locally the L2(�R) norm. It should be remarked that the
time-consuming numerical integration in the wavelet transformation
is intrinsically extremely data parallel. We exploit this by using an
efficient parallel implementation bases on the message passing inter-
face (MPI) library showing the expected optimal scale speed-up (cf.
Gropp et al. 1999). For a better comparison we project the solution
globally on Harm3,...,90(�R) or locally on Harm36,...,128(�R) in order
to analyse the accuracy of our method with respect to EGM96.

4 N U M E R I C A L R E S U LT S

4.1 Simulated data

4.1.1 Global reconstruction process

Preparations. To compare both the simulated models with and with-
out noise we use for the numerical differentiation of the ephemeris in
the space-fixed coordinate system the Newton-Gregory difference
quotient by taking seven points into account (see eq. 1).

Let N denote the number of disturbed ephemerides, then we de-
noise the single Cartesian components after the differentiation. By
using 1-D wavelet techniques we have to determine a threshold T for
the truncation of noise-containing coefficients. By using translation-
invariant hard thresholding, as suggested, for example, by Mallat
(1999), Coifman & Donoho (1995) proved that the threshold T =
σ̃ε

√
2 ln N , where σ̃ε denotes the standard deviation, fulfils certain

optimality criteria: the threshold should be chosen just above the
maximum level of the noise but should also not be too large so
that we do not set too many coefficients to zero. Assuming that
we consider a vector of N Gaussian random variables of variance
σ 2, one can prove that the maximum amplitude of the noise has
a very high probability of being just below T . That the threshold
increases with N seems to be counterintuitive. This is due to the
tail of the Gaussian distribution, which creates larger and larger
amplitude noise coefficients when the sample rate increases. The
threshold is not optimal, and in general a lower threshold reduces
the risk. However, one can prove that when N → ∞, the optimal
value of T grows like σ̃ε

√
2 ln N .

Further, for a global data selection we used two of the above
introduced Reuter grids for applying the selection algorithm. The
first one consists of 91 56 points, and is used for the spherical spline
approach resulting in a linear system of 91 56 unknowns. The second
one is of size 15 132 and provides enough data for a reliable least-
squares adjustment. Using the first grid as the park grid for the
kernels we obtain an overdetermined linear system of size 15 132 ×
91 56.

Regularization of the inverse problem. For the evaluation of
the convolution with the Tikhonov scaling function we use a
Driscoll–Healy grid with about 250 000 integration points. For the
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506 M. J. Fengler, W. Freeden and V. Michel

Figure 3. Disturbing potential generated by EGM96 from degree/order 3
up to 200 on �R .

Figure 4. Recovered potential from the simulated ephemerides within de-
gree/order 3 up to 90 on �R .

reconstruction grid at the Earth’s surface for considering a global
error analysis we use an equidistant φ–θ grid with 180 samples in
φ direction and 90 in θ .

First we consider the noise-free case to determine the numerical
accuracy of our method. However, one should note that we act with
non-bandlimited functions on band-limited data, which is not the
case in practice. By combining the spline interpolation and wavelet
regularization we find based on the L-curve method a good regular-
ization parameter for the Tikhonov regularization scaling function
at γ J = 0.000 001. This results in a high-quality recovered potential
as Figs 3 to 6 show, where the mean absolute error computed on an
equiangular 2◦ grid is at 1.03 m2 s−2, and the median absolute error
is at 0.61 m2 s−2.

These results could not be improved by combining the least-
squares adjustment and wavelet regularization. The mean absolute
error is 1.03 m2 s−2, and the median absolute error is 0.73 m2 s−2.
Even in polar regions, where one would expect bigger problems due
to the polar gap, both methods give reliable results (see the combi-
nation of the least-squares adjustment and regularization wavelets
at the South Pole in Fig. 6).

Figure 5. Absolute error in the reconstructed potential from noise-free data
within degree 3 up to 90 on �R .

Figure 6. Difference in the reconstruction at the South Pole from noise-free
data with respect to EGM96 within degree 3 up to 90 on �R .

More interesting is the analysis of the recovered potential from noisy
ephemerides. Our numerical differentiation and de-noising with TI-
thresholding yields a mean absolute error of 5.34 × 10−6 m2 s−2

in the radial derivative on �r . Then the least-squares adjustment
proves its superiority against the interpolating spline technique as
the following error plots show. Finding a best approximation for γ =
0.1 the combination with the interpolating spline and the wavelet
regularization results in a mean absolute error of 17.22 m2 s−2 and
a median absolute error of 15.51 m2 s−2.

It can easily be seen from Fig. 7 that the spline yields larger errors
in regions where the underlying gravitational potential is very large.
However, the combination of the least-squares adjustment spline and
the regularization Tikhonov scaling functions improves the mean
absolute error to 9.23 m2 s−2 and the median absolute error to
6.23 m2 s−2, cf. Fig. 8.
These results show that the least-squares adjustment method com-
bined with Tikhonov wavelet regularization is an appropriate method
for global data modelling.

However, we would like to explore whether we can achieve even
better local models. In what follows we try to recover the gravi-
tational potential up to a resolution of spherical harmonic degree
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Multiscale geopotential model SWITCH-03 507

Figure 7. Combined interpolating spline and regularization wavelets on
noisy data. Error in the reconstructed potential on �R from degree 3 up
to 90.

Figure 8. Combined least-squares adjustment and regularization wavelets
on noisy data. Error in the reconstructed potential on �R from degree 3 up
to 90.

128 over South America. Therefore, we subtract from the evaluated
orbital radial derivative a ‘known’ model up to degree 35, for ex-
ample provided by EGM96. This protects us from effects induced
by the support of spherical harmonics with a wavelength larger than
1100 km in our reconstruction area. Additionally we project the re-
constructed model on to Harm36,...,128(�R) to analyse its quality by
comparing it with a potential Ṽ generated by EGM96 from degree
36–128. In the following we stick to the realistic case of recovering
the gravitational potential from locally given noisy ephemerides.
Therefore, we focus on the connection of the least-squares adjust-
ment and wavelets.

4.1.2 Local reconstruction process

Since the Tikhonov scaling functions and wavelets are strongly lo-
calizing on �R the influence of each in the reconstruction convo-
lution depends only on a small local cap. Thus, we can think of a
numerically, locally compact support. This is the reason why we are
able to compute a reconstruction of the gravitational potential in a
desired area. We have to first determine a local data window provid-

 45 ° N 

0°   

45
°  S

 

90
°  S

 

  0° 45° W  90° W 

Figure 9. The Reuter selected satellite data are assumed to be given in the
red marked window, while the green integration window is a fraction of a
fine Driscoll–Healy grid. The local reconstruction over South America is
done in the blue reconstruction window on an equidistant φ–θ grid.

ing the data, a corresponding part of a Reuter grid for the selection
process, a local integration grid, a local grid for the reconstruction
and at least a small orbital prediction grid for the L-curve method.

In the following example we zoomed into South America trying
to improve the resolution accuracy.

Therefore, we set the data window to [−80◦, 40◦] × [−110◦,
−10◦] considering 19 256 (noisy) observations, while the park grid
for the least-squares adjustment is of the same size as the data win-
dow and contains 4063 points of a Reuter grid. The integration win-
dow is smaller and set to [−70◦, 30◦] × [−100◦, −20◦] containing
28 112 integration points of a corresponding Driscoll–Healy grid.
The reconstruction window with 32400 points is given by [−60◦,
20◦] × [−90◦, −30◦] (see Fig. 9). The prediction grid is again 10◦

smaller on each side and a subset from the orbital integration grid.
By viewing only the reconstructions of highest scale in the global

data modelling of the simulated CHAMP data we omitted a tech-
nical feature of wavelet analysis which will be explained now in
more detail. It turns out that the multiresolution analysis (MRA)
provides us an excellent tool for detecting certain features of the
high-frequency phenomena of the locally recovered gravitational
potential. Additionally, we are able to analyse how the locally given
data materially influences the quality of the reconstruction. From
this we can deduce limits of the discussed method of combining the
least-squares adjustment and the wavelet regularization, which will
help improve this strategy in our future research.

For analysing the recovered potential from degree 36 up to 128,
we create an MRA generated by regularization scaling functions.
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508 M. J. Fengler, W. Freeden and V. Michel

Figure 10. Approximation of Ṽ in the scale space of level 0, with
γ 0 = 2.0.

Figure 12. Approximation of Ṽ in the scale space of level 1, with
γ 1 = 0.2.

This MRA enables us to analyse the regional signal content by con-
sidering an increasing sequence of low-pass approximations, the so-
called scale spaces. The difference between two such consecutive
scale spaces can be characterized by some added detailed structure
generated by the wavelet space in between. Therefore these spaces
are called detail spaces, and if we track the (energy) content of these
detail spaces we are able to develop stopping criteria to balance the
error induced by recovering too noisy high-frequency phenomena.

To be specific for this example, we define a strict monotonically
decreasing sequence γ j , j ∈ N0, with lim j→∞γ j = 0. We consider
only the first elements of this sequence given by γ j , j = 0, 1, 2,
3, where γ 0 is the Tikhonov regularization parameter of the lowest
scale, and γ 3 the regularization parameter of the highest scale. More
explicitly,

Figure 11. Potential Ṽ generated by EGM96 36–128.

Figure 13. Approximation of Ṽ in the detail space of level 0.

γ0 = 2.000, γ1 = 0.200,

γ2 = 0.050, γ3 = 0.005.

We start with the low-frequency approximation given by γ 0 =
2.0 in Fig. 10 having a mean absolute error of 8.4586 m2 s−2 to
the potential generated by EGM96 from degree 36 up to 128 as
illustrated in Fig. 11.
As we can see in Fig. 10 only the most significant structures are
visible, for instance the deep ocean trench off the west coast of
South America. Adding the structures appearing in the detail space
of level 0, see Fig. 13, we get the scale approximation of level 1,
yielding a mean absolute error of 5.925 m2 s−2 (cf. Fig. 12).

A further decrease of γ j adding the details of Fig. 15, yields
with the approximation in level j = 2 a mean absolute error of
4.909 m2 s−2 (cf. Fig. 14).
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Multiscale geopotential model SWITCH-03 509

Figure 14. Approximation of Ṽ in the scale space of level 2, with
γ 2 = 0.05.

Figure 16. Approximation of Ṽ in the scale space of level 3, with
γ 3 = 0.005.

The sequence of γ j was chosen here so as to demonstrate a com-
mon problem in regularization concepts. As we can see in Figs 16
and 17 the approximation error increases with a further decrease in
the γ j values. Thus, we have to take care with real data to achieve
reliable results.

The detailed structure obtained from level 2 adds artefacts which
destroy the quite good approximation in the scale approximation of
level 2.

The parameter sequence γ i , i = 0, 1, 2, 3, is here motivated by
the shape of the L-curve in Fig. 18 which yields us almost optimal
regularization parameters, i.e. in simulations one can determine the
optimal regularization parameters by comparing the recovered po-
tential with the input model. For the prediction error we reconstruct
from the locally regularized potential within band 36–128 the same
frequency band for the data having been shifted to the integration

Figure 15. Approximation of Ṽ in the detail space of level 1.

Figure 17. Approximation of Ṽ in the detail space of level 2.

grid in orbital height. They have also been filtered for the same
frequency band.

It is good to see that with decreasing γ j we encounter instabilities
in the norm of the potential. With further increasing γ j � 2 the
prediction error increases. As Fig. 14 shows the value of γ j = 0.05
is almost optimal. Therefore, we may assume that the (heuristic)
L-curve method is an appropriate tool in our whole concept to find
good regularization parameters for real data.

4.1.3 Conclusion

As we have seen, the combination of a least-squares adjustment,
Tikhonov regularization wavelets and the L-curve method gives
good results, especially on noisy data, globally as well as locally.
This leads us to the opinion that the concept presented here is ap-
propriate for solving the SST problem and, thus, for the evaluation
of real CHAMP data.
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Figure 18. Local L-curve for simulated ephemeris over South America,
degree 36–128.

4.2 Real CHAMP data analysis

4.2.1 Global CHAMP model

The Delft Institute for Earth-oriented Space Research (DEOS) pro-
vided us with pre-processed CHAMP orbits obtained from so-called
post-processed science orbits (PSO) of the GeoForschungsZentrum
Potsdam (GFZ). These data contain measurements taken in the first
5 months of 2002. They have been corrected for accelerometer data,
precession and nutation, and gravitational effects induced by third
bodies. Thereby they follow, with some modifications, the ideas of
Jekeli’s energy balance method see Kusche & van Loon (2003) and
Jekeli (1999). Thus, by subtracting an EGM96 potential up to de-
gree 24 they provide anomalous potential values along the track.
Depending on the PSO input data the resolved Earth gravitational
field models are not completely independent of other existing mod-
els, i.e. one expects an EIGEN-2 related model (Schwintzer 2003).

Although these data do not directly lead to gradient vectors or
radial derivatives as discussed so far, we are able to use these
real data with obvious slight modifications of our modelling ap-
proach, i.e. the symbol of the pseudodifferential operator � has
to be changed to ( R

r )n+1. As a consequence, we are also able to
demonstrate the strength of our spline-based wavelet concept on the
provided ‘CHAMP data set’ (see Freeden 1999).

By using cubic approximating splines, as discussed in Engeln-
Müllges & Reutter (1988), we corrected obvious trends in the data
which are induced by accelerometer drifts. The remaining noise is
compensated by fitting a least-squares adjustment spline with 12 684
points on the park grid and 679 200 measurements to compensate
for this. The shape of the ‘L-curve’ in Fig. 19 shows the classical
‘L-shape’: the norm of the reconstructed potential is very sensitive
to small variations of the regularization parameter for small γ ≈ 0.
For larger values of γ the prediction error increases while the norm
of the potential further decreases. Thus, we deduce here that γ =
0.001 is a good compromise.

First we reconstruct a global solution called SWITCH-03 for the
higher-frequency parts (degree 25–90) and compare it with EGM96
(Lemoine et al. 1998), UCPH2002 02 0.5 (Stenseng & Tscherning
2003), EIGEN-1s (Schwintzer 2002) and EIGEN-2 (Reigber et al.
2002) within Harm25,...,90(�R), see Figs 20 and 21.
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Figure 19. Global L-curve for CHAMP data within Harm25,...,90(�R).

Figure 20. SWITCH-03 potential within Harm25,...,90(�R).

As, for example, Fig. 24 shows that only very high-frequency
parts contribute to the differences between SWITCH-03 and
EIGEN-2, e.g. in the Andes we have the largest differences from
EIGEN-2 with about ±56 m2 s−2. Table 1 indicates the differences
in the globally recovered potential referring to the illustrations in
Figs 21–24.

4.2.2 Local CHAMP data analysis

The differences in the high-frequency part of the SWITCH-03
model, especially in the Andes, now have to be further investigated.
Thus, we analyse the region around the Andes and try to improve
our global results locally.

Therefore, we consider the same windows as in the simulations
and use the ‘optimal’ regularization parameter given by the local
L-curve from Fig. 25. This L-curve differs slightly from that in the
global data modelling since we focus only on data material given in
this specific region. The key advantage of our method is obvious:
We can deduce from the L-curve given by Fig. 25 that the globally
obtained regularization parameter is by means too large for this
specific region, and thus high-frequency phenomena are smoothed
away. Beyond this, the local L-curve states that γ = 0.0001 is a
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Figure 21. Difference between the SWITCH-03 potential and EGM96 in
Harm25,...,90(�R).

Figure 22. Difference between the SWITCH-03 potential and
UCPH2002 02 0.5 in Harm25,...,90(�R).

good choice for this region. It turns out that we are able to improve
our model locally, e.g. more details are visible (see Fig. 26). To
be specific, the peak differences between EIGEN-1s and EIGEN-2
could be significantly decreased from ca. 60 m2 s−2 to ca. 20 m2 s−2

or even less (see Figs 29 and 30). The remaining differences are small
but still evident and can be located at the highest frequency parts in
the Andes and the maximum is at 23.06 m2 s−2. Nevertheless, in a
composition of the global and the local model the globally computed
median and mean absolute difference to the EIGEN-2 model reduces
to 3.41 m2 s−2, resp. 4.82 m2 s−2, which improves the results stated
in Table 1. It should be remarked that the same procedure may also
be applied to other regions, e.g. Tibet.

It should be the aim content of future work to further investigate
the visible tracks in the difference plots, and the errors that might
be introduced trackwise by some ‘bad days’ of the accelerometer.

The reader should note that due to the much larger differ-
ences from EGM96 the colour bar for the difference plot in
Fig. 27 is two times larger than that for EIGEN-1s, EIGEN-2 and
UCPH2002 02 0.5 (see Figs 28–30), where the colour bar is fixed
to the same size.

Figure 23. Difference between the SWITCH-03 potential and EIGEN-1s
in Harm25,...,90(�R).

Figure 24. Difference between the SWITCH-03 potential and EIGEN-2 in
Harm25,...,90(�R).

5 C O N C L U S I O N

These results show that our spline-based wavelet method is able
to suitably handle the given data material and additionally improve
existing results leading to a satellite-only gravitational field model
SWITCH-03 based on wavelets. Further we have achieved a method
which is very appropriate for real data applications since our pro-
grams are fully parallelized using the message passing interface
(MPI) (see, e.g. Gropp et al. 1999). By exploiting the evident data
parallelism in the numerical integration routines it yields a nearly
optimal scale speed-up on parallel machines.
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Table 1. Globally computed potential differences in m2 s−2 between
SWITCH-03 and the considered models.

EGM96 UCPH 2002 0.5 EIGEN-1s EIGEN-2

Median absolute 4.531 4.956 3.695 3.564
difference

Mean absolute 6.629 6.932 5.296 5.270
difference
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Figure 25. Local L-curve for CHAMP data over South America in
Harm25,...,90(�R).
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