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S U M M A R Y
Two assumptions are often made when computing Earth’s core surface flows from geomagnetic
data: the frozen-flux assumption and the tangentially geostrophic assumption. These assump-
tions impose some integral constraints on the geomagnetic field on secular timescales. It has
been shown in the first paper of this series that all known integral constraints could actually be
deduced from a single set of curvilinear integral constraints on the secular variation along level
curves of ζ = Br/cos θ at the core surface. In the present paper, these particular constraints
are further proved to be sufficient conditions for the geomagnetic secular variation to be gen-
erated by a tangentially geostrophic flow under the frozen-flux assumption. This result means
that no other independent constraint can be found and makes it possible to attempt building
geomagnetic models consistent with both the frozen-flux and the tangentially geostrophic as-
sumptions. Also, the complete set of tangentially geostrophic flow solutions of the induction
equation under the frozen-flux assumption is exhibited. These solutions are amenable to direct
numerical computation.
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1 I N T RO D U C T I O N

This paper is the second of a series of papers (initiated by Chulliat & Hulot 2001, and hereafter referred to as Paper I) investigating the
magnetohydrodynamic (MHD) properties of the Earth’s core surface on secular timescales. The core surface is defined as the region just
below the very thin viscous boundary layer under the core–mantle boundary (CMB) where the flow is a horizontal free-stream. It is of particular
interest for understanding the geodynamo as it is the only region of the core where some information about the magnetic field can be directly
inferred from observation. The field at the core surface is obtained by continuing the field measured at or near the Earth’s surface downward
through the weakly conducting mantle: the main limitation to this calculation is that the small-scale core field is masked by the crustal field
at the Earth’s surface as a result of geometrical attenuation (e.g. Gubbins & Roberts 1987). The secular variation (SV) of the core field is
provided by historical data, which span approximately 400 yr, from early declination and inclination measurements made aboard ships to
recent vector and scalar data systematically collected in observatories and by satellites (e.g. Jackson et al. 2000).

Two assumptions greatly simplify the equations relating the magnetic field and the flow at the core surface on secular timescales: the
so-called frozen-flux (FF) and tangentially geostrophic (TG) assumptions. Both assumptions rely on order of magnitude estimates of the
various terms of the equations. They have been widely used for computing core surface flows from geomagnetic data (e.g. Hulot et al. 2002,
and more references in Paper I).

The FF assumption consists of neglecting the magnetic field diffusion on secular timescales (Roberts & Scott 1965). Under this assumption,
the radial component of the induction equation at the core surface reads

∂t Br = −∇H ·(uBr ), (1.1)

where u is the flow, Br the radial component of the magnetic field and ∇H = ∇ − n∂r , n the unit radial outward vector. Eq. (1.1) involves no
radial derivative and relates the unknown flow u to the magnetic field and its secular variation. As only the radial component of the magnetic
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Figure 1. The iso-ζ curves and the geostrophic region in 1980, equal-area Hammer projection, model of Bloxham & Jackson (1992). Isovalues every 2 ×
105 nT between −106 nT and 106 nT. The light grey areas are the ambiguous patches, defined as the set of iso-ζ curves that do not cross the geographic equator.
The non-geostrophic region defined by |ζ | > |ζ max| is the dark grey area. It is represented for ζ max = 10−3 T.

field can be assumed continuous through both viscous and magnetic boundary layers at the top of the core (Jault & Le Mouël 1991), no other
component is generally considered.

The TG assumption consists of neglecting the Lorentz force in the upper layers of the core, where the toroidal field is weak (Le Mouël
1984). Under this assumption, the Coriolis force is dominant and the magnetogeostrophic balance generally assumed to hold throughout the
core becomes

2�ρn × (u cos θ ) = −∇H p (1.2)

at the core surface, where � is the Earth’s rotation rate, ρ the core density, θ the colatitude and p the dynamic pressure. Taking the curl of
eq. (1.2) gives an equivalent formulation of the TG assumption:

∇H ·(u cos θ ) = 0. (1.3)

This assumption is useful for computing core surface flows because it reduces the otherwise very large number of solutions of the FF induction
eq. (1.1). Yet, it cannot be used on the whole core surface because the Coriolis force vanishes on the geographic equator: it must be confined
to a so-called geostrophic region (Backus & Le Mouël 1986). It has been argued in Paper I that the geostrophic region G could be defined
consistently as the set of points where |ζ | ≤ ζ max, where ζ = Br/cos θ and ζ max = 10−3 nT. As an illustration, Fig. 1 shows the geostrophic
region in 1980, computed from the geomagnetic model of Bloxham & Jackson (1992).

Backus (1968) solved eq. (1.1) for continuous flows. He showed that: (a) the FF assumption imposes some constraints on the magnetic
field at the CMB; and (b) if these constraints are satisfied, then eq. (1.1) has a non-empty set of continuous solutions that he exhibited and
termed eligible flows. These constraints are thus necessary and sufficient conditions for the SV to be generated by a continuous flow under
the FF assumption. They have been widely used for testing the FF assumption against geomagnetic data: most tests concluded with positive
results (e.g. O’Brien et al. 1997, and more references in Paper I).

Unlike the FF assumption alone, the combined FF+TG assumption has never been properly tested against geomagnetic data. The reason
is that theoretical tools for such tests were not available. As for the FF assumption alone, a consistent test of the FF+TG assumption would
be to construct a field model constrained by the necessary and sufficient conditions imposed by this assumption and compare its misfit with
the data error bars. However, while several sets of necessary conditions have been found, including the one presented in Paper I, none of these
sets has been proven sufficient. [It is worth noting that the TG assumption alone cannot be tested, as eq. (1.2) does not involve the observable
magnetic field.]

In the present paper, Backus’s results in the lone FF case will be extended to the FF+TG case, providing the missing theoretical tools for
testing the FF+TG assumption. A first step was made in Paper I, where a new set of necessary conditions was obtained and it was proven that
several sets of necessary conditions published to date could actually be inferred from this new set. Here this set of necessary conditions will
be proven to be sufficient for the SV to be generated by a TG flow under the FF assumption within a given geostrophic region G. In addition,
the complete set of eligible TG flows, i.e. continuously differentiable solutions of eq. (1.1) satisfying eq. (1.3) within G, will be exhibited.
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There are several motivations for testing the FF+TG assumption. Practically, tests would help us assessing the validity of core surface
flow computations. Moreover, in the case of positive tests, constrained core field models would be as appropriate, if not more appropriate, than
unconstrained ones for core studies. A new family of core field models with unknown properties could then be constructed. These models
could be used, for example, to compute core surface flows by local methods such as the one developed by Chulliat & Hulot (2000). This first
attempt was encouraging as the large-scale pattern of the locally computed pressure field was very similar to that obtained by the standard
spectral method. However, the pressure field had spurious small-scale features that were attributed to the fact that the starting field model was
unconstrained.

On the theoretical side, tests would provide us with some observational information on the dynamic regime at the top of the core, which
could be compared to numerical geodynamo simulations. For example, Roberts & Glatzmaier (2000) found that one necessary condition
imposed by the FF assumption, the constraint on the unsigned magnetic flux through patches delimited by Br = 0 curves, was satisfied to within
a few per cent in their simulation. Using a different geodynamo model, Rau et al. (2000) found that diffusion contributed to approximately
25 per cent of the energy of the secular variation and that less than 10 per cent of the flow at the core surface was ageostrophic.

The main limitation to such tests, and core surface flow computations in general, comes from the limit imposed by the crustal field
on recovering core field scales smaller than the degree 13 of the spherical harmonics expansion. Yet, even this limited range of scales has
not been fully exploited as existing tests have been performed with magnetic field models up to degree 13 and SV models up to degree 8
only. Moreover, the ØRSTED and CHAMP satellites have been mapping the magnetic field continuously since 2000 with an unprecedented
precision. It is now possible to model the SV up to degree 13 , i.e. with the same spatial resolution as the magnetic field (Olsen 2002; Langlais
et al. 2003). It seems reasonable to expect even greater spatial resolution for the SV in the near future as, unlike the stationary part of the field,
it is not masked by the crustal field.

The present paper is organized as follows. In Section 2, basic assumptions, notations, definitions and useful formulae are presented. In
Section 3, the set of constraints derived in Paper I is recalled and some useful consequences of these constraints are established. In Section 4,
the existence of eligible TG flows is assumed and the general form of these flows is obtained. In Section 5, the set of necessary conditions of
Paper I, assumed to be satisfied by the geomagnetic field, is proven to be sufficient by exhibiting one eligible TG flow; finally the complete
set of eligible TG flows is exhibited.

2 P R E L I M I N A R I E S

The purpose of this section is to do some preliminary work. First, a few basic assumptions are made in order to ensure sufficient mathematical
regularity of the magnetic field at the core surface. Next, several notations and definitions are introduced: most of them involve iso-ζ curves,
which will be abundantly used in what follows. Finally, three lemmas, demonstrated in appendices, provide a general derivation formula and
some asymptotic expansions that will simplify the mathematics in the remainder of the paper.

2.1 Basic assumptions

It is assumed that the core surface is a perfect sphere and that the geomagnetic field B meets the following conditions at all times at the core
surface:

(i) the function Br is four times continuously differentiable in θ and φ (longitude);
(ii) all iso-ζ curves are closed and of finite length;
(iii) there is at least one magnetic equator, i.e. a curve Br = 0, crossing the geographic equator at some nodes;
(iv) the geomagnetic equator is nowhere tangent to the geographic equator;
(v) the critical points (where ∇H ζ = 0) of the function ζ are not degenerate (i.e. the discriminant of the tensor of second derivatives of ζ

is non-zero).

These are the same assumptions as in Paper I, except the first one, which is stronger (Br was only assumed twice continuously differentiable).
As argued in Paper I, they are not restrictive in a geophysical context.

2.2 Notations and definitions

As in Paper I: ∂S ζ0 denotes an iso-ζ curve of equation ζ = ζ 0 encircling a surface ∂S ζ0 (Fig. 2a); �
i, j
ζ0

denotes a portion of an iso-ζ curve
of equation ζ = ζ 0 joining two nodes Ni and Nj (Fig. 2b); and, 

i, j
∞,ζ0

denotes a surface delimited by a curve �
i, j
ζ0

and the shortest of the
two segments �i, j

∞ of geographic equator (where ζ = ±∞) joining Ni and Nj (Fig. 2b). Also, �
M1,M2
ζ0

denotes a portion of an iso-ζ curve of
equation ζ = ζ 0 joining two points M 1 and M 2. [Note that Figs 2(a) and (b) are identical to figs 2(a) and (b) of Paper I.]

Because of the fifth basic assumption on B, there exists two kinds of critical points of the function ζ : saddle points, where the discriminant
of the tensor of second derivatives of ζ is negative, and extrema, where the discriminant is positive. An iso-ζ curve containing one or more
critical points is called critical.

The following definitions have been laid down by Backus & Le Mouël (1986): the visible belt is the set of all iso-ζ curves intersecting the
geographic equator within the geostrophic region; an ambiguous patch is a maximal connected set of closed iso-ζ curves that never intersect
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Figure 2. Generic iso-ζ curves and patches.
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Ν
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V

A

Figure 3. Generic visible domain. The visible domain V is depicted in white. The non-geostrophic belt (defined by |ζ | ≥ ζ max) is the dark grey area containing
the geographic equator. An ambiguous patch A is depicted in light grey.

the geographic equator. The meaning of the terms visible and ambiguous will be recalled in Section 5.2. Note that each ambiguous patch is
delimited by a critical curve, contains at least one extremum of ζ and is simply connected.

For a given geostrophic region G, a maximal connected set of iso-ζ curves intersecting the geographic equator within G is called a visible
domain (Fig. 3). The visible belt within G is thus uniquely divided into one or more visible domains. For example, the visible belt in 1980 is
made of only one visible domain within the geostrophic region defined by |ζ | ≤ 10−3 nT (see Fig. 1).

The ambiguous patches may also be cut into smaller pieces. A maximal connected set of iso-ζ curves delimited by one or two critical
curves and containing two, and only two, critical points (either two saddle points on its boundaries, or one saddle point on its boundary and
one extremum) is called an ambiguous domain (Fig. 4). Thus, each ambiguous patch can be uniquely divided into one or more ambiguous
domains. Note that an ambiguous domain is simply connected if, and only if, it contains an extremum. For example, the biggest ambiguous
patch located in the south Atlantic region in 1980 is made of five ambiguous domains, three of them containing an extremum (see Fig. 1). For
each ambiguous domain A, there exists a curve �A joining both critical points C (1)

A and C (2)
A of A, and crossing each iso-ζ curve of A exactly

once at a point KA(ζ ) (Fig. 5). ζ
(1)
A and ζ

(2)
A denote, respectively, the values of ζ at C (1)

A and C (2)
A .
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1

Figure 4. Generic ambiguous domains. The ambiguous domain A1 contains two saddles points (S and S’), while A2 and A3 both contain one saddle point
(the same S′) and one extremum (not represented).
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C
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A

A
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KA(ζ)

Figure 5. Notations relative to an ambiguous domain. The domain represented contains one saddle point and one extremum. Similar notations apply if the
domain contains two saddle points.

The unit vectors normal and tangent to iso-ζ curves are, respectively,

π ≡ ∇H ζ

‖∇H ζ‖ = 1

c‖∇H ζ‖
(

∂θ ζeθ + ∂φζ

sin θ
eφ

)
(2.1)

and

τ ≡ n× ∇H ζ

‖∇H ζ‖ = 1

c‖∇H ζ‖
(

− ∂φζ

sin θ
eθ + ∂θ ζeφ

)
, (2.2)

where eθ denotes the unit vector associated with the colatitude θ and eφ is the unit vector associated with the longitude φ. The vectors π and τ

are defined at any point except for poles and critical points. Also, the following 2 × 2 matrices defined everywhere except for poles introduce
are introduced:

Z ≡ 1

c2


 ∂θθ ζ

∂θφζ

sin θ
∂θφζ

sin θ

∂φφζ

sin2 θ


 , (2.3)

X ≡ 1

c3


 ∂θθθ ζ

∂θθφζ

sin θ
∂θθφζ

sin θ

∂θφφζ

sin2 θ


 , (2.4)

Y ≡ 1

c3




∂θθφζ

sin θ

∂θφφζ

sin2 θ
∂θφφζ

sin2 θ

∂φφφζ

sin3 θ


 , (2.5)
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W ≡ 1

c2


 ∂θθ Br

∂θφ Br

sin θ
∂θφ Br

sin θ

∂φφ Br

sin2 θ


 , (2.6)

∂tW ≡ 1

c2


 ∂θθ ∂t Br

∂θφ∂t Br

sin θ
∂θφ∂t Br

sin θ

∂φφ∂t Br

sin2 θ


 . (2.7)

Finally, for all 2 × 2 matrices A, vector fields V and scalar fields f : I denotes the 2 × 2 identity matrix, Tr(A) the trace of A, VT the
transpose of V, V θ the orthoradial coordinate of V, V φ the azimuthal coordinate of V, A V the product of A and the 2 × 1 matrix (Vθ

Vφ
), VM

the value of V at a point M and fM the value of f at a point M .

2.3 Useful formulae

A proof of Lemma 1 is found in Appendix A. Proofs of Lemmas 2 and 3 are found in Appendix B.

2.3.1 Lemma 1

Consider a scalar field f , defined on the core surface and continuously differentiable at any non-critical point of ζ . Consider �
M1,M2
ζ , a portion

of an iso-ζ curve joining two points M 1 and M 2. The derivative with respect to ζ of the curvilinear integral of f along �
M1,M2
ζ may be expressed

as

d

dζ

(∫
�

M1 ,M2
ζ

f τ ·dl

)
=

∫
�

M1 ,M2
ζ

∇H ·( f π)
τ ·dl

‖∇H ζ‖ . (2.8)

2.3.2 Lemma 2

Consider a node N . At any point N + δ r near N , the asymptotic expansions of the quantities ∂ t Br‖∇H ζ‖−1 and ∇H · (∂ t Br‖∇H ζ‖−1 π)
are given by

∂t Br

‖∇H ζ‖ = −π·(UN + TNδr) cos θ + O(‖δr‖3) (2.9)

and

∇H ·
(

∂t Br

‖∇H ζ‖π
)

= ‖∇H ζ‖(τ ·∇H )

[
τ ·(UN + TNδr) cos θ

‖∇H ζ‖
]

− ∇H ·[(UN + TNδr) cos θ ] + O(‖δr‖2), (2.10)

where

UN ≡ −c

(
∂t Br

∂φ Br

)
N

eφ (2.11)

and TN is a 2 × 2 matrix defined by

TN ≡ −



0 0[
∂θ

(
∂t Br

∂φ Br

)]
N

[
∂φ

(
∂t Br

∂φ Br

)]
N


 . (2.12)

2.3.3 Lemma 3

Consider a critical point C such that (∂ t Br)C = 0. At any point C + δr near C, the asymptotic expansions of the quantities ∂ t Br‖∇H ζ‖−1

and ∇H · (∂ t Br‖∇H ζ‖−1 π) are given by
∂t Br

‖∇H ζ‖ = −π·(UC + TCδr) cos θC + O(‖δr‖2) (2.13)

and

∇H ·
[

∂t Br

‖∇H ζ‖π
]

= ‖∇H ζ‖(τ ·∇H )

[
τ ·(UC + TCδr) cos θC

‖∇H ζ‖
]

− ∇H ·[(UC + TCδr) cos θC ] + O(‖δr‖), (2.14)

where

UC ≡ − 1

cos θC
Z−1

C (∇H ∂t Br )C (2.15)

and TC is a 2 × 2 matrix defined by

TC ≡ −1

2
Z−1

C

[
(eθ ·UC )XC + (eφ·UC )YC + ∂tWC

] + 1

c
cot θC (eφ·UC )

(
0 0
1 0

)
. (2.16)
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3 N E C E S S A RY C O N D I T I O N S F O R T H E E X I S T E N C E O F E L I G I B L E T G F L O W S

The constraints on the SV imposed by the combined FF+TG assumption are necessary conditions for the existence of eligible TG flows. It
was shown in Paper I that several sets of such constraints could actually be inferred from one single set. The present section aims at recalling
this particular set, which will subsequently be referred to as the basic set of constraints, and establishing some consequences (not mentioned
in Paper I) of these constraints, which will prove useful in Sections 4 and 5.

3.1 Basic set of constraints

The basic set of constraints on the SV obtained in Paper I is:∮
∂Sζ0

∂t Br

‖∇H ζ‖τ ·dl = 0, (3.1)

∫
�

i, j
ζ0

∂t Br

‖∇H ζ‖τ ·dl∞ = ηi, j

(
q( j) − q(i)

)
, (3.2)

for all non-critical curves ∂S ζ0 and �
i, j
ζ0

within G. Here dl∞ is oriented so that dl∞ × n on ∂
i, j
∞,ζ0

points out of 
i, j
∞,ζ0

, η i, j = +1 if dl∞ on
�

i, j
ζ0

is oriented from Ni to Nj, −1 otherwise, and q (i) is the renormalized pressure field q = p/2�ρ at the node Ni. The curvilinear integrals
in eqs (3.1) and (3.2) were interpreted in Paper I as SV flux densities on the iso-ζ curves ∂S ζ0 and �

i, j
ζ0

.

3.2 Consequences

In the present subsection it is assumed that the SV satisfies the basic set of constraints eqs (3.1) and (3.2), with an arbitrary set {q (i)}, for all
non-critical curves ∂S ζ0 and �

i, j
ζ0

within a geostrophic region G of arbitrary extent (defined by ζ max). (No assumption is made regarding the
existence of eligible TG flows.) This assumption has three useful consequences.

First, deriving eqs (3.1) and (3.2) with respect to ζ and using eq. (2.8) of Lemma 1 lead to another set of curvilinear integral constraints
on the SV:∮

∂Sζ0

∇H ·
(

∂t Br

‖∇H ζ‖π
)

τ ·dl

‖∇H ζ‖ = 0, (3.3)

∫
�

i, j
ζ0

∇H ·
(

∂t Br

‖∇H ζ‖π
)

τ ·dl

‖∇H ζ‖ = 0, (3.4)

for all non-critical curves ∂S ζ0 and �
i, j
ζ0

within G. The convergence at nodes of the integral in eq. (3.4) is ensured by formula eq. (2.10) of
Lemma 2.

Secondly, the SV satisfies the following two constraints for all critical points C:

(∂t Br )C = 0 (3.5)

and, at any point C + δr near C,

∇H ·[(UC + TCδr) cos θC ] = O(‖δr‖), (3.6)

where UC and TC are given by eqs (2.15) and (2.16), respectively. Proofs of eqs (3.5) and (3.6) are found in Appendix C. [Note that, if an
eligible TG flow exists, eq. (3.5) can also be straightforwardly deduced from the fact that the quantity ∂ t Br‖∇H ζ‖−1 is bounded everywhere
at the core surface.]

Thirdly, as the SV vanishes at all critical points, the constraints of eqs (3.1) and (3.2) also hold for all critical curves ∂S ζ0 and �
i, j
ζ0

within G.

4 G E N E R A L F O R M O F E L I G I B L E T G F L O W S

In the present section it is assumed that eligible TG flows exist within a geostrophic region G of arbitrary extent (defined by ζ max). Let u be
one eligible TG flow, p one of the pressure fields associated with it [i.e. satisfying eq. (1.2)] and q = p/2�ρ the corresponding renormalized
pressure field (that will be considered instead of p hereafter). As dζ/dt = 0 [combine eqs (1.1) and (1.3)], the iso-ζ curves are material within
G; therefore, G is material and can be treated as a closed region. In addition, the basic set of constraints of eqs (3.1) and (3.2) is satisfied
by the SV, as well as its consequences of eqs (3.3), (3.4), (3.5) and (3.6). The goal of the present section is to obtain the general form of u
everywhere within G. This form will be used in Section 5 to construct a solution.

4.1 Some useful expressions

Except for nodes (where cos θ = 0) and critical points (where ‖∇H ζ‖= 0), the flow u may be expressed as

u = 1

cos θ

(
‖∇H ζ‖∂q

∂ζ
τ − ∂t Br

‖∇H ζ‖π
)

. (4.1)
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The component π· u is obtained by splitting uBr into (u cos θ ) ζ in eq. (1.1) and using eq. (1.3); the component τ · u is obtained by taking
π· (eq. 1.2).

Combining τ · (eq. 1.2) and π· (eq. 4.1) gives the horizontal gradient of the (renormalized) pressure,

τ ·∇H q = ∂t Br

‖∇H ζ‖ . (4.2)

Integrating eq. (4.2) along any segment iso-ζ curve �
M1,M2
ζ0

joining two points M 1 and M 2 yields the pressure difference between those two
points,

qM2 − qM1 =
∫

�
M1 ,M2
ζ0

∂t Br

‖∇H ζ‖τ ·dl, (4.3)

where dl is oriented from M 1 to M 2. Note that the constraints of eqs (3.1) and (3.2) are expressions of eq. (4.3) applied to non-critical curves
∂S ζ0 and �

i, j
ζ0

within G.
Deriving eq. (4.3) with respect to ζ and applying eq. (2.8) of Lemma 1 with f = ∂ t Br‖∇H ζ‖−1 further yields(

∂q

∂ζ

)
M2

−
(

∂q

∂ζ

)
M1

=
∫

�
M1 ,M2
ζ0

∇H ·
(

∂t Br

‖∇H ζ‖π
)

τ ·dl

‖∇H ζ‖ , (4.4)

with the same convention for dl, provided there is no node or critical point on �
M1,M2
ζ0

.

4.2 Form of eligible TG flows at and near nodes

Consider a node N . Under the combined FF+TG assumption, N is material because it is the intersection of an infinite number of material
curves. At any point N + δr near N , taking eq. (2.9) of Lemma 2 into π· (eq. 4.1) yields

π·u = π·(UN + TNδr) + O(‖δr‖2), (4.5)

where UN and TN are defined by eq. (2.11) and eq. (2.12), respectively. Also, taking eq. (2.10) of Lemma 2 into eq. (4.4) (with M 1 = N and
M 2 = N + δr), next into τ · (eq. 4.1) and using

∇H ·[(UN + TNδr) cos θ ] = T r (TN ) cos θ + O(‖δr‖2), (4.6)

yields

τ ·u = τ ·(UN + TNδr) − T r (TN )τ ·δr + O(‖δr‖2). (4.7)

The first-order expansion of u near N is obtained by combining eqs (4.5) and (4.7) and noticing that π · δr = O(‖δr‖2):

u = UN + [TN − T r (TN )I]δr + O(‖δr‖2). (4.8)

4.3 Form of eligible TG flows at and near critical points

Consider a critical point C. Under the combined FF+TG assumption, C is material because it is either the intersection of two material curves
(if C is a saddle point) or an infinitely small material curve (if C is an extremum). As the constraint of eq. (3.5) is satisfied, Lemma 3 applies.
At any point C + δr near C, taking eq. (2.13) of Lemma 3 into π· (eq. 4.1) yields

π·u = π·(UC + TCδr) + O(‖δr‖2), (4.9)

where UC and TC are defined by eqs (2.15) and (2.16), respectively. Also, for any two points M 1 = C + δr1 and M 2 = C + δr2 near C on
the same iso-ζ curve �ζ , taking eq. (2.14) of Lemma 3 into eq. (4.4), next into τ · (eq. 4.1) and using the constraint of eq. (3.6) yields[
τ ·u cos θ

‖∇H ζ‖
]M2

M1

=
[
τ ·(UC + TCδr) cos θC

‖∇H ζ‖
]M2

M1

+ O
(‖δr1‖) + O

(‖δr2‖
)
. (4.10)

Therefore, there exists a function αC (�ζ ) such that

τ ·u = τ ·(UC + TCδr) + αC (�ζ )‖∇H ζ‖ + O(‖δr‖2) (4.11)

at any point C + δr near C on an iso-ζ curve �ζ . As the flow u is continuously differentiable, the function αC (�ζ ) is continuous at C; let
αC = limζ→ζC αC (�ζ ). Combining eqs (4.9) and (4.11) and expanding ∇H ζ to first order, yields the first-order expansion of u near C:

u = uC + TCδr + αC‖ZCδr‖τ + O(‖δr‖2). (4.12)

The dominant order in eq. (4.12) was first obtained by Hills (1979).

4.4 Form of eligible TG flows within visible domains

Consider a visible domain V and a point M within V connected to a node Ni on the geographic equator by an iso-ζ segment �
Ni ,M
ζM

. Integrating
eq. (4.4) along �

Ni ,M
ζM

and using eq. (4.1) yields

uM = ‖∇H ζ‖M

cos θM

[∫
�

Ni ,M
ζM

∇H ·
(

∂t Br

‖∇H ζ‖π
)

τ ·dl

‖∇H ζ‖

]
τ M − 1

cos θM

(∂t Br )M

‖∇H ζ‖M
πM , (4.13)
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where dl is oriented from Ni to M . Note, after eq. (4.1), ∂q/∂ζ necessarily vanishes at Ni as cos θ = 0 and ‖∇H ζ‖→ + ∞ on the geographic
the equator. Therefore, the integral in eq. (4.13), which starts from a node, is well-defined. Although this integral diverges at critical points,
its product with ‖∇H ζ‖M (that goes to zero there) remains finite.

The pressure at M may be related to the pressure at the node Ni by integrating eq. (4.3) along �
Ni ,M
ζM

:

qM = qNi +
∫

�
Ni ,M
ζM

∂t Br

‖∇H ζ‖τ ·dl, (4.14)

with the same convention for dl.

4.5 Form of eligible TG flows within ambiguous domains

Consider an ambiguous domain A and let

gA(ζ ) ≡ τ KA(ζ )·uKA(ζ ) (4.15)

for ζ
(1)
A < ζ < ζ

(2)
A (if, for example, ζ

(1)
A < ζ

(2)
A ; see Fig. 5). Note that the definition of τ KA(ζ ) and πKA(ζ ), hence of gA(ζ ), may be extended

by continuity along �A at both critical points C (1)
A and C (2)

A . Near C = C (1)
A and C (2)

A , multiplying the first-order expansion of ∇H ζ by
‖∇H ζ‖−1Z−1

C leads to

δr

‖∇H ζ‖ = Z−1
C π + O(‖δr‖). (4.16)

Applying eq. (4.12) to the point KA(ζ ) and making use of eq. (4.16), the function gA(ζ ) may then be expanded to first order in ‖δr‖ near
C = C (1)

A and C (2)
A :

gA(ζ ) = τ KA(ζC )·UC + δτ KA(ζ )·UC + βC‖ZCδr‖ + O(‖δr‖2), (4.17)

where δτ KA(ζ ) is the first-order term of the expansion of τ KA(ζ ) − τ KA(ζC ) near C and

βC ≡ [
τ KA(ζC )

]T
TC Z−1

C πKA(ζC ) + αC . (4.18)

Now consider a point M within A on an iso-ζ curve ∂SζM crossing �A at KA(ζM ). Integrating eq. (4.4) from KA(ζM ) to M along
�

KA(ζM ),M
ζM

and using eqs (4.1) and (4.15) yields

uM = ‖∇H ζ‖M

cos θM

[
cos θKA(ζM )

‖∇H ζ‖KA(ζM )
gA(ζM ) +

∫
�

KA (ζM ),M
ζM

∇H ·
(

∂t Br

‖∇H ζ‖π
)

τ ·dl

‖∇H ζ‖

]
τ M − 1

cos θM

(∂t Br )M

‖∇H ζ‖M
πM , (4.19)

where dl is oriented from KA(ζM ) to M . Although the integral in eq. (4.19) diverges when ζM → ζ
(1)
A or ζ

(2)
A and KA(ζM ) → C (1)

A or C (2)
A , its

sum with gA(ζM )/‖∇H ζ‖KA(ζM ) remains finite.
The pressure at M may be related to the pressure at C (1)

A by integrating eq. (4.3) successively from C (1)
A to KA(ζM ) along �A and from

KA(ζM ) to M along �
KA(ζM ),M
ζM

, and by using τ · eqs (4.1) and (4.15):

qM = q
C

(1)
A

+
∫ ζM

ζ
(1)
A

cos θKA(ζ )

‖∇H ζ‖KA(ζ )
gA(ζ )dζ +

∫
�

KA (ζM ),M
ζM

∂t Br

‖∇H ζ‖τ ·dl, (4.20)

with the same convention for dl. The first integral in eq. (4.20) is well-defined as dζ‖∇H ζ‖−1
KA(ζ ) remains bounded at critical points.

5 E X I S T E N C E A N D C O M P L E T E S E T O F E L I G I B L E T G F L O W S

In the present section, it is assumed that the SV satisfies the basic set of constraints of eqs (3.1) and (3.2), with an arbitrary set {q (i)}, for all
non-critical curves ∂S ζ0 and �

i, j
ζ0

within a geostrophic region G of arbitrary extent (defined by ζ max). Relying on the results of Sections 2, 3
and 4, an eligible TG flow u0 will be constructed step-by-step in Section 5.1. This will prove that the constraints of eqs (3.1) and (3.2) are
sufficient conditions for the existence of eligible TG flows. The complete set of eligible TG flows will be exhibited in Section 5.2.

5.1 Construction of an eligible TG flow

To begin with, u0 is defined by eq. (4.13) everywhere within the visible belt except at nodes, critical points and on critical curves. The
convergence of the integral in eq. (4.13) is ensured by eq. (2.10) of Lemma 2. This definition is unambiguous because of the consequence of
eq. (3.4) of the basic set of constraints.

Next, for each critical point C belonging to an ambiguous patch A, a scalar (β 0)C is chosen as follows: if C is a saddle point belonging
to both A and the visible belt, (β 0)C is given by the behaviour of u0 near C in the visible belt [using eqs (4.12) and (4.18)]; in all other cases
(saddle points not belonging to the visible belts, extrema), (β 0)C is arbitrarily chosen. The following two-step procedure is then repeated for
each ambiguous domain A.
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(i) A continuously differentiable scalar function (g0)A is arbitrarily chosen on the interval [ζ (1)
A , ζ

(2)
A ; if, for example, ζ

(1)
A ≤ ζ

(2)
A ], such that

its behaviour near C = C (1)
A and C (2)

A is given by eq. (4.17) with βC = (β 0)C .
(ii) u0 is defined by eq. (4.19) with gA = (g0)A within A, except at critical points and on critical curves. This definition is unambiguous

because of the consequence of eq. (3.3) of the basic set of constraints.

Thus, the flow u0 is defined and continuously differentiable (because of the first basic assumption on Br) everywhere within G except at
nodes, critical points and on critical curves. Its definition will now be extended by continuity to the rest of the core surface.

First consider a node N and apply Lemma 2. Because of eqs (2.9) and (4.13), π· u0 satisfies eq. (4.5) near N . Because of eqs (2.10),
(4.13) and (4.6), τ · u0 satisfies eq. (4.7) near N . Therefore, eq. (4.8) applies to u0. Thus, the definition of u0 may be extended by continuity
at nodes, (u0)N = UN , and u0 is continuously differentiable at such points.

Next, consider a critical point C. Because of the consequence of eq. (3.5) of the basic set of constraints, Lemma 3 applies. Because of
eqs (2.13), (4.13) and (4.19), π· u0 satisfies eq. (4.9) near C. Because of eqs (2.14), (4.13), (4.19) and the consequence eq. (3.6) of the basic
set of constraints, τ · u0 satisfies eq. (4.10) near C. Therefore, there exists a function (α0)C (�ζ ) such that u0 satisfies eq. (4.11) near C. As
u0 is continuously differentiable everywhere near C except for C, eq. (4.12) applies to u0 with (α0)C = limζ→ζC (α0)C (�ζ ). [Note that if C
belongs to an ambiguous patch A, (α0)C is related to (β 0)C through eq. (4.18).] Thus, the definition of u0 may be extended by continuity at
critical points, (u0)C = UC , and u0 is continuously differentiable at such points.

At any saddle point C, eq. (4.12) means that u0 and its derivatives in θ and φ have the same finite limits on both sides of the critical
curves crossing each other at C. Therefore, u0 and its derivatives have a finite limit everywhere on these critical curves because of eqs (4.13)
and (4.19). The definition of u0 may thus be extended by continuity on all critical curves and u0 is continuously differentiable on such curves.

The constructed flow u0 is TG. To see this, take the divergence of the components of u0 cos θ along τ and π. Within the visible belt,
except at nodes, critical points and on critical curves, eq. (4.13) leads to

∇H ·[(τ ·u0 cos θ )τ ] = ∇H ·
(

∂t Br

‖∇H ζ‖π
)

= −∇H ·[(π·u0 cos θ )π]. (5.1)

Within ambiguous patches, except at nodes, critical points and on critical curves, eq. (4.19) and

∇H ·
[
‖∇H ζ‖ cos θKA(ζ )

‖∇H ζ‖KA(ζ )
(g0)A(ζ )τ

]
= ‖∇H ζ‖(τ ·∇H )

[
cos θKA(ζ )

‖∇H ζ‖KA(ζ )
(g0)A(ζ )

]
= 0 (5.2)

[which comes from noticing that (g0)A(ζ ) cos θKA(ζ )/‖∇H ζ‖KA(ζ ) does not vary with τ ] also lead to eq. (5.1). Therefore, u0 satisfies eq.
(1.3) everywhere within G, except at nodes, critical points and on critical curves. As u0 is continuously differentiable everywhere within G, it
also satisfies eq. (1.3) at such points and on such curves.

Finally, it may be checked that u0 is the solution of eq. (1.1) by substituting π· u0, given by eqs (4.13) or (4.19), into ∇H ·(u0 Br) =
π· u0 cos θ‖∇H ζ‖ everywhere within G except at nodes, critical points and on critical curves, and by making use of the property that u0 is
continuously differentiable everywhere within G. Thus, u0 is an eligible TG flow.

5.2 Complete set of eligible TG flows

Consider an eligible TG flow u. Equation (4.13) implies that u = u0 within the visible belt, i.e. there is only one eligible TG flow within
this region of the core surface. The associated pressure field q is determined by eq. (4.14) to within an arbitrary constant within each visible
domain. This result was obtained independently by Hills (1979) and Backus & Le Mouël (1986): the latter introduced the name visible belt.
However, none of these authors provided an explicit expression of the solution such as eq. (4.13).

Equation (4.19) implies that for each ambiguous domain A there exists a function gA(ζ ) such that u = u0 + uA, where uA is given by

uA = ‖∇H ζ‖
cos θ

cos θKA(ζ )

‖∇H ζ‖KA(ζ )
[gA(ζ ) − (g0)A(ζ )]τ . (5.3)

Similarly, eq. (4.20) implies that the pressure field q associated with u is obtained by adding

qKA(ζ ) =
∫ ζ

ζ
(1)
A

cos θKA(ζ )

‖∇H ζ‖KA(ζ )
[gA(ζ ) − (g0)A(ζ )] dζ (5.4)

to the pressure field q 0 associated with u0. There is more than one eligible TG flow within ambiguous patches, hence their name introduced
by Backus & Le Mouël (1986). The function gA(ζ ) is continuously differentiable and satisfies eq. (4.17) near the critical points C (1)

A and C (2)
A ,

with β
C

(i)
A

= (β0)
C

(i)
A

if C (i)
A belongs to both A and the visible belt, β

C
(i)
A

not related to (β0)
C

(i)
A

otherwise.
Now for any ambiguous domain A it is possible to arbitrarily choose a continuously differentiable scalar function gA(ζ ) satisfying

eq. (4.17) near the critical points C (1)
A and C (2)

A , with β
C

(i)
A

= (β0)
C

(i)
A

if C (i)
A belongs to both A and the visible belt, whatever β

C
(i)
A

otherwise.
Consider the flow u defined by u = u0 within the visible belt and by u = u0 + uA, where uA is given by eq. (5.3), within each ambiguous
patch A. Then in the whole geostrophic region: u is continuously differentiable because u0 is continuously differentiable and gA(ζ ) satisfies
eq. (4.17); u satisfies eq. (1.3) because of eq. (5.2) applied to gA(ζ ); and u is solution of eq. (1.1) because π· u = π· u0. Thus u is an eligible
TG flow.

In conclusion, the eligible TG flows are the flows u defined by:
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(i) u = u0 within the visible belt;
(ii) u = u0 + uA within each ambiguous patch A, where uA is given by eq. (5.3) and gA(ζ ) is any continuously differentiable function

satisfying eq. (4.17), with β
C

(i)
A

= (β0)
C

(i)
A

if C (i)
A belongs to both A and the visible belt, whatever β

C
(i)
A

otherwise.

6 C O N C L U S I O N

The first result of this paper is that the curvilinear integral constraints of eqs (3.1) and (3.2) found in Paper I are not only necessary conditions,
but also sufficient conditions for the SV to be generated by a TG flow under the FF assumption within a given geostrophic region G. The proof
involved the construction of an explicit solution u0 within G: this was made possible by a prior investigation of the general form of TG flows
generating SV under the FF assumption. This result means that no other independent constraint can be found. It provides the theoretical tools
for consistently testing the combined FF+TG assumption. Such tests would consist of constructing time-varying field models satisfying the
constraints of eqs (3.1) and (3.2). This is all the more promising now that new satellite data are being made available. However, it should be
noted that the methods used for implementing a finite number of constraints in the lone FF case (e.g. Bloxham & Gubbins 1986) cannot be
straightforwardly applied to this case where the number of constraints is infinite. If tests do not dismiss the FF+TG assumption, geomagnetic
models taking into account the MHD properties of the core surface within an estimated geostrophic region could then be constructed. Such
models would be specifically designed for core studies and could be more relevant than existing ones when used as observational constraints
for geodynamo modelling.

The second result of this study is the exhibition of the complete set of TG solutions of the induction equation under the FF assumption.
Equations (4.13) and (4.19) (and their limits eqs (2.11) and (2.15) at nodes and critical points, respectively) are amenable to direct numerical
computation (within an arbitrary flow tangent to the iso-ζ curves of the ambiguous patches). Also, eq. (B12) could be used to avoid finite
difference computation of the quantity ∇H ·(∂ t Br‖∇H ζ‖−1 π), as all quantities in this formula may be analytically evaluated from the
spherical harmonics expansion of Br and ∂ t Br. In a previous study, the geostrophic pressure was computed using eq. (4.14) within the visible
belt in an attempt to implement such a local method (Chulliat & Hulot 2000). Yet, the starting magnetic field model was unconstrained,
generating spurious features in the pressure field. Provided constrained field models can be constructed from existing geomagnetic data, the
present paper provides the tools for directly and locally computing the flow in a fully consistent way.
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Figure A1. Illustration for Gauss theorem.

A P P E N D I X A : P RO O F O F L E M M A 1

The derivative with respect to ζ of the curvilinear integral of f along �
M1,M2
ζ is defined by

d

dζ

(∫
�

M1 ,M2
ζ

f τ ·dl

)
≡ lim

δζ→0

1

δζ

[∫
�

M ′
1 ,M ′

2
ζ+δζ

f (r′)τ ·dl′ −
∫

�
M1 ,M2
ζ

f (r)τ ·dl

]
, (A1)

where

r′ = r + δζ

‖∇H ζ‖π. (A2)

For δζ small, f (r′) and f (r) are related by

f (r′) = f (r) + δζ

‖∇H ζ‖π·∇H f. (A3)

The Gauss theorem for a continuously differentiable tangent vector field V on a sphere (Backus 1986) reads

(∇H ·V)
δζ δl

‖∇H ζ‖ = (π·V)P ′
1
δl ′ − (π·V)P1δl + (τ ·V)P2

δζ

‖∇H ζ‖P2

− (τ ·V)P1

δζ

‖∇H ζ‖P1

, (A4)

where P 1 and P 2 are two points very close to each other on the same iso-ζ curve and, P ′
1 and P ′

2 are defined by

P ′
1,2 = P1,2 + δζ

‖∇H ζ‖π, (A5)

δ l = P 1 P 2 and δ l ′ = P ′
1 P ′

2 (Fig. A1). Taking V = π, δ l = τ ·dl and δ l ′ = τ ·dl′ into eq. (A4) yields

τ ·dl′ =
(

1 + δζ

‖∇H ζ‖∇H ·π
)
τ ·dl. (A6)

Substituting eqs (A3) and (A6) into eq. (A1) leads to eq. (2.8).

A P P E N D I X B : P RO O F S O F L E M M A S 2 A N D 3

The purpose of this appendix is to state eqs (2.9), (2.10), (2.13) and (2.14) of the main text; that is, to obtain the asymptotic expansions of
the quantities ∂ t Br‖∇H ζ‖−1 and ∇H ·(∂ t Br‖∇H ζ‖−1 π) near nodes (where ‖∇H ζ‖ goes to infinity) and critical points (where ‖∇H ζ‖
vanishes).

B1 Asymptotic expansion of ∂ t Br‖∇Hζ‖−1 near nodes

Consider a node N . At any point N + δr near N outside the geographic equator, the function ∇H Br may be expanded to first order in ‖δr‖ as

∇H Br = (∇H Br )N + WNδr + O(‖δr‖2). (B1)

Using this and Br = ζ cos θ , the first-order expansion of the function cos θ‖∇H ζ‖ near N may be expressed as

cos θ∇H ζ = (∇H Br )N +
[

(∇H Br )N ·
(

δr

c cos θ

)]
eθ + WNδr + 1

2

[(
δr

c cos θ

)T

WNδr

]
eθ + O(‖δr‖2). (B2)
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Taking the scalar product of −cos θ ∇H ζ and UN + TNδr leads to the first-order expansion of ∂ t Br near N ,

∂t Br = (∂t Br )N + (∇H ∂t Br )N ·δr + O(‖δr‖2), (B3)

which proves eq. (2.9).

B2 Asymptotic expansion of ∂ t Br‖∇Hζ‖−1 near critical points where the SV vanishes

Consider a critical point C such that (∂ t Br)C = 0. At any point C + δr near C, the first basic assumption on B makes it possible to expand
the function ζ to third order in ‖δr‖ as

ζ = ζC + 1

2
δrT ZCδr + 1

6

[
(∂θθθ ζ )C (δθ )3 + 3(∂θθφζ )C (δθ )2δφ + 3(∂θφφζ )Cδθ (δφ)2 + (∂φφφζ )C (δφ)3

] + O(‖δr‖4). (B4)

Thus, ∇H ζ may be expanded to second order near C as

∇H ζ = ZCδr + 1

2

(
δrT XCδr

)
eθ + 1

2
(δrT YCδr)eφ − 1

c
cot θC

(
eθ ·δr

)
(eT

φ ZCδr)eφ + O(‖δr‖3). (B5)

Taking the scalar product of −cos θ C ∇H ζ and UC + TCδr leads to the second-order expansion of ∂ t Br near C,

∂t Br = (∇H ∂t Br )C ·δr + 1

2
δrT ∂tWCδr + O(‖δr‖3), (B6)

which proves eq. (2.13).

B3 Expression of ∇H ·(∂ t Br‖∇Hζ‖−1 π) in the general case and useful formulae

The first steps to obtain asymptotic expansions of ∇H ·(∂ t Br‖∇H ζ‖−1 π) near nodes and critical points are the same. The divergence may
be expanded as

∇H ·
(

∂t Br

‖∇H ζ‖π
)

= π·∇H ∂t Br

‖∇H ζ‖ − 2
∂t Br

‖∇H ζ‖2
π·∇H ‖∇H ζ‖ + ∂t Br

‖∇H ζ‖2
∇H ·∇H ζ. (B7)

The following intermediate formulae are obtained by expressing ∇H ζ in spherical coordinates and using eqs (2.1), (2.2) and (2.3):

∇H (∇H ζ )θ = ∂θθ ζ

c2
eθ + ∂θφζ

c2 sin θ
eφ, (B8)

∇H (∇H ζ )φ =
(

∂θφζ

c2 sin θ
− 1

c
‖∇H ζ‖ cot θπφ

)
eθ + ∂φφζ

c2 sin2 θ
eφ, (B9)

∇H ‖∇H ζ‖ = Zπ − 1

c
‖∇H ζ‖ cot θπ2

φeθ , (B10)

∇H ·∇H ζ = πT Zπ + τ T Zτ + 1

c
‖∇H ζ‖ cot θπθ . (B11)

[Note that eq. (B10) can be straightforwardly deduced from eqs (B8) and (B9) by taking V = ∇H ζ in the general relationship ‖V‖∇H ‖V‖=
V θ∇H V θ + V φ∇H V φ .] Substituting eqs (B10) and (B11) into eq. (B7) yields

∇H ·
(

∂t Br

‖∇H ζ‖π
)

= π·∇H ∂t Br

‖∇H ζ‖ + ∂t Br

‖∇H ζ‖2

(
τ T Zτ − πT Zπ

) + 1

c

∂t Br

‖∇H ζ‖ cot θπθ (2π2
φ + 1). (B12)

This expression is valid at any point of the core surface where ‖∇H ζ‖�= 0 and ∞.
A few general formulae will prove useful in the remainder of the proof. For all horizontal vectors V at the core surface, let

(τ ·∇H )�V = (
τ ·∇H Vθ

)
eθ + (

τ ·∇H Vφ

)
eφ. (B13)

This operator satisfies the following general properties for all horizontal vectors V1 and V2, for all 2×2 constant matrices A and for all
small horizontal vectors δr:

(τ ·∇H )(V1·V2) = V1·[(τ ·∇H )�V2] + [(τ ·∇H )�V1]·V2, (B14)

(τ ·∇H )�(Aδr) = Aτ + O(‖δr‖). (B15)

Also, eqs (B8), (B9) and (B10) yield

(τ ·∇H )�
(

τ

‖∇H ζ‖
)

= − 1

‖∇H ζ‖2
[(τ T Zτ )π + (τ T Zπ)τ ] − 1

c‖∇H ζ‖ cot θπ2
φ [(2π2

θ − 1)eθ + 2πθπφeφ]. (B16)
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B4 Asymptotic expansion of ∇H ·(∂ t Br‖∇Hζ‖−1 π) near nodes

Consider a node N . At any point N + δr near N , the horizontal gradient of the SV may be expanded to first order in ‖δr‖ as

∇H ∂t Br = (∇H ∂t Br )N + ∂tWNδr + O(‖δr‖2), (B17)

where ∂tW is given by eq. (2.7). Using eqs (2.9), (B2) and (B3), (∇H ∂ t Br)N may be expressed as

(∇H ∂t Br )N = −WN UN − cos θ‖∇H ζ‖TT
Nπ + O(‖δr‖). (b18)

Also,

δr

c cos θ
= − τ

τθ

+ O(‖δr‖). (B19)

Substituting eqs (2.9), (B17), (B18) and (B19) into eq. (B12) yields

∇H ·
(

∂t Br

‖∇H ζ‖π
)

= − cos θ

‖∇H ζ‖ (τ T Zτ − πT Zπ)π·(UN + TNδr) − 1

‖∇H ζ‖π
T WN UN − cos θπT TNπ + O(‖δr‖2). (B20)

(Note that πT TT
Nπ = πT TNπ.) The part containing UN in the first term of the right-hand side of eq. (B20) is O(1); the other part and the

other two terms behave like ‖δr‖.
Now taking V1 = τ cos θ/‖∇H ζ‖ and V2 = UN + TNδr into (B14), taking A = TN into eq. (B15) and using eq. (B16) yields

‖∇H ζ‖(τ ·∇H )

[
τ ·(UN + TNδr) cos θ

‖∇H ζ‖
]

= − cos θ

‖∇H ζ‖ (τ T Zτ − πT Zπ)π·(UN + TNδr)

− cos θ

‖∇H ζ‖π
T Z·(UN + TNδr) + 2 cos θτ T TNτ − τθ

c
τ ·UN + O(‖δr‖2), (B21)

where eq. (2.11) and the identity

πT Z = (πT Zπ)πT + (πT Zτ )τ T (B22)

have also been used.
The first term of the right-hand side of eq. (B20) is identical to that of eq. (B21). Combining eq. (2.11) and the following expansion of

Z near N ,

Z = ‖∇H ζ‖
c cos θ

(
2πθ πφ

πφ 0

)
+ 1

cos θ
WN + O(1), (B23)

leads to a relationship between one term of eq. (B20) and two terms of eq. (B21):

− cos θ

‖∇H ζ‖π
T ZUN = τθ

c
τ ·UN − 1

‖∇H ζ‖π
T WN UN + O(‖δr‖2). (B24)

Another relationship,

− cos θ

‖∇H ζ‖π
T ZTNδr = − cos θτ T TNτ + O(‖δr‖2), (B25)

may be obtained using eq. (B23) and the property eθ
T TN = 0. Substituting eqs (B24) and (B25) into eq. (B21),

T r (TN ) = τ T TNτ + πT TNπ (B26)

into eq. (4.6) (a general formula valid near nodes) and combining both formulae with eq. (B20) leads to eq. (2.10).

B5 Asymptotic expansion of ∇H ·(∂ t Br‖∇Hζ‖−1 π) near critical points where the SV vanishes

Consider a critical point C such that (∂ t Br)C = 0. At any point C + δr near C, the horizontal gradient of the SV may be expanded to first
order in ‖δr‖ as

∇H ∂t Br = (∇H ∂t Br )C + ∂tWCδr − 1

c
cot θC (eθ ·δr)[eφ·(∇H ∂t Br )C ]eφ + O(‖δr‖2), (B27)

where ∂tW is given by eq. (2.7). Substituting eqs (2.13), (4.16) (obtained by multiplying eq. (B5) by ‖∇H ζ‖Z−1
C ) and (B27) into eq. (B12)

yields

∇H ·
(

∂t Br

‖∇H ζ‖π
)

= 1

‖∇H ζ‖
[
π·(∇H ∂t Br )C − (π·UC cos θC )

(
τ T ZCτ − πT ZCπ

)]
−(π·UC cos θC )

[
τ T (Z − ZC )

‖∇H ζ‖ τ − πT (Z − ZC )

‖∇H ζ‖ π

]

−πT TC Z−1
C π

[
τ T ZCτ − πT ZCπ

]
cos θC + πT ∂tWC Z−1

C π

+1

c
cot θC

[
(eT

θ Z−1
C π)πφeT

φ ZC − πθ (2π2
φ + 1)π

]
·UC cos θC + O(‖δr‖). (B28)
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The first term of the RHS of eq. (B28) behaves like ‖δr‖−1; the next four terms are O(1).
Now taking V1 = τ/‖∇H ζ‖, V2 = UC + TCδr and A = TC into eqs (B14), (B15) and (B16) yields

‖∇H ζ‖(τ ·∇H )

[
τ ·(UC + TCδr) cos θC

‖∇H ζ‖
]

= 1

‖∇H ζ‖
[
π·(∇H ∂t Br )C − (π·UC cos θC )

(
τ T ZCτ − πT ZCπ

)]

− (π·UC cos θC )

[
τ T (Z − ZC )

‖∇H ζ‖ τ − πT (Z − ZC )

‖∇H ζ‖ π

]

−πT TC Z−1
C π

[
τ T ZCτ − πT ZCπ

]
cos θC

−πT (Z − ZC )

‖∇H ζ‖ UC cos θC − πT ZC TC Z−1
C π cos θC + τ T TCτ cos θC

+1

c
cot θC

[−πθ (2π2
φ + 1)π + eθ + πθπφeφ

]
·UC cos θC + O

(‖δr‖), (B29)

where eqs (2.15) and (B22) have also been used.
The first three terms of the right-hand side of eq. (B29) are identical to the first three terms of the right-hand side of eq. (B28). The next

two terms may be transformed as

−πT (Z − ZC )

‖∇H ζ‖ UC cos θC − πT ZC TC Z−1
C π cos θC = πT TCπ cos θC + πT ∂tWC Z−1

C π

+ 1

c
cot θC

{
(eT

θ Z−1
C π)πφ

[
(ZC )θφeθ + (ZC )φφeφ

] − πθπφeφ

}
·UC cos θC

(B30)

To prove eq. (B30), use the first-order expansion of Z near C,

Z = ZC +

eT

θ XCδr eT
φ XCδr

eT
θ YCδr eT

φ YCδr


 − 1

c
cot θC (eθ ·δr)


 0 (ZC )θφ

(ZC )θφ 2(ZC )φφ


 + O

(‖δr‖2
)
, (B31)

where X and Y are given by eqs (2.4) and (2.5), note that eφ
T XC = −eθ

T YC and use the propertyπT A1A2π = πT A2A1π for any symmetrical
2 ×2 matrices A1 and A2. Substituting eq. (B30) into eq. (B29), subtracting the quantity

∇H ·
[
(UC + TCδr) cos θC

] = T r (TC ) cos θC + 1

c
cot θC (eθ ·UC cos θC ) + O

(‖δr‖), (B32)

and combining the result with eq. (B28) finally leads to eq. (2.14).

A P P E N D I X C : P RO O F S O F E Q UAT I O N S ( 3 . 5 ) A N D ( 3 . 6 )

C1 Proof of eq. (3.5)

Assume there exists a critical point C where eq. (3.5) does not hold. Then there exists a neighbourhood N of C where ∂ t Br �= 0, for example
>0 and for any (segment or full) iso-ζ curve �ζ within N we have

I (�ζ ) ≡
∫

�ζ

∂t Br
τ ·dl

‖∇H ζ‖ > min
N

(∂t Br )
∫

�ζ

dl

‖∇H ζ‖ , (C1)

where minN ( f ) denotes the minimum of a function f withinN . Introduce the eigenvalues λ1 and λ2 of Z (such that λ1 > λ2), the corresponding
unit eigenvectors e1 and e2 and the coordinates x 1 and x 2 of C + δr in the reference frame (C , e1, e2). Recalling eq. (B4), the expansion of
ζ to second order in δr at any point C + δr near C may be expressed as

ζ = ζC + 1

2
λ1x2

1 + 1

2
λ2x2

2 + O(‖δr‖3). (C2)

If C is an extremum, λ1λ2 > 0 and the iso-ζ curves near C are ellipses to second order in ‖δr‖. Let �ζ be a curve ∂S ζ within N . Then
inequality (eq. C1) implies G(∂S ζ ) > 0. However, eq. (3.1) implies G(∂S ζ ) = 0, hence the contradiction. If C is a saddle point, λ1λ2 < 0 (λ1

> 0 and λ2 < 0) and the iso-ζ curves near C are branches of hyperboles to second order in ‖δr‖. Let �ζ be a portion of a curve �
i, j
ζ going

through N and choose the branch that crosses the x 2-axis and that runs through [−x 0, x 0] for the x 1 coordinate; on that branch we have that
ζ < ζ C . Then the integral in the right-hand side of eq. (C1) may be lower bounded as∫

�ζ

dl

‖∇H ζ‖ >

∫ x0

−x0

dx1

‖∇H ζ‖ = 2

b

∫ u0

0

du√
u2 + 1

+ O(1), (C3)

where b =
√

λ2
1 − λ1λ2, u0 = x 0/a and a2 = 2λ2(ζ − ζ C )/(λ2

1 − λ1λ2). As ζ → ζ C , u0 → +∞ and the integral in u goes to infinity.
Therefore, I (�ζ ) → + ∞ as ζ → ζ C . However, eq. (3.2) implies that G(∂S ζ ) is bounded as ζ → ζ C , hence the contradiction.
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C2 Proof of eq. (3.6)

Assume there exists a critical point C where eq. (3.5) holds while eq. (3.6) does not hold; i.e. where the dominant order term in eq. (B32) [which is
otherwise valid provided eq. (3.5) is satisfied] does not vanish. Then there exists a neighbourhoodN of C where ∇H ·[(UC +TCδr) cos θC ] �= 0,
for example > 0, and for any (segment or full) iso-ζ curve �ζ within N we have

J (�ζ ) ≡
∫

�ζ

∇H ·
[
(UC + TCδr) cos θC

] τ ·dl

‖∇H ζ‖ > min
N

{
∇H ·

[
(UC + TCδr) cos θC

]} ∫
�ζ

dl

‖∇H ζ‖ . (C4)

Because of eq. (3.5), Lemma 3 applies. Using eq. (2.14), it may subsequently be proven along the same lines as the proof of eq. (3.5) that the
inequality eq. (C4) is in contradiction with eqs (3.3) and (3.4) (which are direct consequences of eqs (3.1) and (3.2)).
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