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S U M M A R Y
Two direct search methods, simulated annealing and neighbourhood algorithm, are applied
to the inversion of the viscosity profile of the mantle using relative sea level time-histories
for the Hudson Bay region. In problems characterized by a low-dimensional model space
(Nd = 2 in this study), the two inversion methods show comparable performances. When a
larger number of dimensions is involved (specifically Nd = 6), we directly show that simulated
annealing is less effective than neighbourhood algorithm in overcoming the obstacles that are
found in the model space when our specific data set is employed. This study confirms that
modifications of the conventional Monte Carlo inversion method, such as simulated annealing
and neighbourhood algorithm, are viable tools to determine the viscosity profile of the mantle,
which, until recently, has been mainly tackled by means of linearized techniques.

Key words: mantle viscosity, neighbourhood algorithm, postglacial rebound, simulated
annealing.

1 I N T RO D U C T I O N

In the last decade, the problem of constraining the viscosity profile
of the mantle has been investigated using either linear inverse theory
or Monte Carlo (MC) methods (e.g. Ricard et al. 1989; King 1995;
Mitrovica & Peltier 1995; Peltier 1998; Spada 2001). While in lin-
earized approaches an initial plausible model is iteratively improved
using local derivative information, the MC methods require a large
number of forward computations whose predictions are evaluated
according to their fit to the data.

The decrease of CPU time needed to solve the forward problem
and the non-uniqueness and non-linearity of the postglacial rebound
inversion problem (Spada et al. 1992; Milne et al. 1998) have re-
cently stimulated studies aimed to apply the MC search methods
to constrain mantle viscosity (Spada 2001). However, the classical
undirected MC search methods, based on a uniform pseudo-random
sampling, are known to be inefficient when the number of parameters
is large (Mosegaard & Tarantola 2002). The improvement of search
efficiency is the main purpose of alternative optimization methods,
such as Genetic Algorithm (GA) and Simulated Annealing (SA)
(a comprehensive review on this subject is given by Sambridge &
Mosegaard (2002)). In importance sampling algorithms, the explo-
ration of the models space occurs at a rate dictated by the posterior
probability density. Pure MC and SA inversion techniques have an-
other advantage with respect to the classical linearized methods, in
that no explicit expression for the probability density is needed (e.g.
no Gaussian constraint on the a priori probability density distribu-
tion). However, in SA methods, which are primarily designed for
global optimization problems, the search in the parameters space is

only partly dictated by information coming from previously sam-
pled models. Moreover, both SA and GA need a non-obvious initial
tuning to converge to the optimum model. This may cause serious
disadvantages if the direct search methods are employed, as we will
explicitly show in the following for the specific case of SA.

A new inversion method, the Neighbourhood Algorithm method
(NA hereafter), has been recently introduced by Sambridge (1999a)
for teleseismic receiver functions inversion. The NA method is a
two-stage technique. The first is the search stage, in which an en-
semble of models is generated with a sampling density inversely
proportional to the value of a given objective function. In the sec-
ond stage, called the appraisal stage, useful statistical information
are extracted from all the models of the ensemble previously gener-
ated. In both stages the NA method employs a simple geometrical
construction to enhance the sampling efficiency and to decrease the
CPU time cost.

In this paper, we present a benchmark between the results of
the SA inversion, coupled to the Metropolis decision rules, and
that of the first stage of the NA inversion. The performances of
these two inversion methods are compared in the specific case of a
postglacial rebound data set. In a previous study (Cianetti et al. 2002,
hereafter referred to as CI02) only the SA method was employed
and no attention was devoted to other possible stochastic inversion
procedures. In this work, we mainly emphasize the optimization
part of the inverse problem and we limit our attention to qualitative
resolution analyses. The performances comparison done here is, in
our opinion, relevant in view of large-scale inversions of postglacial
rebound signatures, in which the algorithm efficiency is a crucial
factor. Here we consider postglacial relative sea level (RSL) data sets
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from eight sites across the Hudson Bay, which are known to provide
reliable inferences of the mantle viscosity structure particularly in
the region extending between the transition zone and the top of the
lower mantle (Mitrovica & Peltier 1995). This same data set was
employed by CI02 in their SA inversion.

In the first section, we briefly review the direct search strategies
and focus on the NA methods and tuning of the search parameters.
The second section is devoted to the presentation of the results for
two distinct parametrizations of the rheological profile of the mantle.
Finally, we discuss the two techniques employed here and draw our
conclusions.

2 M E T H O D S

The relative sea level (RSL) optimization problem can be stated
in the following way: given a set of RSL time histories from field
measurements and a parametrization of the Earth viscosity profile,
find the sets of parameters that provide an acceptable fit with the
RSL data. The inverse methods that can be employed to address
this problem can be classified into three main categories: exhaustive
undirected searches, gradient methods and direct derivatives-free
methods (Sambridge & Mosegaard 2002).

MC (e.g. Spada 2001) and classical grid (e.g. Velicogna & Wahr
2002) searches belong to the first category. These inversion meth-
ods, which can even be applied to strongly non-linear problems,
are suited for a complete exploration of model space, but can be
computationally very expensive when a large number of parameters
is involved or when the fine details of the misfit function are to be
resolved.

Gradient search methods are by far the most known and widely
employed techniques for geophysical data inversion. Because they
usually imply a linearization in the models space, these search meth-
ods are prone to be trapped in local minima of the misfit function
and are not well suited to indicate trade-offs in the parameters space
(Sambridge & Mosegaard 2002).

The last category includes global direct search methods. The two
most widely known methods, GA and SA, based on evolutionary
biology and thermodynamics natural analogues, are less prone to
converge toward local minima, but require a careful tuning of the
search parameters, like crossover probabilities in GA (King 1995)
or cooling factors in SA (see CI02). Unlike GA and SA, the re-
cently introduced NA method (Sambridge 1999a) is based only on
a geometrical construction in the model space. In this section, the
basic features of the NA and SA will be briefly illustrated and com-
pared. For an exhaustive presentation of NA the reader is referred
to Sambridge (1999a) and related articles (Sambridge 1998, 1999b,
2001).

In our implementation of NA, the Earth’s mantle is modelled by
a set of parameters m = (m1, . . . , mNd ), where Nd is the number of
dimensions of the models space over which we intend to minimize
the misfit between predictions and observations [in our investiga-
tion, the misfit is explicitly computed using eq. (1) below]. The a
priori conditions on the model parameters are given in the form
of bounds as mmin

i < mi < mmax
i , (i = 1, . . . , Nd). Both the NA

and SA methods can, however, deal with more complex constraints
(Sambridge 1999a). Once the bounds are given, NA generates a
random sample of ns models and divides the parameters space into
neighbourhoods defined as Voronoi cells. Each of them contains a
sampled model and represents the region closer to that model than to
the others in the L 2 norm sense. The ensemble of all of the Voronoi
cells (Voronoi diagram) forms a coverage of the parameters space,

which is employed to direct subsequent samplings. The misfit is
computed for each of the ns models sampled in the parameter space
to identify the nr best performing ones. The search is then continued
within the Voronoi cells of the nr models so identified. This self-
adaptative scheme is iterated to concentrate the search in the most
promising region of the models space. According to our experience
with the postglacial rebound inversion problem, the CPU time re-
quired for the construction of the Voronoi cells in the NA may be two
orders of magnitude smaller than that needed to solve the forward
problem. Hence, the geometrical construction that characterizes the
NA does not significantly affect its efficiency. We also notice that
NA is suited for parallelization and its MPI implementation is now
available (http://rses.anu.edu.au/∼malcolm/na/na.html).

The search and exploration strategies of SA differ significantly
from that of NA. In our implementation of SA, the path towards
the optimum models is in fact determined by the Metropolis rule
(Metropolis et al. 1953) in conjunction with an annealing schedule.
Accordingly, given a model with misfit M , a new one with misfit M ′

is accepted if M ′ ≤ M , and accepted with a probability exp[−(M ′ −
M)/T ] otherwise, where T is a control parameter that plays the role
of temperature. In agreement with CI02, we employ an annealing
with geometric cooling. As the temperature decreases, the proba-
bility of going uphill in the models space diminishes and the SA
walk is progressively driven in the direction of decreasing misfit.
To improve the exploration performances, CI02 have modified the
SA random walk so that if it crosses the a priori boundaries on the
model parameters, a restart is performed by a new random model.
The outcomes of the restarts strategy, which is also adopted here,
will be further discussed in the following section.

In NA, the construction of the boundaries of the Voronoi cells
allows employment of the information from previously sampled
models and a global search in the parameters space to be per-
formed. On the other hand, SA exploits previously sampled models
through the cooling schedule, which generally relies only on the
number of previously accepted models, and Metropolis decision
rule, which only involves a test on the last model sampled (see
CI02). Our experience shows that, even for Nd = 2, NA explores
the misfit landscape more exhaustively in both low- and high-misfit
regions.

The tuning of the two search parameters ns and nr in NA is crucial
to our work. It should be observed that the choice of nr and ns is not
dictated by the forward model computation, but only by the dimen-
sions of the models space and total number of samplings planned.
It is known that large values of nr and ns might be more suited
for exploration than exploitation (Sambridge 1999a). In spaces of
small dimensions the risk of being trapped in local minima is signif-
icant. This is results from space saturation, which occurs when the
Voronoi cells are no longer neighbours to each other. As shown in
Sambridge (2001), saturation is achieved with only 200 models in a
5-D space. We choose nr = 50 and ns = 100, which might provide
a slow convergence but limits the possibility of being trapped in
local minima of the misfit function. Concerning SA, the tuning of
search parameters, such as the temperature schedule and length of
the steps in the models space, is constrained by the data set used,
by the forward model employed for the predictions and form of the
objective function. To be consistent with CI02, here we use a geo-
metric cooling schedule, with T = T 0α

n , where T 0 = 1 is the initial
temperature, α = 0.99 is the cooling factor and n is the number
of previously accepted models, but we are aware that other more
efficient schedules could be employed. The a priori constraints on
the model parameters will be in the form of bounds, as done for the
NA inversions.
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The misfit between observed (dobs) and predicted (dpre) data is
evaluated using the following objective function:

Mm = 1

N

N∑
k=1

[
dpre

k (m) − dobs
k

σk

]2

, (1)

where N is the number of data and σ k (k = 1, . . . , N ) their uncer-
tainties. For the data set used here, N = 34. The data employed in
this study are given in Walcott (1972) for six of the eight sites of the
Hudson Bay considered (C. Henrietta Maria, Churchill, Keewatin,
Southampton Is., Ungava Pen. and Ottawa Is.). For Richmond Gulf
and James Bay, we use the revised data sets from Mitrovica et al.
(2000). We refer the reader to CI02 and Mitrovica et al. (2000) for
a discussion of the differences between the original compilation of
Walcott and more recent revisited compilations (Mitrovica & Peltier
1995; Tushingham & Peltier 1991). To weaken the dependence of
the results on the details of the late Pleistocene ice load history, we
employ the RSL parametrization introduced by Mitrovica & Peltier
(1995), which imply a normalization by the oldest datum of each
time series. Mitrovica & Peltier (1995) showed that inference of
mantle viscosity based upon such parametrization is particularly ro-
bust. The forward computations are based on the model by Spada
et al. (1992), which includes an incompressible Maxwell viscoelas-
tic mantle, a fluid inviscid core and an elastic lithosphere. The syn-
thetic RSL at time tBP is computed as S(x, tB P ) − S(x, tp) where
S is the sea level variation at site x and tp is present time. To gain
better insight into the NA and SA performances, we will employ
in the following the two different parametrizations illustrated in
Table 1. In the first, there are two unknowns (the dimension of the
parameters space is therefore Nd = 2). They are the base-10 log-
arithms of the upper- and lower-mantle viscosities (in Pa s units),
denoted by νUM and νLM , respectively. The boundary between up-
per and lower mantle is at 670 km depth and the elastic lithosphere
has a thickness of 120 km. In the second parametrization, charac-
terized by Nd = 6, three unknowns are the base-10 logarithms of the
upper-mantle (νUM ), transition zone (νTZ) and lower-mantle (νLM )
viscosities, and the remaining three correspond to the lithosphere
(HL), upper-mantle (HUM ) and transition zone (HTZ) thicknesses,
expressed in units of km. The maximum length of the random step,
for SA, is 0.25 units along the ν axes and 10 km along the H axes
of the parameters space.

Other details of the forward model employed here are described
and justified by CI02. They include a uniform ocean load, a maxi-
mum harmonic degree l max = 36 in the spectral representation of the

Table 1. Earth mantle parametrization and parameters
bounds employed in this study. Nd represents the dimen-
sion of the parameters space, the symbol ν is the base-10
logarithm viscosity of a given layer (expressed in unit of
Pa s) and H is the layer thickness (units are km). Labels L,
UM, TZ, and LM refer to the (elastic) lithosphere, upper
mantle, transition zone and lower mantle, respectively.

Nd Parameter Allowed range

2
νUM 20.0 22.5
νLM 20.5 22.5

6
νUM 20.0 22.0
νTZ 20.0 22.0
νLM 20.5 22.5
HL 80.0 140.0

HUM 230.0 390.0
HTZ 100.0 400.0

displacement and geoid height, and the use of the ICE-3G deglacia-
tion time history of Tushingham & Peltier (1991).

3 R E S U LT S

As a first step in our study, we have run synthetic tests using ICE-3G
predictions as fictitious observed data. The synthetic data uncertain-
ties are those of the real RSL observations. This simulated inversion
is done in order to ascertain how accurately the NA recovers a known
viscosity profile and to explore the shape of the misfit landscape.

Figs 1 and 2 show the results from the synthetic tests for Nd =
2 and Nd = 6, respectively. It can be recognized that the misfit
landscape for Nd = 2 has the form of a narrow valley and exhibits
a clear trade-off between the two viscosity parameters. The opti-
mum solution (triangle), with a misfit of ∼ 10−4, does not differ
significantly from the known solution (circle) corresponding to the
viscosity profile νUM = 21.0 and νLM = 21.3, which is that implied
in model ICE-3G (Tushingham & Peltier 1991). The synthetic in-
version for Nd = 6 (Fig. 2) fully recovers the viscosity profile of the
mantle (the minimum misfit is again ∼ 10−4), but fails to correctly
reproduce the H parameters (see Table 1). The uncertainty on the
HTZ parameter (Fig. 2d) is of ∼ 100 km, a significant fraction of its
nominal value (this is also true for the remaining H parameters, not
shown in Fig. 2). The average misfit in Figs 1 and 2 is ∼ 2.5 and
∼ 3.5, respectively. From eq. (1), this means that, on the average,
the synthetic data are reproduced within the 2σ level.

From the synthetic tests of Figs 1 and 2 we can conclude that
if observed uncertainties are the only source of error, the mantle
parametrization is correct and the ice load time history is known,
the NA technique can retrieve the viscosity profile with a very high
accuracy. However, the sensitivity of the synthetic data to the H
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Figure 1. Synthetic test for mantle viscosity inversion performed by NA
for Nd = 2. The only free parameters are νUM and νLM (see Table 1). The
synthetic data set are obtained from a forward computation using the ICE-3G
viscosity profile (white circle, with νUM = 21 and νLM = 21.3). Each dot
denotes a sampled model. The contours of misfit M m are also shown. The
minimum misfit region is clearly the most densely sampled. The triangle
shows the location of the best-fitting model, which is virtually coincident
with the actual ICE-3G profile.
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Figure 2. As for Fig. 1, but with Nd = 6 (see Table 1). Landscapes of viscosity parameters and of the HTZ parameter are shown. Shades of gray from white to
black indicate decreasing misfit values. A white circle and a gray triangle show the known viscosity model and best-fit model, respectively.

parameters is not large enough to allow for a comparably precise
reconstruction of their values.

In Fig. 3 we show the misfit landscapes sampled from NA (panel
a) and SA (b) for Nd = 2 (see Table 1). The real Hudson Bay relative
sea level data are employed here and a total number of 103 forward
models has been produced for both inversions. The arrows denote
the narrow valley, which characterizes the two landscapes, and the
triangles show the best-fit solutions for the two methods, which
virtually coincide. The NA samples ∼ 10 models even in the area of
large misfit (M >∼ 100) evidenced in the bottom-left portion of each
frames. This region is not visited by SA because, as the low misfit
region is reached, the exploration of other portions of the parameters
space is inhibited. With the tuning parameters used here (ns = 50
and nr = 100 for the NA and α = 0.99 for the SA), the NA clearly
appears to be more explorative than SA.

Differences in the search performances of the two methods are
better evidenced in Fig. 4, which shows, for the same 2-D inversion
of Fig. 3, the misfit as a function of the number of the sampled
models. As in CI02, we have defined an acceptable misfit level M acc

(dotted lines) such that solutions with misfit ≤ M acc perform as the
model with minimum misfit (M min � 36) at the 95 per cent confi-
dence level. With the data set considered here, by an F-test for 32
degrees of freedom we obtain M acc � 80. We are aware that differ-
ent criteria might be employed to define an acceptable misfit level,
based on both previous experience (Ritzwoller et al. 2001; Shapiro
& Ritzwoller 2002) and statistical treatment of models variance
(Lomax & Snieder 1995), or a mixed criterion (Johnston & Lam-
beck 2000; Snoke & Sambridge 2002). As shown in Fig. 4, we have
established another misfit level, the convergence level M con, that
tells when, in the NA runs, resampled Voronoi cells become con-
tiguous. In our inversion, M con � 40.0. The arrows in Fig. 4 indicate
the restart steps that are typical of the SA implementation by CI02.
In the early stages of the inversion (number of sampled models
smaller than ∼ 100 in Fig. 4), the NA converges more slowly than
SA towards low-misfit values because a significant effort is made by
NA to also explore regions of large misfit (also see Fig. 3). However,
it can be observed that after ∼ 200 samplings, NA limits the search
to models with M < M acc, while random restarts bring the SA search
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Figure 3. Mantle viscosity inversion using NA (panel a) and SA (b). Here Nd = 2 and the two inverted mantle parameters are νUM and νLM . Symbols are as
for Fig. 1. The arrows enlighten the shape of the valleys, which characterize the misfit landscape in the 2-D parameters space. In addition to the sampled points,
we have also qualitatively depicted the misfit function contour lines. The dashed rectangles show differences in the samplings of the two methods in the region
of large misfit.
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M
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Figure 4. Misfit values as a function of the number of sampled models, for SA (triangles) and NA (circles). The arrows show the restart points in the SA
method. Dotted and dashed lines indicate the acceptable (M = M acc) and convergence (M = M con) misfit level, respectively.

back to regions characterized by large M values. It is obvious that
different tuning parameters would have produced different histories
in Fig. 4 for both SA and NA. However, the results shown well depict
the different strategies of the two inversion methods. In the NA, an
initial stage during which the whole models space is sampled is fol-
lowed by stages of resampling in more restricted regions, which may
individually imply an increase in the misfit values. Nevertheless, as
the inversion proceeds, the peak misfit values obtained during each
resampling decrease systematically. In the SA, on the other hand, a
decreasing misfit trend is always visible between two restarts, ex-
cept perhaps during very short periods. Because the convergence is
largely dictated by random restarts, in SA the course towards the
valley that encompasses the misfit minima is less regular than when
NA is used.

In Fig. 5 we present the results of the NA search for Nd = 6 (see
Table 1). Here the final ensemble contains 3 × 103 models. Similar
to the 2-D inversion of Fig. 3, the landscapes of the viscosity pa-

rameters are sampled more exhaustively by the NA method. For the
SA inversion (panel b), the restarts which have been performed
during the inversion are clearly visible in the form of localized
tracks, which prevent a coherent visualization of the misfit land-
scape. From the convergence study of Fig. 6 we notice that, similar to
the 2-D problem of Fig. 4, the branches that characterize the SA ap-
proach converge to low-misfit values faster than NA. However, after
only ∼ 750 trials, NA samples exclusively in the acceptable region
(M < M acc) and after ∼ 1000 it converges to the global minimum.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this section, we compare the practical outcomes of two inversion
methods on the basis of the results obtained in the previous section,
but we also consider further points. Our purpose is to clarify positive
and negative aspects of two direct inversion methods and to illustrate
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Figure 5. As for Fig. 3, but for a six-parameter search. Landscapes of viscosity parameters and of the HTZ parameter are shown. Same notation as for Fig. 1.
NA and SA are used in (a) and (b), respectively. For SA we only show the misfit landscape for νUM and νLM .
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Figure 6. As for Fig. 4, but in the case Nd = 6. Dotted and dashed horizontal lines indicate the acceptable and convergence misfit level, respectively.

our experience with the specific problem of RSL data inversion. Our
findings on the two inversion methods are restricted to the particular
problem addressed in this paper and are not general (theoretically
provable) results.

In order to compare the relative efficiency of the two inversion
methods we consider the ratio

µ(M) = nacc(M)

n f w

, (2)

where n acc(M) is the number of models with misfit ≤ M sampled by
NA or accepted by the Metropolis rule in SA, and n f w is the number
of forward computations executed during the inversion process. The

number n f w has been fixed a priori and is equal to 103 for Nd =
2 and 3 × 103 for Nd = 6. The larger is µ(M), the greater is the
efficiency of the method.

From Table 2, which summarizes the µ values for the results of
Figs 4 and 6, we observe that, with the tuning parameters employed
in this study, the µ coefficient for SA is always sensibly smaller
than the corresponding quantity from NA, which indicates a larger
efficiency of the NA. This occurs for both Nd = 2 and Nd = 6, at the
two misfit levels M acc and M con. This is also true when the µ ratio is
computed as n acc(M)/nnre, where nnre is the total number of models
accepted by the Metropolis decision rule in SA (these modified µ

ratios are given in parentheses in Table 2).
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Table 2. Relative efficiency ratio µ(M) for SA and NA inversions, com-
puted according to eq. (2). The µ values in parentheses are, however, com-
puted differently (see text). Nd indicates the number of unknowns.

Nd Algorithm n fw (nnre) µ (M acc) µ (M con)

2
SA 1000 (551) 0.53(0.96) 0.38(0.70)
NA 1000 0.95 0.67

6
SA 3000 (1496) 0.43 (0.84) 0.08 (0.17)
NA 3000 0.96 0.79

As previously observed, in 2-D inversion the misfit landscape
generally appears to be better explored by NA than SA. This oc-
curs in regions of both large and small misfit (Fig. 3). However,
the region containing the global minimum of the misfit function are
well resolved in both cases. This can be also appreciated building
the frequency histograms for the inverted parameters, which pro-
vide information about the data resolving power of the inversion
(Mosegaard & Tarantola 1995). In Fig. 7 the frequencies are com-
puted as the number of models falling within a given parameter
interval divided by the total number of models with misfit below a
certain threshold. The thresholds are M = M acc and M = M con for
the histograms drawn by grey and black lines, respectively. SA and
NA histograms are depicted in upper and lower panels, respectively.
The frequency histograms show only minor differences between the
two algorithms. The larger number of models within the acceptable
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Figure 7. Frequency histograms for the parameters νUM and νLM in the Nd = 2 inversion. The frequencies are computed as the number of models falling
within a given interval, divided by the total number of models with M < M acc (gray) and M < M con (black). Upper and lower panels are for SA and NA,
respectively.

region M < M acc in NA (see also Fig. 4) is the reason for the more
bell-shaped NA histograms. The presence of a minor local mini-
mum close to νUM = 21.4 (see the left panel) is better evidenced by
SA. From the analysis of the 2-D histograms of Fig. 7, we cannot
conclude that there is a significant difference in the quality of the
solutions retrieved by SA and NA. However, as we have verified in
Fig. 4 for this 2-D case, the convergence of SA is faster than that of
NA, albeit the restarts may significantly disturb the convergence.

If the dimension of the models space is enlarged, the complexity
of the misfit landscape increases significantly. This can be appreci-
ated in Fig. 8, which shows the results of the 6-D inversion illustrated
in Fig. 6 from a different perspective. Frames (a) and (b) pertain to
the NA and SA, respectively. An interesting feature is the presence
of a bottleneck for misfit M ≈ 50. As a result of the restart strategy of
SA and the complexity of the misfit surface, a large number of sam-
ples is generated in the region 50 < M < 60. The bottleneck causes
all of these restarted paths to cross a narrow, densely populated re-
gion evidenced by the dark gray box in the νLM frame of Fig. 8(b).
In the corresponding panel of Fig. 8(a), such a dark cloud of points
is not observed. The reason is that in the NA method the bottleneck
region is visited only once during the resamplings of the parameters
space and after this the attention is immediately devoted to regions
of smaller misfit below that obstacle. While the NA search, driven
toward a global optimization of the ensemble of models, succeeds
in concentrating the analysis in promising regions, a large number
of models are sampled by SA along its random walk, quite often in
a previously visited region. An example is evidenced by the light
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Figure 8. Misfit vs. model parameters, for the 6-D inversion of Fig. 5 using the NA (a) and SA (b). Gray dotted and dashed lines indicate M acc and M con,
respectively. See text for other details.

gray boxes in νTZ Fig. 8, where the SA sampling density is certainly
excessive in such an high-misfit region. We finally observe that bot-
tlenecks may be entry points for many minima of the misfit function
and it may be wise not to leave them behind too quickly. We note

from Fig. 8 that SA, after crossing the bottleneck many times, has
sampled the same low-misfit regions (M < M con) as NA. Thus, we
hypothesize that NA has adequately sampled the bottleneck, finding
all the entry points to the region with M < M con.
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Figure 9. Frequency histograms for the six parameters in the Nd = 6 inversion. The frequencies are computed as the number of models falling within a given
interval, divided by the total number of models with M < M acc (thick lines) and with M < M con (thin). Gray and black lines are for SA and NA, respectively.

The ability of NA in avoiding possible obstacles in the parameters
space, which certainly constitutes an improvement with respect to
SA, is the cause of the significant differences that we have found
in the frequency histograms that are shown in Fig. 9. The SA his-
tograms (gray lines) of the νLM parameter in Fig. 9 are biased towards
small values by the above mentioned inefficiency of SA when ob-
stacles are present in the misfit space. The NA solution indicates
less ambiguously the specific value νLM = 21.6. The upper-mantle
histogram indicates that this parameter is resolved by both NA and
SA, with a preferred value of ∼ 20.3.

To characterize the solutions obtained from our 6-D NA inver-
sion, we show in Fig. 10 the viscosity profiles falling below the
misfit thresholds M acc (light gray) and M con (dark gray). According
to Table 2, the number of models contained in these regions of the
parameters space is 2880 and 2370, respectively. The viscosity pro-
files are grouped into the categories (νUM > νLM , top, and νUM <

νLM , bottom) and for each of them we show the monotonous, soft
transition zone and hard transition zone solutions. It is evident that
at the misfit level M acc the viscosity profile is poorly constrained
because all of the six categories are densely populated. As first ob-
served by Mitrovica & Peltier (1995) and later discussed again by
CI02, the poor constraints on the rheological profile of the mantle
imposed by the inversion reflect the low accuracy and inconsistency
of the relative sea level available for Hudson Bay. When the models
with M < M con are considered, the solutions are characterized by a
lower mantle with viscosity larger than that of the upper mantle (bot-
tom frames). Following Shibutani et al. (1996), we have also shown
(black) the 600 best-fitting viscosity profiles (this corresponds to
20 per cent of the number of solutions contained in the whole NA
ensemble). Such a restricted family suggests an upper mantle and
transition zone with viscosity logarithm well below the traditional
value ν = 21 (Mitrovica 1996), and a lower mantle with viscos-
ity logarithm close to 21.3, as assumed in the construction of the
ICE-3G viscosity deglaciation chronology (Tushingham & Peltier

1991). However, as a result of the data inconsistency mentioned
above, our conclusions regarding the viscosity profile of the mantle
have mainly a qualitative character.

The use of SA and NA inversion methods and the comparison of
their performances, which was our main concern here, leads us to
draw the following conclusions.

(i) In general, NA gives better performances when the details
of the misfit landscape are sought. This is particularly true for ex-
plorations of multidimensional spaces (Nd = 6 in this study). For
low-dimensional spaces (Nd = 2) our experience with the specific
data set employed here indicate that NA and SA perform comparably
well.

(ii) Unusual features related to the topology of the parameters
space, such as the bottleneck in the 6-D inversion evidenced in
Fig. 8, are easily circumvented by the NA as a result of its ability
to concentrate the search in the most promising regions of the pa-
rameters space. SA looses much of its efficiency when obstacles are
found in the models spaces.

(iii) The use of restarts in the parameters space, introduced by
CI02 and also implemented in our SA searches, requires further
investigations. In its present implementation, it sensibly rises the
cost of the SA inversion.

(iv) According to our experience, tuning of the parameters in
direct search methods is a difficult task. In SA, we have kept fixed the
tuning parameters of the annealing schedule to those suggested by
CI02 and we have proposed an ad hoc tuning for NA. It is however
possible that a significant optimization could be achieved in both
cases adopting more sophisticated tuning strategies.
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