The explicit scalar equations of infinitesimal elastic-gravitational motion in the rotating, slightly elliptical fluid outer core of the Earth

Cheng-li Huang, ${ }^{1}$ Veronique Dehant ${ }^{2}$ and Xin-Hao Liao ${ }^{1}$
${ }^{1}$ Shanghai Astronomical Observatory, CAS, 80 Nandan Road, Shanghai 200030, China. E-mail: clhuang@shao.ac.cn
${ }^{2}$ Royal Observatory of Belgium, Ave. Circulaire 3,Brussels 1180,Belgium.E-mail: v.dehant@oma.be

Accepted 2004 January 15. Received 2003 September 22

Abstract

SUMMARY Smith (1974) derived a set of scalar equations of infinitesimal elastic-gravitational motion for a rotating, slightly elliptical Earth. In the fluid outer core (FOC), the tangential tractions vanish identically and the differential equations for the transverse displacement fields do not hold any longer, but the derivative of the transverse displacements are needed in other differential equations, it is therefore the purpose of this paper to get the derivative of the transverse displacements as well as other differential equations in an explicit and ready-to-program format. Our derivation is shown to be more direct and explicit than that suggested by Smith (1974).

Key words: displacement field, elastic-gravitational excitation, fluid outer core, motion equation.

1 INTRODUCTION

In the work of Smith (1974) (hereafter referred to as S74), the generalized surface spherical harmonics (GSSH) representation (see Phinney \& Burridge 1973; Huang \& Liao 2003, for correctness) and the symmetry properties of a rotating planet (Luh 1973) are used to derive an infinite set of motion equations. These motion equations (eqs 5.22-5.26 and 5.28-5.30 in S74) are scalar, linear, first-order and ordinary differential equations (ODEs) about radius; they govern the infinitesimal free elastic-gravitational oscillations of the Earth. The Earth is assumed to be a rotating, slightly elliptical Earth with an isotropic perfectly elastic constitutive relation and a hydrostatic pre-stress field.

This set of equations is used very often in research communities such as seismology, earth tides, nutation and else. In his work, the final form is eight differential equations for $\partial_{r} \mathrm{Y}$, where Y is the column-vector of solution combining ten scalars, i.e.
$\mathrm{Y}(r, \omega)=\left(U_{l}^{m}, P_{l}^{m}, \phi_{1 l}^{m}, g_{1 l}^{m}, V_{l}^{m}, W_{l-1}^{m}, W_{l+1}^{m}, Q_{l}^{m}, R_{l-1}^{m}, R_{l+1}^{m}\right)^{T}$,
where, $P_{l}^{m}, Q_{l}^{m}, R_{l \pm 1}^{m}$ are the three scalars in the GSSH representation of $\hat{n} \cdot \mathbf{T}$ (where \hat{n} is the normal vector and \mathbf{T} is the stress field); l, m are the longitudinal degree and azimuthal order in the GSSH expansion, respectively; $U_{l}^{m}, V_{l}^{m}, W_{l \pm 1}^{m}$ are the three scalars in the GSSH representation of the displacement field $\mathbf{s} ; \phi_{1}{ }_{l}^{m}$ is for the perturbed gravitational potential; and $g_{1 l}{ }^{m}$ is another scalar related to the perturbed gravity that is defined in the formula (eq. 5.18) in S74. All these ten scalars are functions of the radius and the frequency (in frequency domain).

For compactness, these ODEs are arranged in the matrix form
$\partial_{r} \mathrm{Y}(r, \omega)=A(r, \omega) \mathrm{Y}(r, \omega)$,
where $A(r, \omega)$ is a propagation matrix of dimension of 10×10. If the anelasticity is considered in the mantle, i.e. the Lame parameters are complex rather than real, then the matrix $A(r, \omega)$ and the variables $\mathrm{Y}(r, \omega)$ become complex in the mantle.

Because the rigidity μ vanishes identically in the fluid outer core (FOC), the differential equations for $\partial_{r} V_{l}^{m}$ and $\partial_{r} W_{l \pm 1}^{m}$ (eqs 5.23 and 5.24 in S 74) do not hold any longer. However, all $V_{l}^{m}, W_{l \pm 1}^{m}, \partial_{r} V_{l}^{m}$ and $\partial_{r} W_{l \pm 1}^{m}$ do not vanish in FOC and they should be kept in the ODEs for $\partial_{r} U_{l}^{m}, \partial_{r} P_{l}^{m}, \partial_{r} \phi_{1 l}^{m}$ and $\partial_{r} g_{1 l}^{m}$, so we have to have another pair of ODEs for $\partial_{r} V_{l}^{m}$ and $\partial_{r} W_{l \pm 1}^{m}$. Although an algorithm to get $\partial_{r} V_{l}^{m}$ and $\partial_{r} W_{l \pm 1}^{m}$ are described in S 74 , it is, however, not in detail, the algorithm is complex itself and the explicit form is unavailable. In this paper, we will present a similar but more direct algorithm to obtain them, and the explicit and read-to-program form is given.

For compactness, all the notations in this paper are kept completely the same as in S 74 if not notated specially.

2 THE ODES IN FOC

As a result of ellipticity, the spherical scalars and toroidal scalars are coupled with each other. One has to truncate them in the form
$s(\mathbf{r}, \omega)=\tau_{l-1}^{m}(\mathbf{r}, \omega)+\sigma_{l}^{m}(\mathbf{r}, \omega)+\tau_{l+1}^{m}(\mathbf{r}, \omega)+\sigma_{l+2}^{m}(\mathbf{r}, \omega)+\ldots$,
where σ and τ are the spheroidal and toroidal scalars of s, respectively.
In practice, only the first three terms are kept and all the higher degree terms are ignored, although nobody has tested this truncation is correct or precise enough. Such truncation is also used in this paper and produces ten variables and ten ODEs for these ten variables.

In an ideal fluid like the fluid outer core, the rigidity μ vanishes identically, the fluid can not support transverse traction, i.e. $Q_{l}^{m}=R_{l \pm 1}^{m}=$ 0 and the ODEs for $\partial_{r}\left(Q_{l}^{m}, R_{l \pm 1}^{m}\right)$ (eqs 5.29 and $5.30 \mathrm{in} \mathrm{S74)} \mathrm{become} \mathrm{meaningless} \mathrm{(but} \mathrm{we} \mathrm{will} \mathrm{use} \mathrm{them} \mathrm{later)}. \mathrm{Moreover} ,\mathrm{the} \mathrm{ODEs} \mathrm{for} \partial_{r}\left(V_{l}^{m}\right.$, $W_{l \pm 1}^{m}$) (eqs 5.23 and 5.24 in S74) do not hold any longer (because $\mu=0$). Therefore, only the four differential equations for $\partial_{r} U_{l}^{m}, \partial_{r} P_{l}^{m}$, $\partial_{r} \phi_{1 l}^{m}$ and $\partial_{r} g_{1}{ }_{l}^{m}$ (eqs 5.22, 5.25, 5.26 and 5.28 in S74) are kept.

Following S74, we separate the solution Y into two parts:
$\tilde{\mathrm{Y}}(r, \omega)=\left(U_{l}^{m}, P_{l}^{m}, \phi_{1 l}^{m}, g_{1_{l}}\right)^{T}$
and
$\tilde{\mathrm{X}}(r, \omega)=\left(V_{l}^{m}, W_{l-1}^{m}, W_{1+l}^{m}\right)^{T}$.

2.1 Simplified ODEs for $\partial_{r} \tilde{\mathbf{Y}}$

Using the fact that, in FOC,
$Q_{l}^{m}=R_{l \pm 1}^{m}=0, \mu_{0}=\mu_{2}=0, \beta_{0}=\lambda_{0}, \beta_{2}=\lambda_{2}$,
the differential equation for $\partial_{r} U_{l}^{m}$, eq. (5.22) in S74, can be simplified as follows, if truncated as mentioned above,
$\partial_{r} U_{l}^{m}=f_{\lambda} P_{l}^{m}-\frac{L_{0}}{r} V_{l}^{m}-\frac{2}{r} U_{l}^{m}$,
where
$f_{\lambda} \equiv\left(\lambda_{0}-\lambda_{2} J_{0,0,0}^{l, 2, l}\right) /\left(\lambda_{0}\right)^{2}$,
in which, the compact symbol $J_{0,0,0}^{l, 2, l}$ is exactly the same of the so-called J-square in S74 by:
$J_{n, n^{\prime}, n^{\prime \prime}}^{l, l^{\prime} l^{\prime \prime}} \equiv\left[\begin{array}{ccc}l & l^{\prime} & l^{\prime \prime} \\ n & n^{\prime} & n^{\prime \prime} \\ m & 0 & m\end{array}\right] \equiv(2 l+1)(-)^{m+n}\left(\begin{array}{ccc}l & l^{\prime} & l^{\prime \prime} \\ -n & n^{\prime} & n^{\prime \prime}\end{array}\right)\left(\begin{array}{ccc}l & l^{\prime} & l^{\prime \prime} \\ -m & 0 & m\end{array}\right)$
where the last two terms are Wigner 3-j symbols (Edmonds 1960). Then, the term related to the radial component of volume inflation factor, eq. (5.19) in S74, becomes
$\Delta_{l}^{m}=f_{\lambda} P_{l}^{m}$.
The differential equation for $\partial_{r} \phi_{1 l}^{m}$ still takes the form (eq. 5.25) in S74, i.e.
$\partial_{r} \phi_{1}{ }_{l}^{m}=g_{1 l}{ }_{l}^{m}-4 \pi G \rho_{0} U_{l}^{m} ;$
while, the differential equation for $\partial_{r} g_{1}^{m}$, eq. (5.26) in S 74 , can be simplified a little as

$$
\begin{align*}
\partial_{r} g_{1 l}^{m}= & \frac{l(l+1)}{r^{2}} \phi_{1 l}^{m}-\frac{2}{r} g_{1 l}^{m}-4 \pi G J_{0,0,0}^{l, 2, l}\left(\rho_{2}^{\prime} U_{l}^{m}+f_{\lambda} \rho_{2} P_{l}^{m}\right) \tag{12}\\
& +\frac{4 \pi G}{r} L_{0}\left(-\rho_{0}-\rho_{2} J_{+, 0,+}^{l, 2, l}-\rho_{2} J_{0,0,0}^{l, 2, l}\right) V_{l}^{m}-\frac{4 \pi G}{r} L_{0} \rho_{2}\left(J_{+, 0,+}^{l, 2, l-1} W_{l-1}^{m}+J_{+, 0,+}^{l, 2, l+1} W_{l+1}^{m}\right),
\end{align*}
$$

where $\rho_{2}^{\prime} \equiv \partial_{r} \rho_{2}$.
Notice that the first two lines of eq. (5.28) in S 74 becomes
$-\frac{2}{r} P_{l}^{m}+\frac{2}{r} \lambda_{0} \Delta_{l}^{m}+\frac{2}{r} J_{0,0,0}^{l, 2, l} \lambda_{2} \Delta_{l}^{m}=-\frac{2}{r} P_{l}^{m}+\frac{2}{r}\left[1-\left(J_{0,0,0}^{l, 2, l}\right)^{2}\left(\frac{\lambda_{2}}{\lambda_{0}}\right)^{2}\right] P_{l}^{m} \approx 0$,
as a result of the fact that $\left(\frac{\lambda_{2}}{\lambda_{0}}\right)^{2}$ is a second-order minor with respect to 1 and all the absolute values of J-squares are smaller than 1 (in this case, $J_{0,0,0}^{2,2,2} \approx 0.143$ and $J_{0,0,0}^{4,2,4} \approx 0.221$).

Therefore, the differential equation for $\partial_{r} P_{l}^{m}$, eq. (5.28) in S 74 , is simplified as
$\partial_{r} P_{l}^{m}=\left(\rho_{0}+\rho_{2} J_{0,0,0}^{l, 2, l}\right) \xi_{l}^{U}+\rho_{2} J_{0,0,0}^{l, 2,+2} \xi_{l+2}^{U}$,
where ξ is a compact combination of the three η in S74, i.e.
$\xi_{k}^{U} \equiv\left(\eta_{1}^{m}\right)^{U}+\left(\eta_{2}^{m}\right)^{U}+\left(\eta_{3_{k}^{m}}^{m}\right)^{U}$,
where the subscript k may takes $l-1, l, l+1, l+2$ (because ξ_{l+2}^{U} includes terms of σ_{l}).

Analogously, we will combine the other η combinations to two ξ as
$\xi_{k}^{V} \equiv\left(\eta_{1 k}^{m}\right)^{V}+\left(\eta_{2 k}^{m}\right)^{V}+\left(\eta_{3}^{m}\right)^{V}$
and
$\xi_{k}^{W} \equiv\left(\eta_{1}^{m}\right)^{W}+\left(\eta_{2}^{m}\right)^{W}+\left(\eta_{3}^{m}\right)^{W}$.
It is worthy to point out here that the term $\rho_{2} P_{2} \eta_{3}\left(P_{2}\right.$ is the Legendre function of second order here) is ignored in the eq. (5.27a) and therefore in the eqs (5.28)-(5.30) in S 74 , but it has been shown that this term should definitely be kept in these equations (see Huang 1999; Rogister 2001). To keep the equations of η_{1}, η_{2} and η_{3} in homogenous form, we remove the first coefficient ρ_{0} from the definition of η_{3} in eqs (5.27d) and (5.37)-(5.39) in S74.

After substituting $\partial_{r} U_{l}^{m}$ and Δ_{l}^{m} into η_{3}, all the $\partial_{r} \tilde{\mathrm{Y}}$ expressions include $\tilde{\mathrm{Y}}$ itself and $\tilde{\mathrm{X}}$, while $\partial_{r} \tilde{\mathrm{X}}$ only exists in $\partial_{r} P_{l}^{m}$ via $\left(\eta_{3 l}^{m}\right)^{U}$.
As a result of the regular conditions of the solutions at the center, there are five independent solutions for the ten ODEs in the solid inner core. Usually, one can have five independent initial analytical solutions for a small homogeneous spherical Earth near the center (Pekeris \& Jarosch 1958; Takeuchi \& Saito 1972), all these five solutions of Y are propagated from this small sphere upward to the Earth surface, by integrating these ten ODEs. When crossing the boundary between inner core and FOC (inner core boundary, ICB), there are only continuity conditions for the quantities in $\tilde{\mathrm{Y}}$ but not for those in $\tilde{\mathrm{X}}$. This means that $\tilde{\mathrm{Y}}$ in the FOC is known after using the boundary conditions and $\tilde{\mathrm{X}}$ is unknown. However, the \tilde{X} values themselves are required and subsequently needed for the calculation of $\partial_{r} \tilde{Y}$. In following sections, we will give the solutions of $\tilde{\mathrm{X}}, \partial_{r} \tilde{\mathrm{X}}$ and finally $\partial_{r} \tilde{\mathrm{Y}}$ in the fluid core.

3 SOLUTION OF \tilde{X}

The solution of $\tilde{\mathrm{X}}$ can be obtained from the degenerated ODEs for $\partial_{r} Q_{l}^{m}$ and $\partial_{r} R_{l}^{m}$ in the eqs (5.29) and (5.30) of S74.

3.1 From eq. (5.29) of S74

Let's consider $\partial_{r} Q_{l}^{m}=Q_{l}^{m}=0$ and $\mu_{0}=\mu_{2}=0$ in the eq. (5.29) of S74. After applying the truncation rule, we have
$0=\frac{2 L_{0}}{r} P_{l}^{m}+\rho_{0} \xi_{l}^{V}+\rho_{2}\left(J_{+, 0,+}^{l, 2, l-1} \xi_{l-1}^{W}+J_{+, 0,+}^{l, 2, l} \xi_{l}^{V}+J_{+, 0,+}^{l, 2, l+1} \xi_{l+1}^{W}+J_{+, 0,+}^{l, 2, l+2} \xi_{l+2}^{V}\right)$,
in which we have used
$\frac{2 L_{0}}{r} \lambda_{0} \Delta_{l}^{m}+\frac{2 L_{0}}{r} J_{0,0,0}^{l, 2, l} \lambda_{2} \Delta_{l}^{m} \approx \frac{2 L_{0}}{r} P_{l}^{m}$.
Now, we separate all the terms of V_{l}^{m}, W_{l-1}^{m} and W_{l+1}^{m} from these ξ. The coefficients before the terms V_{l}^{m}, W_{l-1}^{m} and W_{l+1}^{m} in ξ_{l-1}^{W} are denoted as $\left(\xi_{l-1}^{W}\right)^{V_{l}},\left(\xi_{l-1}^{W}\right)^{W_{l-1}}$ and $\left(\xi_{l-1}^{W}\right)^{W_{l+1}}$ respectively; they are:
$\left(\xi_{l-1}^{W}\right)^{V_{l}}=2 \omega \Omega_{0} J_{-, 0,-}^{l-1,1, l}$,
$\left(\xi_{l-1}^{W}\right)^{W_{l-1}}=-\omega^{2}-2 \omega \Omega_{0} J_{-, 0,-}^{l-1,1, l-1}$
and
$\left(\xi_{l-1}^{W}\right)^{W_{l+1}}=0$,
respectively. Analogously, the coefficients before the terms V_{l}^{m}, W_{l-1}^{m} and W_{l+1}^{m} in ξ_{l}^{V} are:
$\left(\xi_{l}^{V}\right)^{V_{l}}=-\omega^{2}-2 \omega \Omega_{0} J_{-, 0,-}^{l, 1, l}-\frac{2 L_{0}}{r} \frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l, 2, l}$,
$\left(\xi_{l}^{V}\right)^{W_{l-1}}=2 \omega \Omega_{0} J_{-, 0,-}^{l, 1, l-1}+\frac{2 L_{0}}{r} \frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l, 2, l-1}$
and
$\left(\xi_{l}^{V}\right)^{W_{l+1}}=2 \omega \Omega_{0} J_{-, 0,-}^{l, 1, l+1}+\frac{2 L_{0}}{r} \frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l, 2, l+1}$,
respectively; the coefficients before the terms V_{l}^{m}, W_{l-1}^{m} and W_{l+1}^{m} in ξ_{l+1}^{W} are:
$\left(\xi_{l+1}^{W}\right)^{V_{l}}=2 \omega \Omega_{0} J_{-, 0,-}^{l+1,1, l}$,
$\left(\xi_{l+1}^{W}\right)^{W_{l-1}}=0$
and
$\left(\xi_{l+1}^{W}\right)^{W_{l+1}}=-\omega^{2}-2 \omega \Omega_{0} J_{-, 0,-}^{l+1,1+1}$
respectively; and the coefficients before the terms V_{l}^{m}, W_{l-1}^{m} and W_{l+1}^{m} in ξ_{l+2}^{V} are:
$\left(\xi_{l+2}^{V}\right)^{V_{l}}=-\frac{2 L_{0}^{(4)}}{r} \frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l+2,2, l}$,
$\left(\xi_{l+2}^{V}\right)^{W_{l-1}}=0$
and
$\left(\xi_{l+2}^{V}\right)^{W_{l+1}}=2 \omega \Omega_{0} J_{-, 0,-}^{l+2,1, l+1}+\frac{2 L_{0}^{(4)}}{r} \frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l+2,2, l+1}$
respectively.
Now we re-arrange eq. (18) in a matrix form (here is the first row), which is similar (but a little different) to the eq. (E2) in S74:
$D(1,1) V_{l}^{m}+D(1,2) W_{l-1}^{m}+D(1,3) W_{l+1}^{m}=(E \cdot \tilde{\mathrm{Y}})(1)$
where
$D(1,1)=\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l, 2, l}\right)\left(\xi_{l}^{V}\right)^{V_{l}}+\rho_{2}\left[J_{+, 0,+}^{l, 2, l-1}\left(\xi_{l-1}^{W}\right)^{V_{l}}+J_{+, 0,+}^{l, 2, l+1}\left(\xi_{l+1}^{W}\right)^{V_{l}}+J_{+, 0,+}^{l, 2, l+2}\left(\xi_{l+2}^{V}\right)^{V_{l}}\right]$,
$D(1,2)=\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l, 2, l}\right)\left(\xi_{l}^{V}\right)^{W_{l-1}}+\rho_{2} J_{+, 0,+}^{l, 2, l-1}\left(\xi_{l-1}^{W}\right)^{W_{l-1}}$,
$D(1,3)=\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l, 2, l}\right)\left(\xi_{l}^{V}\right)^{W_{l+1}}+\rho_{2} J_{+, 0,+}^{l, 2, l+1}\left(\xi_{l+1}^{W}\right)^{W_{l+1}}+\rho_{2} J_{+, 0,+}^{l, 2, l+2}\left(\xi_{l+2}^{V}\right)^{W_{l+1}}$
and
$(E \cdot \tilde{\mathrm{Y}})(1)=-\frac{2 L_{0}}{r} P_{l}^{m}-\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l, 2, l}\right) \zeta_{l}^{V}-\rho_{2}\left(J_{+, 0,+}^{l, 2, l-1} \zeta_{l-1}^{W}+J_{+, 0,+}^{l, 2, l+1} \zeta_{l+1}^{W}+J_{+, 0,+}^{l, 2, l+2} \zeta_{l+2}^{V}\right)$.
While these new ζ are the residual of ξ, all the terms of V_{l}^{m} and $W_{l \pm 1}^{m}$ have been removed, i.e.,
$\zeta_{l-1}^{W} \equiv \xi_{l-1}^{W}-$ all the $V_{l}^{m}, W_{l \pm 1}^{m}$ terms in $\xi_{l-1}^{W}=4 \omega \Omega_{0} J_{-,-, 0}^{l-1,1, l} U_{l}^{m}+2 \frac{\sqrt{3}}{r} \phi_{2} J_{+,+, 0}^{l-1,2, l} f_{\lambda} P_{l}^{m}$,
$\zeta_{l}^{V} \equiv \xi_{l}^{V}-$ all the $V_{l}^{m}, W_{l \pm 1}^{m}$ terms in $\xi_{l}^{V}=-\frac{2 L_{0}}{r}\left(\phi_{1 l}^{m}+\tilde{g} U_{l}^{m}\right)-4 \omega \Omega_{0} J_{-,-, 0}^{l, 1, l} U_{l}^{m}-\frac{2 L_{0}}{r} \phi_{2}^{\prime} J_{0,0,0}^{l, 2, l} U_{l}^{m}+2 \frac{\sqrt{3}}{r} \phi_{2} J_{+,+, 0}^{l, 2, l} f_{\lambda} P_{l}^{m}$,
$\zeta_{l+1}^{W} \equiv \xi_{l+1}^{W}-$ all the $V_{l}^{m}, W_{l \pm 1}^{m}$ terms in $\xi_{l+1}^{W}=4 \omega \Omega_{0} J_{-,-, 0}^{l+1,1, l} U_{l}^{m}+2 \frac{\sqrt{3}}{r} \phi_{2} J_{+,+, 0}^{l+1,2, l} f_{\lambda} P_{l}^{m}$
and
$\zeta_{l+2}^{V} \equiv \xi_{l+2}^{V}-$ all the V_{l}^{m}, W_{l+1}^{m} terms in $\xi_{l+2}^{V}=-\frac{2 L_{0}^{(4)}}{r} \phi_{2}^{\prime} J_{0,0,0}^{l+2, l, l} U_{l}^{m}+2 \frac{\sqrt{3}}{r} \phi_{2} J_{+,+, 0}^{l+2,2, l} f_{\lambda} P_{l}^{m}$.
Now, the coefficient matrix $D(1, i)(i=1,2,3)$ depends on the radius only and not $\tilde{\mathrm{X}}$ or $\tilde{\mathrm{Y}}$; the coefficient matrix can then be derived from the Earth model, while the right side of eq. (31) includes only \tilde{Y} which is also known.

In the following, we will derive the other two similar equations.

3.2 From eq. (5.30) of S74

Analogously, let $\partial_{r} R_{l}^{m}=R_{l}^{m}=0$ and $\mu_{0}=\mu_{2}=0$, then from eq. (5.30) of S74, where the subscript (longitudinal degree) takes $l-1$ (we will take $l+1$ later), we have
$0=\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l-1,2, l-1}\right) \xi_{l-1}^{W}+\rho_{2}\left[J_{+, 0,+}^{l-1,2, l} \xi_{l}^{V}+J_{+, 0,+}^{l-1,2, l+1} \xi_{l+1}^{W}\right]$.
After repeating the procedure for eq. (5.29) in the above subsection, we get the second equation and re-arrange it into matrix form to get the second row of this matrix equation, i.e.
$D(2,1) V_{l}^{m}+D(2,2) W_{l-1}^{m}+D(2,3) W_{l-1}^{m}=(E \cdot \tilde{\mathrm{Y}})(2)$,
where
$D(2,1)=\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l-1,2, l-1}\right)\left(\xi_{l-1}^{W}\right)^{V_{l}}+\rho_{2} J_{+, 0,+}^{l-1,2, l}\left(\xi_{l}^{V}\right)^{V_{l}}+\rho_{2} J_{+, 0,+}^{l-1,2, l+1}\left(\xi_{l+1}^{W}\right)^{V_{l}}$,
$D(2,2)=\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l-1,2, l-1}\right)\left(\xi_{l-1}^{W}\right)^{W_{l-1}}+\rho_{2} J_{+, 0,+}^{l-1,2, l}\left(\xi_{l}^{V}\right)^{W_{l-1}}$,
$D(2,3)=\rho_{2} J_{+, 0,+}^{l-1,2, l}\left(\xi_{l}^{V}\right)^{W_{l+1}}+\rho_{2} J_{+, 0,+}^{l-1,2, l+1}\left(\xi_{l+1}^{W}\right)^{W_{l+1}}$
and
$(E \cdot \tilde{\mathrm{Y}})(2)=-\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l-1,2, l-1}\right) \zeta_{l-1}^{W}-\rho_{2} J_{+, 0,+}^{l-1,2, l} \zeta_{l}^{V}-\rho_{2} J_{+, 0,+}^{l-1,2, l+1} \zeta_{l+1}^{W}$.
All these ξ and ζ are given in the subsection above.
Analogously, from eq. (5.30) of S74 and taking the subscript as $l+1$, and repeating the procedure described above, we have:
$0=\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l+1,2, l+1}\right) \xi_{l+1}^{W}+\rho_{2}\left(J_{+, 0,+}^{l+1,2, l-1} \xi_{l-1}^{W}+J_{+, 0,+}^{l+1,2, l} \xi_{l}^{V}+J_{+, 0,+}^{l+1,2,+2} \xi_{l+2}^{V}\right)$.
This equation is also re-arranged into matrix form and we get the third row of the matrix equations, i.e.
$D(3,1) V_{l}^{m}+D(3,2) W_{l-1}^{m}+D(3,3) W_{l-1}^{m}=(E \cdot \tilde{\mathrm{Y}})(3)$,
where
$D(3,1)=\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l+1,2, l+1}\right)\left(\xi_{l+1}^{W}\right)^{V_{l}}+\rho_{2}\left[J_{+, 0,+}^{l+1,2, l-1}\left(\xi_{l-1}^{W}\right)^{V_{l}}+J_{+, 0,+}^{l+1,2, l}\left(\xi_{l}^{V}\right)^{V_{l}}+J_{+, 0,+}^{l+1,2, l+2}\left(\xi_{l+2}^{V}\right)^{V_{l}}\right]$,
$D(3,2)=\rho_{2} J_{+, 0,+}^{l+1,2, l-1}\left(\xi_{l-1}^{W}\right)^{W_{l-1}}+\rho_{2} J_{+, 0,+}^{l+1,2, l}\left(\xi_{l}^{V}\right)^{W_{l-1}}$,
$D(3,3)=\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l+1,2, l+1}\right)\left(\xi_{l+1}^{W}\right)^{W_{l+1}}+\rho_{2} J_{+, 0,+}^{l+1,2, l}\left(\xi_{l}^{V}\right)^{W_{l+1}}+\rho_{2} J_{+, 0,+}^{l+1, l+2}\left(\xi_{l+2}^{V}\right)^{W_{l+1}}$
and
$(E \cdot \tilde{\mathrm{Y}})(3)=-\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l+1,2, l+1}\right) \zeta_{l+1}^{W}-\rho_{2}\left(J_{+, 0,+}^{l+1,2, l-1} \zeta_{l-1}^{W}+J_{+, 0,+}^{l+1,2, l} \zeta_{l}^{V}+J_{+, 0,+}^{l+1,2, l+2} \zeta_{l+2}^{V}\right)$.
All these ξ and ζ have been given in the subsection above.
Thus, all the 3×3 components of the matrix \mathbf{D} and the three components of the column matrix $(E \cdot \tilde{Y})$ are known, and we can then obtain the solution
$\tilde{\mathrm{X}}=D^{-1} \cdot(E \cdot \tilde{\mathrm{Y}})$.
For the purpose of practical calculation of $\tilde{\mathrm{X}}$, it is easy to get $(E \cdot \tilde{\mathrm{Y}})$ directly and we do not need separate E and $\tilde{\mathrm{Y}}$. However, for convenience of writing in the next section, we separate E and $\tilde{\mathrm{Y}}$ by a procedure of separation similar to that of D and $\tilde{\mathrm{X}}$. They are:
$E(1,1)=-\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l, 2, l}\right)\left(\zeta_{l}^{V}\right)^{U}-\rho_{2}\left[J_{+, 0,+}^{l, 2, l-1}\left(\zeta_{l-1}^{W}\right)^{U}+J_{+, 0,+}^{l, 2, l+1}\left(\zeta_{l+1}^{W}\right)^{U}+J_{+, 0,+}^{l, 2, l+2}\left(\zeta_{l+2}^{V}\right)^{U}\right]$,
$E(1,2)=-\frac{2 L_{0}}{r}-\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l, 2, l}\right)\left(\zeta_{l}^{V}\right)^{P}-\rho_{2}\left[J_{+, 0,+}^{l, 2, l-1}\left(\zeta_{l-1}^{W}\right)^{P}+J_{+, 0,+}^{l, 2, l+1}\left(\zeta_{l+1}^{W}\right)^{P}+J_{+, 0,+}^{l, 2, l+2}\left(\zeta_{l+2}^{V}\right)^{P}\right]$,
$E(1,3)=\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l, 2, l}\right) \frac{2 L_{0}}{r}$,
$E(2,1)=-\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l-1,2, l-1}\right)\left(\zeta_{l-1}^{W}\right)^{U}-\rho_{2} J_{+, 0,+}^{l-1,2, l}\left(\zeta_{l}^{V}\right)^{U}-\rho_{2} J_{+, 0,+}^{l-1,2, l+1}\left(\zeta_{l+1}^{W}\right)^{U}$,
$E(2,2)=-\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l-1,2, l-1}\right)\left(\zeta_{l-1}^{W}\right)^{P}-\rho_{2} J_{+, 0,+}^{l-1,2, l}\left(\zeta_{l}^{V}\right)^{P}-\rho_{2} J_{+, 0,+}^{l-1,2, l+1}\left(\zeta_{l+1}^{W}\right)^{P}$,
$E(2,3)=\frac{2 L_{0}}{r} \rho_{2} J_{+, 0,+}^{l-1,2, l}$,
$E(3,1)=-\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l+1,2, l+1}\right)\left(\zeta_{l+1}^{W}\right)^{U}-\rho_{2}\left[J_{+, 0,+}^{l+1,2, l-1}\left(\zeta_{l-1}^{W}\right)^{U}+J_{+, 0,+}^{l+1,2, l}\left(\zeta_{l}^{V}\right)^{U}+J_{+, 0,+}^{l+1,2, l+2}\left(\zeta_{l+2}^{V}\right)^{U}\right]$,
$E(3,2)=-\left(\rho_{0}+\rho_{2} J_{+, 0,+}^{l+1,2, l+1}\right)\left(\zeta_{l+1}^{W}\right)^{P}-\rho_{2}\left[J_{+, 0,+}^{l+1,2, l-1}\left(\zeta_{l-1}^{W}\right)^{P}+J_{+, 0,+}^{l+1,2, l}\left(\zeta_{l}^{V}\right)^{P}+J_{+, 0,+}^{l+1,2, l+2}\left(\zeta_{l+2}^{V}\right)^{P}\right]$,
$E(3,3)=\frac{2 L_{0}}{r} \rho_{2} J_{+, 0,+}^{l+1,2,}$
and
$E(i, 4)=0 \quad($ for $i=1,2,3)$.
Where, these new $\left(\zeta_{k}^{V, W}\right)^{U, P}$ are the coefficient before U or P in $\left(\zeta_{k}^{V}\right)$ or $\left(\zeta_{k}^{W}\right)$; they are
$\left(\zeta_{l-1}^{W}\right)^{U}=4 \omega \Omega_{0} J_{-,-, 0}^{l-1,1, l}$,
$\left(\zeta_{l-1}^{W}\right)^{P}=2 \frac{\sqrt{3}}{r} \phi_{2} f_{\lambda} J_{+,+, 0}^{l-1,2, l}$,
$\left(\zeta_{l}^{V}\right)^{U}=-\frac{2 L_{0}}{r} \tilde{g}-4 \omega \Omega_{0} J_{-,-, 0}^{l, 1, l}-\frac{2 L_{0}}{r} \phi_{2}{ }^{\prime} J_{0,0,0}^{l, 2, l}$,
$\left(\zeta_{l}^{V}\right)^{P}=2 \frac{\sqrt{3}}{r} \phi_{2} f_{\lambda} J_{+,+, 0}^{l, 2, l}$,
$\left(\zeta_{l+1}^{W}\right)^{U}=4 \omega \Omega_{0} J_{-,-, 0}^{l+1, l, l}$,
$\left(\zeta_{l+1}^{W}\right)^{P}=2 \frac{\sqrt{3}}{r} \phi_{2} f_{\lambda} J_{+,+, 0}^{l+1,2,}$,
$\left(\zeta_{l+2}^{V}\right)^{U}=-\frac{2 L_{0}^{(4)}}{r} \phi_{2}{ }^{\prime} J_{0,0,0}^{l+2,2, l}$
and
$\left(\zeta_{l+2}^{V}\right)^{P}=2 \frac{\sqrt{3}}{r} \phi_{2} f_{\lambda} J_{+,+, 0}^{l+2,2, l}$.

4 DIRECT SOLUTION OF $\partial_{r} \tilde{X}$

As mentioned above, the ODEs for $\partial_{r} V_{l}^{m}$ and $\partial_{r} W_{l}^{m}$ in eqs (5.23) and (5.24) of S74 no longer hold in the fluid, but the radial gradient of the displacement is required in some research and therefore we need to obtain alternative ODEs. This can be done by taking the derivative of eq. (52):
$D \cdot \partial_{r} \tilde{\mathrm{X}}=\partial_{r}(E \cdot \tilde{\mathrm{Y}})-\left(\partial_{r} D\right) \cdot \tilde{\mathrm{X}}$.
In this equation, $D, \partial_{r} D$ and E do not include $\tilde{\mathrm{X}}$ nor $\tilde{\mathrm{Y}}$, but the $\partial_{r} P_{l}^{m}$ in $\partial_{r}(E \cdot \tilde{\mathrm{Y}})$ includes $\partial_{r} \tilde{\mathrm{X}}$, therefore, this equation can not be solved directly. One special property of $\partial_{r}(E \cdot \tilde{\mathrm{Y}})$ is that within it only $\partial_{r} P_{l}^{m}$ includes $\partial_{r} \tilde{\mathrm{X}}\left[\operatorname{via}\left(\eta_{3 l}^{m}\right)^{U}\right]$ and the other three components $\left[\partial_{r}\left(U_{l}^{m}, \phi_{1 l}^{m}\right.\right.$, $\left.g_{1 l}^{m}\right)$] do not; this property can save our next labour.

Adding the eqs (5.31), (5.34) and (5.37) of S74 together, and applying the truncation rule of this paper, we write out the ξ_{l}^{U} and ξ_{l+2}^{U} in $\partial_{r} P_{l}^{m}$ in eq. (14):
$\xi_{l}^{U}=\zeta_{l}^{U}+\left(\frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l, 2, l}\right) \partial_{r} V_{l}^{m}+\left(-\frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l, 2,-1}\right) \partial_{r} W_{l-1}^{m}+\left(-\frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l, 2, l+1}\right) \partial_{r} W_{l+1}^{m}$,
$\xi_{l+2}^{U}=\zeta_{l+2}^{U}+\left(\frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l+2,2,}\right) \partial_{r} V_{l}^{m}+\left(-\frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l+2,2, l+1}\right) \partial_{r} W_{l+1}^{m}$,
where ζ_{l}^{U} and ζ_{l+2}^{U} are the parts of ξ_{l}^{U} and ξ_{l+2}^{U} in which the terms of $\partial_{r} V_{l}^{m}$ and $\partial_{r} W_{l \pm 1}^{m}$ have been removed, i.e.,

$$
\begin{align*}
\zeta_{l}^{U}= & g_{1}{ }_{l}{ }^{m}+U_{l}^{m}\left\{-\left[\omega^{2}+\frac{2}{r}(g+\tilde{g})\right]-\left(\frac{2}{r} \phi_{2}{ }^{\prime}-\phi_{2}{ }^{\prime \prime}\right) J_{0,0,0}^{l, 2, l}\right\} \\
& +V_{l}^{m}\left[-\frac{L_{0}}{r} \phi_{2}{ }^{\prime}+2 \omega \Omega_{0} J_{0,+,-}^{l, 1, l}-\frac{L_{0}}{r} \phi_{2}{ }^{\prime} J_{0,0,0}^{l, 2, l}+\frac{\sqrt{3}}{r} J_{0,+,-}^{l, 2, l}\left(\phi_{2}{ }^{\prime}-\frac{1}{r} \phi_{2}\right)\right] \\
& +W_{l-1}^{m}\left[-2 \omega \Omega_{0} J_{0,+,-}^{l, 1, l-1}-\frac{\sqrt{3}}{r} J_{0,+,-}^{l, 2, l-1}\left(\phi_{2}{ }^{\prime}-\frac{1}{r} \phi_{2}\right)\right]+W_{l+1}^{m}\left[-2 \omega \Omega_{0} J_{0,+,-}^{l, 1, l+1}-\frac{\sqrt{3}}{r} J_{0,+,-}^{l, 2, l+1}\left(\phi_{2}{ }^{\prime}-\frac{1}{r} \phi_{2}\right)\right], \tag{74}\\
\zeta_{l+2}^{U}= & U_{l}^{m}\left[-\left(\frac{2}{r} \phi_{2}{ }^{\prime}-\phi_{2}{ }^{\prime \prime}\right) J_{0,0,0}^{l+2,2, l}\right]+V_{l}^{m}\left[-\frac{L_{0}^{(4)}}{r} \phi_{2}{ }^{\prime} J_{0,0,0}^{l+2,2, l}+\frac{\sqrt{3}}{r} J_{0,+-}^{l+2,2, l}\left(\phi_{2}{ }^{\prime}-\frac{1}{r} \phi_{2}\right)\right] \\
& +W_{l+1}^{m}\left[-2 \omega \Omega_{0} J_{0,+,-}^{l+2,1, l+1}-\frac{\sqrt{3}}{r} J_{0,+,-}^{l+2, l+1}\left(\phi_{2}{ }^{\prime}-\frac{1}{r} \phi_{2}\right)\right] . \tag{75}
\end{align*}
$$

We subtract the terms of $\partial_{r} \tilde{\mathrm{X}}$ from $\partial_{r}(E \cdot \tilde{\mathrm{Y}})$, move them into the left side of eq. (71) and add their coefficients to D and get a new 3×3 matrix, \mathbf{A}, the new coefficient matrix for $\partial_{r} \tilde{\mathrm{X}}$ (not the propagation matrix \mathbf{A} in eq. 2). Noting that $\partial_{r} \tilde{\mathrm{X}}$ exist in $E(i, 2) \cdot\left(\partial_{r} P_{l}^{m}\right)$ only, we have:
$A(i, 1)=D(i, 1)+E(i, 2)\left[\left(\rho_{0}+\rho_{2} J_{0,0,0}^{l, 2, l}\left(\frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l, 2, l}\right)+\rho_{2} J_{0,0,0}^{l, 2, l+2}\left(\frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l+2,2, l}\right)\right]\right.$,
$A(i, 2)=D(i, 2)+E(i, 2)\left[\left(\rho_{0}+\rho_{2} J_{0,0,0}^{l, 2, l}\right)\left(-\frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l, 2, l-1}\right)\right]$,
$A(i, 3)=D(i, 3)+E(i, 2)\left[\left(\rho_{0}+\rho_{2} J_{0,0,0}^{l, 2, l}\right)\left(-\frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l, 2, l+1}\right)+\rho_{2} J_{0,0,0}^{l, 2, l+2}\left(-\frac{\sqrt{3}}{r} \phi_{2} J_{0,+,-}^{l+2,2, l+1}\right)\right]$,
for $i=1,2,3$.
Thus, eq. (71) becomes
$A \cdot \partial_{r} \tilde{\mathrm{X}}=\partial_{r}(E \cdot \tilde{\mathrm{Y}})-\left(\partial_{r} D\right) \cdot \tilde{\mathrm{X}}$.
The above equation is correct if and only if the terms of $\partial_{r} \tilde{\mathrm{X}}$ are removed from $\partial_{r} P_{l}^{m}$. Alternatively, we write eq. (71) in following exact form
$A \cdot \partial_{r} \tilde{\mathrm{X}}=\left(\partial_{r} E\right) \cdot \tilde{\mathrm{Y}}+E \cdot\left(\partial_{r} \tilde{\mathbf{y}}\right)-\left(\partial_{r} D\right) \cdot \tilde{\mathrm{X}}$,
where, $\partial_{r} \tilde{\mathbf{y}}$ are exactly the same as $\partial_{r} \tilde{Y}$ except that $\partial_{r} P_{l}^{m}$ no longer includes $\partial_{r} \tilde{X}$, i.e.
$\partial_{r} \tilde{\mathbf{y}} \equiv\left(\partial_{r} U_{l}^{m}, \overline{\partial_{r} P_{l}^{m}}, \partial_{r} \phi_{1 l}^{m}, \partial_{r} g_{1 l}^{m}\right)^{T}$,
where $\overline{\partial_{r} P_{l}^{m}}$ denotes the part of $\partial_{r} P_{l}^{m}$ in which the terms of $\partial_{r} V_{l}^{m}$ and $\partial_{r} W_{l \pm 1}^{m}$ are removed, i.e.
$\overline{\partial_{r} P_{l}^{m}} \equiv\left(\rho_{0}+\rho_{2} J_{0,0,0}^{l, 2, l}\right) \zeta_{l}^{U}+\rho_{2} J_{0,0,0}^{l, 2, l+2} \zeta_{l+2}^{U}$,
where, ζ_{l}^{U} and ζ_{l+2}^{U} are defined in eqs (74) and (75).

In the above matrix equations, $A, \partial_{r} D$ and $\partial_{r} E$ depend only on the radius (r), the density $\left(\rho_{0}, \rho_{2}\right)$, the Lame parameters $\left(\lambda_{0}, \lambda_{2}\right)$, the frequency (ω), the mean angular velocity $\left(\Omega_{0}\right)$, the initial mean gravity (g and \tilde{g}, centrifugal term is removed from the latter) and the elliptical term of gravitational potential $\left(\phi_{2}\right)$. All these parameters and their radial derivative are known from a given Earth model. $\partial_{r} D$ and $\partial_{r} E$ are directly and easily obtained from D and E, respectively, and we omit their explicit form here. While, \tilde{X}, \tilde{Y} and $\partial_{r} \tilde{\mathbf{y}}$ (not $\partial_{r} \tilde{Y}$) have been known. Therefore, we can have $\partial_{r} \tilde{\mathrm{X}}$ now.

Next, one can substitute the $\partial_{r} \tilde{\mathrm{X}}$ in $\partial_{r} P_{l}^{m}$ with the values obtained before and get the exact value of $\partial_{r} P_{l}^{m}$. The solutions for $\partial_{r} \tilde{\mathrm{Y}}$ (not $\partial_{r} \tilde{\mathbf{y}}$) are then completed [because $\partial_{r}\left(U_{l}^{m}, \phi_{1 l}^{m}, g_{1_{l}^{m}}^{m}\right)$ have been calculated directly from eqs (7), (11) and (12), respectively].

5 SUMMARY AND THE SCHEME OF CALCULATION

In the above sections, we give out the explicit form of the coefficient matrices D, E and A, from which we get the direct solutions of $\tilde{\mathrm{X}}, \partial_{r} \tilde{\mathrm{X}}$ and $\partial_{r} \tilde{\mathrm{Y}}$. The scheme of calculation is summarized as follow:
(i) calculate the values of the profiles of $\rho_{0}, \rho_{2}, \lambda_{0}, \lambda_{2}, g, \tilde{g}$ and ϕ_{2} (and their radial derivative) from a given Earth model (one may first need to calculate the ellipticity profile from Clairaut equation);
(ii) from (i), all the $\left(\xi_{k}^{V, W}\right)^{V, W}$ are calculated from eqs (19)-(30);
(iii) then all nine components of $D(i, j)$ [as well as their radial derivative, $\left.\partial_{r} D(i, j)\right]$ are obtained from eqs (32)-(34), (42)-(44) and (48)-(50);
(iv) we have the values of \tilde{Y} from the continuation condition at the ICB (in fact, we can only have \tilde{Y} because such a boundary does not provide any information of X̃. See Huang (2001) for example);
(v) with the values of (i) and (iv), one has all the $\zeta_{k}^{V, W}$ from eqs (36)-(39);
(vi) then the three components of $(E \cdot \tilde{Y})$ are obtained directly from eqs (35), (45) and (51) [or, by another way: by calculating the 12 components of E (as well as $\partial_{r} E$) from eqs (53)-(62) and multiplying with \tilde{Y})];
(vii) one can thus get the solutions of $\tilde{\mathrm{X}}$ from eq. (52);
(viii) we then calculate the new matrix A by eqs (76)-(78);
(ix) we calculate $\partial_{r} \tilde{\mathbf{y}}: \partial_{r}\left(U_{l}^{m}, \phi_{1}^{m}, g_{1 l}^{m}\right)$ are obtained from eqs (7), (11) and (12), respectively, while $\overline{\partial_{r} P_{l}^{m}}$ is obtained from eqs (82) and (74)-(75) (therefore, this $\overline{\partial_{r} P_{l}^{m}}$ calculated here is not the exact value of $\partial_{r} P_{l}^{m}$);
(x) eq. (80) can be solved now and one gets the solutions of $\partial_{r} \tilde{\mathrm{X}}$; Alternatively, one can solve eq. (79) instead, in which the three components of $\partial_{r}(E \cdot \tilde{Y})$ are calculated by eqs (35), (45) and (51), but remember to replace $\partial_{r} P_{l}^{m}$ with $\overline{\partial_{r} P_{l}^{m}}$ wherever it emerges in all $\partial_{r} \zeta_{k}^{V, W}$ (eqs 36-39);
(xi) substituting the $\partial_{r} \tilde{X}$ into ξ_{l}^{m} and ξ_{l+2}^{m} in eqs (72)-(73), one hence has the exact value of $\partial_{r} P_{l}^{m}$ from eq. (14) with these exact values of ξ_{l}^{m} and ξ_{l+2}^{m}.

Thus the exact solutions for $\tilde{\mathrm{X}}, \partial_{r} \tilde{\mathrm{X}}$ and $\partial_{r} \tilde{\mathrm{Y}}$ are completed. One can use these values and the ODEs for $\partial_{r} \tilde{\mathrm{X}}$ and $\partial_{r} \tilde{\mathrm{Y}}$ to propagate, step by step and upwardly, the solutions from the ICB to the CMB (or downward from CMB to ICB).

ACKNOWLEDGMENTS

The writing of this manuscript was completed during the 6 -month visit of CLH to the Royal Observatory of Belgium (ROB), which, is supported by the Services Federaux des Affaires Scientifiques, Techniques et Culturelles of Belgium. This work is also supported by the Projects of NSFC 10373021/10133010/10073015 and KJCX2-SW-T1.

REFERENCES

Edmonds, A.R., 1960. Angular momentum in quantum mechanics, Princeton University Press, Princeton, New Jersey.
Huang, C.L., 1999. A study of the nutation of non-rigid Earth with ocean and atmosphere, $P h D$ dissertation, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai.
Huang, C.L., 2001. The scalar boundary conditions for the motion of the elastic Earth to second order in ellipticity, Earth Moon and Planets, 84, 125-141.
Huang, C.L. \& Liao, X.H., 2003. Comment on 'Representation of the elastic-gravitational excitation of a spherical Earth model by generalized spherical harmonics' by Phinney and Burridge, Geophys. J. Int., 155, 669-678.

Luh, P.C., 1973. Free oscillations of the laterally inhomogeneous Earth. Quasi-degenerate multiplet coupling, Geophys. J. R. astron. Soc., 32, 187-202.
Pekeris, C.L. \& Jarosch, H., 1958. The free oscillations of the Earth, in Contributions in geophysics, in honor of Beno Gutenburg, 171-192, eds Benioff, H., et al., Pergamon, New York.
Phinney, R.A. \& Burridge, R., 1973. Representation of the elasticgravitational excitation of a spherical Earth model by generalized spherical harmonics, Geophys. J. R. astr. Soc., 34, 451-487.
Rogister, Y., 2001. On the diurnal and nearly diurnal free modes of the Earth, Geophys. J. Int., 144, 459-470.
Smith, M.L., 1974. The scalar equations of infinitesimal elastic-gravitational motion for a rotating, slightly elliptical Earth, Geophys. J. R. astr. Soc., 37, 491-526.
Takeuchi, H. \& Saito, M., 1972. Seismic surface waves, in, Seismology: surface waves and free oscillations, methods in computational physics, 11, pp. 217-295, ed. Bolt, B.A., Academic Press, New York.

