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S U M M A R Y
Smith (1974) derived a set of scalar equations of infinitesimal elastic-gravitational motion for
a rotating, slightly elliptical Earth. In the fluid outer core (FOC), the tangential tractions vanish
identically and the differential equations for the transverse displacement fields do not hold
any longer, but the derivative of the transverse displacements are needed in other differen-
tial equations, it is therefore the purpose of this paper to get the derivative of the transverse
displacements as well as other differential equations in an explicit and ready-to-program for-
mat. Our derivation is shown to be more direct and explicit than that suggested by Smith
(1974).

Key words: displacement field, elastic-gravitational excitation, fluid outer core, motion
equation.

1 I N T RO D U C T I O N

In the work of Smith (1974) (hereafter referred to as S74), the generalized surface spherical harmonics (GSSH) representation (see Phinney &
Burridge 1973; Huang & Liao 2003, for correctness) and the symmetry properties of a rotating planet (Luh 1973) are used to derive an infinite
set of motion equations. These motion equations (eqs 5.22–5.26 and 5.28–5.30 in S74) are scalar, linear, first-order and ordinary differential
equations (ODEs) about radius; they govern the infinitesimal free elastic-gravitational oscillations of the Earth. The Earth is assumed to be a
rotating, slightly elliptical Earth with an isotropic perfectly elastic constitutive relation and a hydrostatic pre-stress field.

This set of equations is used very often in research communities such as seismology, earth tides, nutation and else. In his work, the final
form is eight differential equations for ∂r Y, where Y is the column-vector of solution combining ten scalars, i.e.

Y(r, ω) = (
U m

l , Pm
l , φ1

m
l , g1

m
l , V m

l , W m
l−1, W m

l+1, Qm
l , Rm

l−1, Rm
l+1

)T
, (1)

where, Pm
l , Qm

l , Rm
l±1 are the three scalars in the GSSH representation of n̂ ·T (where n̂ is the normal vector and T is the stress field); l, m are the

longitudinal degree and azimuthal order in the GSSH expansion, respectively; Um
l , V m

l , W m
l±1 are the three scalars in the GSSH representation

of the displacement field s; φ1
m
l is for the perturbed gravitational potential; and g1

m
l is another scalar related to the perturbed gravity that is

defined in the formula (eq. 5.18) in S74. All these ten scalars are functions of the radius and the frequency (in frequency domain).
For compactness, these ODEs are arranged in the matrix form

∂r Y(r, ω) = A(r, ω)Y(r, ω), (2)

where A(r , ω) is a propagation matrix of dimension of 10 × 10. If the anelasticity is considered in the mantle, i.e. the Lame parameters are
complex rather than real, then the matrix A(r , ω) and the variables Y(r, ω) become complex in the mantle.

Because the rigidity µ vanishes identically in the fluid outer core (FOC), the differential equations for ∂ r V m
l and ∂ r W m

l±1 (eqs 5.23 and
5.24 in S74) do not hold any longer. However, all V m

l , W m
l±1, ∂ r V m

l and ∂ r W m
l±1 do not vanish in FOC and they should be kept in the ODEs

for ∂ r Um
l , ∂ r Pm

l , ∂ rφ1
m
l and ∂ r g1

m
l , so we have to have another pair of ODEs for ∂ r V m

l and ∂ r W m
l±1. Although an algorithm to get ∂ r V m

l and
∂ r W m

l±1 are described in S74, it is, however, not in detail, the algorithm is complex itself and the explicit form is unavailable. In this paper, we
will present a similar but more direct algorithm to obtain them, and the explicit and read-to-program form is given.

For compactness, all the notations in this paper are kept completely the same as in S74 if not notated specially.

C© 2004 RAS 831

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/157/2/831/636194 by guest on 22 Septem

ber 2022



832 C.-li Huang, V. Dehant and X.-H. Liao

2 T H E O D E S I N F O C

As a result of ellipticity, the spherical scalars and toroidal scalars are coupled with each other. One has to truncate them in the form

s(r, ω) = τm
l−1(r, ω) + σ m

l (r, ω) + τm
l+1(r, ω) + σ m

l+2(r, ω) + . . . , (3)

where σ and τ are the spheroidal and toroidal scalars of s, respectively.
In practice, only the first three terms are kept and all the higher degree terms are ignored, although nobody has tested this truncation is

correct or precise enough. Such truncation is also used in this paper and produces ten variables and ten ODEs for these ten variables.
In an ideal fluid like the fluid outer core, the rigidity µ vanishes identically, the fluid can not support transverse traction, i.e. Qm

l = Rm
l±1 =

0 and the ODEs for ∂ r (Qm
l , Rm

l±1) (eqs 5.29 and 5.30 in S74) become meaningless (but we will use them later). Moreover, the ODEs for ∂ r (V m
l ,

W m
l±1) (eqs 5.23 and 5.24 in S74) do not hold any longer (because µ = 0). Therefore, only the four differential equations for ∂ r Um

l , ∂ r Pm
l ,

∂ rφ1
m
l and ∂ r g1

m
l (eqs 5.22, 5.25, 5.26 and 5.28 in S74) are kept.

Following S74, we separate the solution Y into two parts:

Ỹ(r, ω) = (
U m

l , Pm
l , φ1

m
l , g1

m
l

)T
(4)

and

X̃(r, ω) = (
V m

l , W m
l−1, W m

1+l

)T
. (5)

2.1 Simplified ODEs for ∂r Ỹ

Using the fact that, in FOC,

Qm
l = Rm

l±1 = 0, µ0 = µ2 = 0, β0 = λ0, β2 = λ2, (6)

the differential equation for ∂ r Um
l , eq. (5.22) in S74, can be simplified as follows, if truncated as mentioned above,

∂r U m
l = fλ Pm

l − L0

r
V m

l − 2

r
U m

l , (7)

where

fλ ≡ (
λ0 − λ2 J l,2,l

0,0,0

)/
(λ0)2, (8)

in which, the compact symbol J l,2,l
0,0,0 is exactly the same of the so-called J -square in S74 by:

J l,l ′,l ′′
n,n′,n′′ ≡




l l ′ l ′′

n n′ n′′

m 0 m


 ≡ (2l + 1)(−)m+n

(
l l ′ l ′′

−n n′ n′′

) (
l l ′ l ′′

−m 0 m

)
(9)

where the last two terms are Wigner 3-j symbols (Edmonds 1960). Then, the term related to the radial component of volume inflation factor,
eq. (5.19) in S74, becomes

�m
l = fλ Pm

l . (10)

The differential equation for ∂ rφ1
m
l still takes the form (eq. 5.25) in S74, i.e.

∂rφ1
m
l = g1

m
l − 4πGρ0U m

l ; (11)

while, the differential equation for ∂ r g1
m
l , eq. (5.26) in S74, can be simplified a little as

∂r g1
m
l = l(l + 1)

r 2
φ1

m
l − 2

r
g1

m
l − 4πG J l,2,l

0,0,0

(
ρ ′

2U m
l + fλρ2 Pm

l

)
+ 4πG

r
L0

(−ρ0 − ρ2 J l,2,l
+,0,+ − ρ2 J l,2,l

0,0,0

)
V m

l − 4πG

r
L0ρ2

(
J l,2,l−1
+,0,+ W m

l−1 + J l,2,l+1
+,0,+ W m

l+1

)
,

(12)

where ρ ′
2 ≡ ∂ rρ 2.

Notice that the first two lines of eq. (5.28) in S74 becomes

−2

r
Pm

l + 2

r
λ0�

m
l + 2

r
J l,2,l

0,0,0λ2�
m
l = −2

r
Pm

l + 2

r

[
1 − (

J l,2,l
0,0,0

)2
(

λ2

λ0

)2
]

Pm
l ≈ 0, (13)

as a result of the fact that ( λ2
λ0

)2 is a second-order minor with respect to 1 and all the absolute values of J -squares are smaller than 1 (in this

case, J 2,2,2
0,0,0 ≈ 0.143 and J 4,2,4

0,0,0 ≈ 0.221).
Therefore, the differential equation for ∂ r Pm

l , eq. (5.28) in S74, is simplified as

∂r Pm
l = (

ρ0 + ρ2 J l,2,l
0,0,0

)
ξU

l + ρ2 J l,2,l+2
0,0,0 ξU

l+2, (14)

where ξ is a compact combination of the three η in S74, i.e.

ξU
k ≡ (

η1
m
k

)U + (
η2

m
k

)U + (
η3

m
k

)U
, (15)

where the subscript k may takes l − 1, l, l + 1, l + 2 (because ξU
l+2 includes terms of σ l ).
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Explicit form of motion equations in FOC 833

Analogously, we will combine the other η combinations to two ξ as

ξ V
k ≡ (

η1
m
k

)V + (
η2

m
k

)V + (
η3

m
k

)V
(16)

and

ξ W
k ≡ (

η1
m
k

)W + (
η2

m
k

)W + (
η3

m
k

)W
. (17)

It is worthy to point out here that the term ρ 2 P 2η3 (P 2 is the Legendre function of second order here) is ignored in the eq. (5.27a) and
therefore in the eqs (5.28)–(5.30) in S74, but it has been shown that this term should definitely be kept in these equations (see Huang 1999;
Rogister 2001). To keep the equations of η1, η2 and η3 in homogenous form, we remove the first coefficient ρ 0 from the definition of η3 in
eqs (5.27d) and (5.37)–(5.39) in S74.

After substituting ∂ r Um
l and �m

l into η3, all the ∂r Ỹ expressions include Ỹ itself and X̃, while ∂r X̃ only exists in ∂ r Pm
l via (η3

m
l )U .

As a result of the regular conditions of the solutions at the center, there are five independent solutions for the ten ODEs in the solid inner
core. Usually, one can have five independent initial analytical solutions for a small homogeneous spherical Earth near the center (Pekeris &
Jarosch 1958; Takeuchi & Saito 1972), all these five solutions of Y are propagated from this small sphere upward to the Earth surface, by
integrating these ten ODEs. When crossing the boundary between inner core and FOC (inner core boundary, ICB), there are only continuity
conditions for the quantities in Ỹ but not for those in X̃. This means that Ỹ in the FOC is known after using the boundary conditions and X̃ is
unknown. However, the X̃ values themselves are required and subsequently needed for the calculation of ∂r Ỹ. In following sections, we will
give the solutions of X̃, ∂r X̃ and finally ∂r Ỹ in the fluid core.

3 S O L U T I O N O F X̃

The solution of X̃ can be obtained from the degenerated ODEs for ∂ r Qm
l and ∂ r Rm

l in the eqs (5.29) and (5.30) of S74.

3.1 From eq. (5.29) of S74

Let’s consider ∂ r Qm
l = Qm

l = 0 and µ0 = µ2 = 0 in the eq. (5.29) of S74. After applying the truncation rule, we have

0 = 2L0

r
Pm

l + ρ0ξ
V
l + ρ2

(
J l,2,l−1
+,0,+ ξ W

l−1 + J l,2,l
+,0,+ξ V

l + J l,2,l+1
+,0,+ ξ W

l+1 + J l,2,l+2
+,0,+ ξ V

l+2

)
, (18)

in which we have used
2L0

r
λ0�

m
l + 2L0

r
J l,2,l

0,0,0λ2�
m
l ≈ 2L0

r
Pm

l .

Now, we separate all the terms of V m
l , W m

l−1 and W m
l+1 from these ξ . The coefficients before the terms V m

l , W m
l−1 and W m

l+1 in ξ W
l−1 are

denoted as (ξ W
l−1)Vl , (ξ W

l−1)Wl−1 and (ξ W
l−1)Wl+1 respectively; they are:(

ξ W
l−1

)Vl = 2ω�0 J l−1,1,l
−,0,− , (19)

(
ξ W

l−1

)Wl−1 = −ω2 − 2ω�0 J l−1,1,l−1
−,0,− (20)

and(
ξ W

l−1

)Wl+1 = 0, (21)

respectively. Analogously, the coefficients before the terms V m
l ,W m

l−1 and W m
l+1 in ξ V

l are:

(ξ V
l )Vl = −ω2 − 2ω�0 J l,1,l

−,0,− − 2L0

r

√
3

r
φ2 J l,2,l

0,+,−, (22)

(
ξ V

l

)Wl−1 = 2ω�0 J l,1,l−1
−,0,− + 2L0

r

√
3

r
φ2 J l,2,l−1

0,+,− (23)

and(
ξ V

l

)Wl+1 = 2ω�0 J l,1,l+1
−,0,− + 2L0

r

√
3

r
φ2 J l,2,l+1

0,+,− , (24)

respectively; the coefficients before the terms V m
l , W m

l−1 and W m
l+1 in ξ W

l+1 are:(
ξ W

l+1

)Vl = 2ω�0 J l+1,1,l
−,0,− , (25)

(
ξ W

l+1

)Wl−1 = 0 (26)

and(
ξ W

l+1

)Wl+1 = −ω2 − 2ω�0 J l+1,1,l+1
−,0,− (27)

respectively; and the coefficients before the terms V m
l , W m

l−1 and W m
l+1 in ξ V

l+2 are:

(
ξ V

l+2

)Vl = −2L (4)
0

r

√
3

r
φ2 J l+2,2,l

0,+,− , (28)
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(
ξ V

l+2

)Wl−1 = 0 (29)

and(
ξ V

l+2

)Wl+1 = 2ω�0 J l+2,1,l+1
−,0,− + 2L (4)

0

r

√
3

r
φ2 J l+2,2,l+1

0,+,− (30)

respectively.
Now we re-arrange eq. (18) in a matrix form (here is the first row), which is similar (but a little different) to the eq. (E2) in S74:

D(1, 1)V m
l + D(1, 2)W m

l−1 + D(1, 3)W m
l+1 = (E · Ỹ)(1) (31)

where

D(1, 1) = (
ρ0 + ρ2 J l,2,l

+,0,+
) (

ξ V
l

)Vl + ρ2

[
J l,2,l−1
+,0,+

(
ξ W

l−1

)Vl + J l,2,l+1
+,0,+

(
ξ W

l+1

)Vl + J l,2,l+2
+,0,+

(
ξ V

l+2

)Vl
]
, (32)

D(1, 2) = (
ρ0 + ρ2 J l,2,l

+,0,+
) (

ξ V
l

)Wl−1 + ρ2 J l,2,l−1
+,0,+

(
ξ W

l−1

)Wl−1
, (33)

D(1, 3) = (
ρ0 + ρ2 J l,2,l

+,0,+
) (

ξ V
l

)Wl+1 + ρ2 J l,2,l+1
+,0,+

(
ξ W

l+1

)Wl+1 + ρ2 J l,2,l+2
+,0,+

(
ξ V

l+2

)Wl+1 (34)

and

(E · Ỹ)(1) = −2L0

r
Pm

l − (
ρ0 + ρ2 J l,2,l

+,0,+
)
ζ V

l − ρ2

(
J l,2,l−1
+,0,+ ζ W

l−1 + J l,2,l+1
+,0,+ ζ W

l+1 + J l,2,l+2
+,0,+ ζ V

l+2

)
. (35)

While these new ζ are the residual of ξ , all the terms of V m
l and W m

l±1 have been removed, i.e.,

ζ W
l−1 ≡ ξ W

l−1 − all the V m
l , W m

l±1 terms in ξ W
l−1 = 4ω�0 J l−1,1,l

−,−,0 U m
l + 2

√
3

r
φ2 J l−1,2,l

+,+,0 fλ Pm
l , (36)

ζ V
l ≡ ξ V

l − all the V m
l , W m

l±1 terms in ξ V
l = −2L0

r
(φ1

m
l + g̃U m

l ) − 4ω�0 J l,1,l
−,−,0U m

l − 2L0

r
φ2

′ J l,2,l
0,0,0U m

l + 2

√
3

r
φ2 J l,2,l

+,+,0 fλ Pm
l , (37)

ζ W
l+1 ≡ ξ W

l+1 − all the V m
l , W m

l±1 terms in ξ W
l+1 = 4ω�0 J l+1,1,l

−,−,0 U m
l + 2

√
3

r
φ2 J l+1,2,l

+,+,0 fλ Pm
l (38)

and

ζ V
l+2 ≡ ξ V

l+2 − all the V m
l , W m

l±1 terms in ξ V
l+2 = −2L (4)

0

r
φ′

2 J l+2,2,l
0,0,0 U m

l + 2

√
3

r
φ2 J l+2,2,l

+,+,0 fλ Pm
l . (39)

Now, the coefficient matrix D(1, i) (i = 1, 2, 3) depends on the radius only and not X̃ or Ỹ; the coefficient matrix can then be derived
from the Earth model, while the right side of eq. (31) includes only Ỹ which is also known.

In the following, we will derive the other two similar equations.

3.2 From eq. (5.30) of S74

Analogously, let ∂ r Rm
l = Rm

l = 0 and µ0 = µ2 = 0, then from eq. (5.30) of S74, where the subscript (longitudinal degree) takes l − 1 (we will
take l + 1 later), we have

0 = (
ρ0 + ρ2 J l−1,2,l−1

+,0,+
)
ξ W

l−1 + ρ2

[
J l−1,2,l
+,0,+ ξ V

l + J l−1,2,l+1
+,0,+ ξ W

l+1

]
. (40)

After repeating the procedure for eq. (5.29) in the above subsection, we get the second equation and re-arrange it into matrix form to get the
second row of this matrix equation, i.e.

D(2, 1)V m
l + D(2, 2)W m

l−1 + D(2, 3)W m
l−1 = (E · Ỹ)(2), (41)

where

D(2, 1) = (
ρ0 + ρ2 J l−1,2,l−1

+,0,+
) (

ξ W
l−1

)Vl + ρ2 J l−1,2,l
+,0,+

(
ξ V

l

)Vl + ρ2 J l−1,2,l+1
+,0,+

(
ξ W

l+1

)Vl
, (42)

D(2, 2) = (
ρ0 + ρ2 J l−1,2,l−1

+,0,+
) (

ξ W
l−1

)Wl−1 + ρ2 J l−1,2,l
+,0,+

(
ξ V

l

)Wl−1
, (43)

D(2, 3) = ρ2 J l−1,2,l
+,0,+

(
ξ V

l

)Wl+1 + ρ2 J l−1,2,l+1
+,0,+

(
ξ W

l+1

)Wl+1 (44)

and

(E · Ỹ)(2) = − (
ρ0 + ρ2 J l−1,2,l−1

+,0,+
)
ζ W

l−1 − ρ2 J l−1,2,l
+,0,+ ζ V

l − ρ2 J l−1,2,l+1
+,0,+ ζ W

l+1. (45)

All these ξ and ζ are given in the subsection above.
Analogously, from eq. (5.30) of S74 and taking the subscript as l + 1, and repeating the procedure described above, we have:

0 = (
ρ0 + ρ2 J l+1,2,l+1

+,0,+
)
ξ W

l+1 + ρ2

(
J l+1,2,l−1
+,0,+ ξ W

l−1 + J l+1,2,l
+,0,+ ξ V

l + J l+1,2,l+2
+,0,+ ξ V

l+2

)
. (46)

This equation is also re-arranged into matrix form and we get the third row of the matrix equations, i.e.

D(3, 1)V m
l + D(3, 2)W m

l−1 + D(3, 3)W m
l−1 = (E · Ỹ)(3), (47)
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Explicit form of motion equations in FOC 835

where

D(3, 1) = (
ρ0 + ρ2 J l+1,2,l+1

+,0,+
) (

ξ W
l+1

)Vl + ρ2

[
J l+1,2,l−1
+,0,+

(
ξ W

l−1

)Vl + J l+1,2,l
+,0,+

(
ξ V

l

)Vl + J l+1,2,l+2
+,0,+

(
ξ V

l+2

)Vl
]
, (48)

D(3, 2) = ρ2 J l+1,2,l−1
+,0,+

(
ξ W

l−1

)Wl−1 + ρ2 J l+1,2,l
+,0,+

(
ξ V

l

)Wl−1
, (49)

D(3, 3) = (
ρ0 + ρ2 J l+1,2,l+1

+,0,+
) (

ξ W
l+1

)Wl+1 + ρ2 J l+1,2,l
+,0,+

(
ξ V

l

)Wl+1 + ρ2 J l+1,2,l+2
+,0,+

(
ξ V

l+2

)Wl+1 (50)

and

(E · Ỹ)(3) = − (
ρ0 + ρ2 J l+1,2,l+1

+,0,+
)
ζ W

l+1 − ρ2

(
J l+1,2,l−1
+,0,+ ζ W

l−1 + J l+1,2,l
+,0,+ ζ V

l + J l+1,2,l+2
+,0,+ ζ V

l+2

)
. (51)

All these ξ and ζ have been given in the subsection above.
Thus, all the 3 × 3 components of the matrix D and the three components of the column matrix (E · Ỹ) are known, and we can then

obtain the solution

X̃ = D−1 · (E · Ỹ). (52)

For the purpose of practical calculation of X̃, it is easy to get (E · Ỹ) directly and we do not need separate E and Ỹ. However, for
convenience of writing in the next section, we separate E and Ỹ by a procedure of separation similar to that of D and X̃. They are:

E(1, 1) = − (
ρ0 + ρ2 J l,2,l

+,0,+
) (

ζ V
l

)U − ρ2

[
J l,2,l−1
+,0,+

(
ζ W

l−1

)U + J l,2,l+1
+,0,+

(
ζ W

l+1

)U + J l,2,l+2
+,0,+

(
ζ V

l+2

)U
]
, (53)

E(1, 2) = −2L0

r
− (

ρ0 + ρ2 J l,2,l
+,0,+

) (
ζ V

l

)P − ρ2

[
J l,2,l−1
+,0,+

(
ζ W

l−1

)P + J l,2,l+1
+,0,+

(
ζ W

l+1

)P + J l,2,l+2
+,0,+

(
ζ V

l+2

)P
]
, (54)

E(1, 3) = (
ρ0 + ρ2 J l,2,l

+,0,+
) 2L0

r
, (55)

E(2, 1) = − (
ρ0 + ρ2 J l−1,2,l−1

+,0,+
) (

ζ W
l−1

)U − ρ2 J l−1,2,l
+,0,+

(
ζ V

l

)U − ρ2 J l−1,2,l+1
+,0,+

(
ζ W

l+1

)U
, (56)

E(2, 2) = − (
ρ0 + ρ2 J l−1,2,l−1

+,0,+
) (

ζ W
l−1

)P − ρ2 J l−1,2,l
+,0,+

(
ζ V

l

)P − ρ2 J l−1,2,l+1
+,0,+

(
ζ W

l+1

)P
, (57)

E(2, 3) = 2L0

r
ρ2 J l−1,2,l

+,0,+ , (58)

E(3, 1) = − (
ρ0 + ρ2 J l+1,2,l+1

+,0,+
) (

ζ W
l+1

)U − ρ2

[
J l+1,2,l−1
+,0,+

(
ζ W

l−1

)U + J l+1,2,l
+,0,+

(
ζ V

l

)U + J l+1,2,l+2
+,0,+

(
ζ V

l+2

)U
]
, (59)

E(3, 2) = − (
ρ0 + ρ2 J l+1,2,l+1

+,0,+
) (

ζ W
l+1

)P − ρ2

[
J l+1,2,l−1
+,0,+

(
ζ W

l−1

)P + J l+1,2,l
+,0,+

(
ζ V

l

)P + J l+1,2,l+2
+,0,+

(
ζ V

l+2

)P
]
, (60)

E(3, 3) = 2L0

r
ρ2 J l+1,2,l

+,0,+ (61)

and

E(i, 4) = 0 (for i = 1, 2, 3). (62)

Where, these new (ζ V,W
k )U,P are the coefficient before U or P in (ζ V

k ) or (ζ W
k ); they are

(ζ W
l−1)U = 4ω�0 J l−1,1,l

−,−,0 , (63)

(
ζ W

l−1

)P = 2

√
3

r
φ2 fλ J l−1,2,l

+,+,0 , (64)

(
ζ V

l

)U = −2L0

r
g̃ − 4ω�0 J l,1,l

−,−,0 − 2L0

r
φ2

′ J l,2,l
0,0,0, (65)

(
ζ V

l

)P = 2

√
3

r
φ2 fλ J l,2,l

+,+,0, (66)

(
ζ W

l+1

)U = 4ω�0 J l+1,1,l
−,−,0 , (67)

(
ζ W

l+1

)P = 2

√
3

r
φ2 fλ J l+1,2,l

+,+,0 , (68)

(
ζ V

l+2

)U = −2L (4)
0

r
φ2

′ J l+2,2,l
0,0,0 (69)

and(
ζ V

l+2

)P = 2

√
3

r
φ2 fλ J l+2,2,l

+,+,0 . (70)
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4 D I R E C T S O L U T I O N O F ∂r X̃

As mentioned above, the ODEs for ∂ r V m
l and ∂ r W m

l in eqs (5.23) and (5.24) of S74 no longer hold in the fluid, but the radial gradient of the
displacement is required in some research and therefore we need to obtain alternative ODEs. This can be done by taking the derivative of
eq. (52):

D · ∂r X̃ = ∂r (E · Ỹ) − (∂r D) · X̃. (71)

In this equation, D, ∂ r D and E do not include X̃ nor Ỹ, but the ∂ r Pm
l in ∂r (E · Ỹ) includes ∂r X̃, therefore, this equation can not be solved

directly. One special property of ∂r (E · Ỹ) is that within it only ∂ r Pm
l includes ∂r X̃ [via (η3

m
l )U ] and the other three components [∂ r (Um

l , φ1
m
l ,

g1
m
l )] do not; this property can save our next labour.

Adding the eqs (5.31), (5.34) and (5.37) of S74 together, and applying the truncation rule of this paper, we write out the ξU
l and ξU

l+2 in
∂ r Pm

l in eq. (14):

ξU
l = ζU

l +
(√

3

r
φ2 J l,2,l

0,+,−

)
∂r V m

l +
(

−
√

3

r
φ2 J l,2,l−1

0,+,−

)
∂r W m

l−1 +
(

−
√

3

r
φ2 J l,2,l+1

0,+,−

)
∂r W m

l+1, (72)

ξU
l+2 = ζU

l+2 +
(√

3

r
φ2 J l+2,2,l

0,+,−

)
∂r V m

l +
(

−
√

3

r
φ2 J l+2,2,l+1

0,+,−

)
∂r W m

l+1, (73)

where ζU
l and ζU

l+2 are the parts of ξU
l and ξU

l+2 in which the terms of ∂ r V m
l and ∂ r W m

l±1 have been removed, i.e.,

ζU
l = g1

m
l + U m

l

{
−

[
ω2 + 2

r
(g + g̃)

]
−

(
2

r
φ2

′ − φ2
′′
)

J l,2,l
0,0,0

}

+ V m
l

[
− L0

r
φ2

′ + 2ω�0 J l,1,l
0,+,− − L0

r
φ2

′ J l,2,l
0,0,0 +

√
3

r
J l,2,l

0,+,−

(
φ2

′ − 1

r
φ2

)]

+ W m
l−1

[
−2ω�0 J l,1,l−1

0,+,− −
√

3

r
J l,2,l−1

0,+,−

(
φ2

′ − 1

r
φ2

)]
+ W m

l+1

[
−2ω�0 J l,1,l+1

0,+,− −
√

3

r
J l,2,l+1

0,+,−

(
φ2

′ − 1

r
φ2

)]
, (74)

ζU
l+2 = U m

l

[
−

(
2

r
φ2

′ − φ2
′′
)

J l+2,2,l
0,0,0

]
+ V m

l

[
− L (4)

0

r
φ2

′ J l+2,2,l
0,0,0 +

√
3

r
J l+2,2,l

0,+,−

(
φ2

′ − 1

r
φ2

)]

+ W m
l+1

[
−2ω�0 J l+2,1,l+1

0,+,− −
√

3

r
J l+2,2,l+1

0,+,−

(
φ2

′ − 1

r
φ2

)]
. (75)

We subtract the terms of ∂r X̃ from ∂r (E · Ỹ), move them into the left side of eq. (71) and add their coefficients to D and get a new 3 × 3
matrix, A, the new coefficient matrix for ∂r X̃ (not the propagation matrix A in eq. 2). Noting that ∂r X̃ exist in E(i , 2) · (∂ r Pm

l ) only, we have:

A(i, 1) = D(i, 1) + E(i, 2)

[(
ρ0 + ρ2 J l,2,l

0,0,0

) (√
3

r
φ2 J l,2,l

0,+,−

)
+ ρ2 J l,2,l+2

0,0,0

(√
3

r
φ2 J l+2,2,l

0,+,−

)]
, (76)

A(i, 2) = D(i, 2) + E(i, 2)

[(
ρ0 + ρ2 J l,2,l

0,0,0

) (
−

√
3

r
φ2 J l,2,l−1

0,+,−

)]
, (77)

A(i, 3) = D(i, 3) + E(i, 2)

[(
ρ0 + ρ2 J l,2,l

0,0,0

) (
−

√
3

r
φ2 J l,2,l+1

0,+,−

)
+ ρ2 J l,2,l+2

0,0,0

(
−

√
3

r
φ2 J l+2,2,l+1

0,+,−

)]
, (78)

for i = 1, 2, 3.
Thus, eq. (71) becomes

A · ∂r X̃ = ∂r (E · Ỹ) − (∂r D) · X̃. (79)

The above equation is correct if and only if the terms of ∂r X̃ are removed from ∂ r Pm
l . Alternatively, we write eq. (71) in following exact form

A · ∂r X̃ = (∂r E) · Ỹ + E · (∂r ỹ) − (∂r D) · X̃, (80)

where, ∂r ỹ are exactly the same as ∂r Ỹ except that ∂ r Pm
l no longer includes ∂r X̃, i.e.

∂r ỹ ≡ (
∂r U m

l , ∂r Pm
l , ∂rφ1

m
l , ∂r g1

m
l

)T
, (81)

where ∂r Pm
l denotes the part of ∂ r Pm

l in which the terms of ∂ r V m
l and ∂ r W m

l±1 are removed, i.e.

∂r Pm
l ≡ (

ρ0 + ρ2 J l,2,l
0,0,0

)
ζU

l + ρ2 J l,2,l+2
0,0,0 ζU

l+2, (82)

where, ζU
l and ζU

l+2 are defined in eqs (74) and (75).
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In the above matrix equations, A, ∂ r D and ∂ r E depend only on the radius (r), the density (ρ 0, ρ 2), the Lame parameters (λ0, λ2), the
frequency (ω), the mean angular velocity (�0), the initial mean gravity (g and g̃, centrifugal term is removed from the latter) and the elliptical
term of gravitational potential (φ2). All these parameters and their radial derivative are known from a given Earth model. ∂ r D and ∂ r E are
directly and easily obtained from D and E, respectively, and we omit their explicit form here. While, X̃, Ỹ and ∂r ỹ (not ∂r Ỹ) have been known.
Therefore, we can have ∂r X̃ now.

Next, one can substitute the ∂r X̃ in ∂ r Pm
l with the values obtained before and get the exact value of ∂ r Pm

l . The solutions for ∂r Ỹ (not
∂r ỹ) are then completed [because ∂ r (Um

l , φ1
m
l , g1

m
l ) have been calculated directly from eqs (7), (11) and (12), respectively].

5 S U M M A RY A N D T H E S C H E M E O F C A L C U L AT I O N

In the above sections, we give out the explicit form of the coefficient matrices D, E and A, from which we get the direct solutions of X̃, ∂r X̃
and ∂r Ỹ. The scheme of calculation is summarized as follow:

(i) calculate the values of the profiles of ρ0, ρ2, λ0, λ2, g, g̃ and φ2 (and their radial derivative) from a given Earth model (one may first
need to calculate the ellipticity profile from Clairaut equation);

(ii) from (i), all the (ξ V,W
k )V,W are calculated from eqs (19)–(30);

(iii) then all nine components of D(i, j) [as well as their radial derivative, ∂ r D(i , j)] are obtained from eqs (32)–(34), (42)–(44) and
(48)–(50);

(iv) we have the values of Ỹ from the continuation condition at the ICB (in fact, we can only have Ỹ because such a boundary does not
provide any information of X̃. See Huang (2001) for example);

(v) with the values of (i) and (iv), one has all the ζ
V,W
k from eqs (36)–(39);

(vi) then the three components of (E · Ỹ) are obtained directly from eqs (35), (45) and (51) [or, by another way: by calculating the
12 components of E (as well as ∂ r E) from eqs (53)–(62) and multiplying with Ỹ)];

(vii) one can thus get the solutions of X̃ from eq. (52);
(viii) we then calculate the new matrix A by eqs (76)–(78);
(ix) we calculate ∂r ỹ: ∂ r (Um

l , φ1
m
l , g1

m
l ) are obtained from eqs (7), (11) and (12), respectively, while ∂r Pm

l is obtained from eqs (82) and
(74)–(75) (therefore, this ∂r Pm

l calculated here is not the exact value of ∂ r Pm
l );

(x) eq. (80) can be solved now and one gets the solutions of ∂r X̃; Alternatively, one can solve eq. (79) instead, in which the three
components of ∂r (E · Ỹ) are calculated by eqs (35), (45) and (51), but remember to replace ∂ r Pm

l with ∂r Pm
l wherever it emerges in all ∂ rζ

V,W
k

(eqs 36–39);
(xi) substituting the ∂r X̃ into ξm

l and ξm
l+2 in eqs (72)–(73), one hence has the exact value of ∂ r Pm

l from eq. (14) with these exact values of
ξm

l and ξm
l+2.

Thus the exact solutions for X̃, ∂r X̃ and ∂r Ỹ are completed. One can use these values and the ODEs for ∂r X̃ and ∂r Ỹ to propagate, step
by step and upwardly, the solutions from the ICB to the CMB (or downward from CMB to ICB).
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