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S U M M A R Y
A disadvantage of fully non-linear methods of inversion, through exploitation of the properties
of model space, is the absence of a well-developed framework for error assessment. To rectify
this problem an auxiliary weighting function for ensemble properties is introduced that can be
used with suitable thresholds to define consistency regions of suitable models. This approach
requires neither a detailed knowledge of the misfit distribution nor an underlying probabilistic
model. The use of a polyhedral representation of such consistency regions is illustrated with
an example from non-linear seismic event location, showing the effect of different choices for
the misfit measure.

The auxiliary weight function can be used directly with the composite misfit measure used
to drive the exploration of model space in the non-linear inversion. Such composite measures
usually combine a data misfit and regularization term. However, considerable benefit can be
obtained by storing the data misfit and associated model characteristics for each investigated
model, as well as the composite measure. The properties of the model ensemble can then be
used retrospectively to define preferred models by the intersection of a consistency region in
data misfit with zones constrained by desirable model properties.
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1 I N T RO D U C T I O N

Non-linear inversion methods involving exploration of parameter
space such as genetic algorithms (e.g. Gallagher et al. 1991), simu-
lated annealing (e.g. Sen & Stoffa 1991) or the neighbourhood algo-
rithm (Sambridge 1999a,b) can be very effective at finding models
with a suitable fit to data. These methods do not require the construc-
tion of numerical derivatives and can use any convenient measure
of consistency between the observations and the prediction from
a proposed model. A recent review is provided by Sambridge &
Mosegaard (2002).

However, unlike conventional Gauss–Newton linearization
schemes, the fully non-linear methods do not provide an immediate
product that can be used to characterize the likely uncertainties in
model parameters. For low-dimension systems, such as the seismic
event location problem with four hypocentral parameters, a system-
atic search around the preferred model can map out the pattern of
misfits (e.g. Billings et al. 1994). With an appropriate probability
distribution for the misfit, the contours of misfit can be interpreted
as confidence levels.

Sambridge (1999b) has shown how to exploit the characteristics
of model space in a probabilistic interpretation of uncertainty and
resolution analysis. The ensemble of models generated in the ex-
ploration of parameter space is augmented by resampling using a
neighbourhood algorithm, so that suitable probability integrals can

be calculated by Monte Carlo integration. This approach has been
used recently by Resovsky & Trampert (2002) in the assessment of
the properties of Earth models consistent with free oscillation and
surface wave data.

A common approach to the delineation of uncertainty in non-
linear inversion is to seek the region in parameter space where the
misfit to the observed data is less than some prescribed thresh-
old. This can be attempted by direct mapping of the properties
of parameter space or by adapting the non-linear inversion ap-
proach to preferentially map acceptable models. Thus, Lomax &
Snieder (1994, 1995) have modified a genetic algorithm to en-
courage the extraction of acceptable models, rather than perform
a global optimization. Sambridge (2001) has shown how different
classes of modified data fit functions can be used with a neigh-
bourhood algorithm to concentrate attention on acceptable mod-
els. This approach can work well even where there are multi-
ple, disjoint regions of parameter space with a comparable fit to
data.

The approach developed here is somewhat different in that the
properties of the ensemble of models tested in the exploration of
parameter space are used to determine a consistency region within
which there is comparable representation of the observations. It is
convenient to use an auxiliary weighting function to specify the ap-
propriate threshold, because this avoids dependence on the particular
form of misfit function employed.
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2 E N S E M B L E P RO P E RT I E S
I N I N V E R S I O N

The process of exploration of parameter space in the non-linear in-
version schemes is directed toward minimizing some measure of
model suitability E, which will always contain some measure �

of the misfit between observations and model predictions, but fre-
quently will include a regularization term � to secure, for example,
adequate smoothness in a model. Thus,

E(m) = �(m) + �(m) (1)

for model parameters m. Many different choices can be made for
the misfit �(m), such as an Lp norm of residuals. The regularization
term �(m) may include a measure of deviations from a reference
model mref, constraints on gradients etc.

Each of the sampled models mi will therefore be represented
through the composite measure Ei, the data misfit �i and a regular-
ization term � i. As we shall see, it may be advantageous to keep
track of a range of different properties of the model.

We introduce an auxiliary weighting function w(E) so that we
can estimate ensemble properties via, for example,

〈p〉 =
∑

i

w(Ei )p(mi )

/ ∑
i

w(Ei ), (2)

where the summation is taken over the full ensemble of models tra-
versed in the inversion, or some subset. The weighting function w(E)
should be some monotonically decreasing function of the composite
measure E so that the ensemble estimate 〈p〉 emphasizes the proper-
ties of those models that are most suitable, i.e. with smaller E. Such
a weighting scheme by inverse misfit [w(E) ∝ 1/E] was used by
Shibutani et al. (1996) in inversion of receiver function waveforms
using a genetic algorithm to derive stable estimates of shear velocity
profiles from the best 1000 models sampled.

Ensemble results can be applied directly to the model parameters
or to secondary quantities constructed from the model parameters. In
the location problem for seismic events, the hypocentre representing
the point of initiation of seismic energy in space and time can be
represented by a four-vector h whose elements are the origin time,
latitude, longitude and depth of the event. The ensemble location
estimate

〈h〉 =
∑

i

w(Ei )hi

/ ∑
i

w(Ei ) (3)

will be distinct from the best-fitting estimate ĥ and should be less
susceptible to noise in the observations.

We can envisage two different approaches to the choice of the
weighting function w(E). The first would be related to the expected
probability distribution for E and is thus strongly dependent on the
choices made for the data misfit � and the regularization �. Even
when the behaviour of the residual distribution is well understood,
the influence of the regularization term will be difficult to assess.
With this style of weighting it will also be difficult to compare results
for different measures of fit. The alternative is to adopt a standard
form for the weighting function with some tunable parameters, that
can be adapted to the problem at hand. The same scheme can then
be used for different criteria of fit for the same data set.

From a range of trials of suitable monotonically decreasing func-
tions w(E), we have found that a suitable form is based on the Fermi–
Dirac distribution from statistical physics (see, e.g. Schrödinger
1952):

w(E) = [exp{β(E − Er )/E0} + 1]−1, (4)
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Figure 1. Illustration of the Fermi–Dirac weighting function w(E) and the
imposition of a threshold on the weights (wt) that defines a band of consistent
models indicated by the shaded region.

where β controls the rate of change of the weighting function and
hence the emphasis to be placed on different aspects of the ensemble.
Er is a reference point such that w(Er) = 0.5. We normalize the
misfits with a base composite measure E0, taken to be slightly less
than the smallest value encountered in the ensemble Emin; we have
used E 0 = 0.999E min.

The Fermi–Dirac distribution w(E) (eq. 4) is illustrated in Fig. 1
using the parameters (β = 2.0, ER = 2.0 E 0) employed in the seismic
location example below. Commonly in statistical physics, β, repre-
senting inverse temperature, is large and then w(E) is close to unity
until the vicinity of Er, when there is a rapid transition to near zero
values. However, for the current application it is preferable to use
a smaller value of β, as shown in Fig. 1, when there is a gentle but
steady reduction in w(E) for small values of E with maximum gra-
dient at the reference value Er. Large values of the composite misfit
measure E receive little weighting, because the tail is essentially a
negative exponential with respect to misfit.

3 C O N S I S T E N C Y R E G I O N S

The use of the auxiliary weighting function allows a means of ex-
tracting a subset of the ensemble of investigated models with similar
composite measure properties to the best found in the inversion.

The weights {w(Ei)} are evaluated for all the models and we then
define a consistency region for which w > wt. For the Fermi–Dirac
distribution we take

wt = 1

2
+ t

[
w(E0) − 1

2

]
, (5)

where the threshold value t is chosen to include a suitable zone
near the misfit minimum, e.g. t = 0.979 has been employed in the
example illustrated in Section 4. For the choice Er = 2 E 0 the
threshold weight can also be written as

wt = 1

2

(
1 + t tanh

β

2

)
. (6)

The specification of the threshold on w defines a band of models
with consistent misfit properties, as indicated by the shading of the
weights in Fig. 1. This subset of the ensemble may then be used
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Figure 2. Location of the Kara sea event of 1997 August 16 (circle) and the seismic stations (triangles) with phase readings. The dashed circles show distances
from the event in increments of 500 km.

to give a stable estimate of model properties using a sub-ensemble
average as in eq. (1). Alternatively, the band may be viewed as
defining a consistency region in model parameter space. For simple
problems, this region can be adequately defined using a polyhedral
representation.

The choice of the threshold wt for the Fermi–Dirac distribution
is equivalent to specifying a composite misfit measure Et:

Et = Er + E0
1

β
ln

(
1

wt
− 1

)
, (7)

as indicated in Fig. 1. However, there are considerable merits in
working with the properties of the auxiliary function w(E) rather
than making direct use of the misfit values E:

(i) A consistency region can be defined, based purely on the prop-
erties in parameter space, for choices of composite measure E that
do not correspond to standard probability density functions with
known confidence levels.

(ii) We have a standard weighting scheme, which can be applied
for different styles of misfit measure in a comparable way. If needed,
the shape of the distribution can be tuned to the circumstances by
the choice of β, Er. A larger value of β will, for example, give a
tighter band of misfit for the same weighting threshold.

(iii) The details of the misfit distribution are not used, just the
relative weight: hence, the process is akin to the use of model rank
as a driver for the exploration of parameter space, as in the neigh-
bourhood algorithm (Sambridge 1999a, 2001).

(iv) It is easy to explore the consequences of choices of threshold
on the nature of the consistency region. Such choices can be related

to probabilistic models for the misfit distribution, but are not forced
by specific assumptions.

The consistency region approach can be used directly with the
original ensemble generated during an inversion and does not need
subsequent resampling. However, it can be readily combined with
the augmented ensemble approach of Sambridge (1999b) to provide
probabilistic estimates.

Because the consistency region is defined retrospectively, it can be
used with auxiliary information on model properties, e.g. smooth-
ness, to single out those regions in parameter space with certain
characteristics. Indeed multiple criteria on model properties can be
applied provided that the requisite information is collected in the
course of the inversion.

4 C O N S I S T E N C Y R E G I O N S I N
S E I S M I C E V E N T L O C AT I O N

As an easily visualized example of the use of consistency regions,
we consider the location of a seismic event at far regional distances.
We use an event in the Kara Sea in 1997 August, near the former
USSR nuclear test site on Novaya Zemlya, whose nature has been
the subject of some debate (see, e.g. Schweitzer & Kennett 2002,
2004). As can be seen from Fig. 2, the distribution of available
stations is rather uneven. The best results are obtained with the use
of regional models for the Barents sea region, but there is sufficient
lateral heterogeneity that it is difficult to represent the pattern of
observed times well with a single model.
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Figure 3. Representation of the progress of the neighbourhood algorithm scheme towards convergence on a location estimate, with definition of the consistency
region of data fit from the properties of the weighting function. Only a small portion of the model space about a reference point (72.4◦N, 57.9◦E, 30 km depth)
is shown. The open symbols get darker as data fit improves. Models within the consistency region are indicated by solid pentagons; a polyhedral representation
of the region is indicated by a grey tone. The best-fitting location is marked by a black diamond with a grey centre and the ensemble estimate by a grey open
diamond. (a) L2 data misfit function with the barey model; (b) L1 data misfit function with the barey model.

We therefore consider the effect of using different measures of
misfit with the regional model, barey (Schweitzer & Kennett 2004).
The inversions for the hypocentral location are carried out using
the neighbourhood algorithm (Sambridge & Kennett 2001), with an
extended number of iterations to provide good sampling of param-
eter space in the region of good fit to data. In Fig. 3 we compare
the behaviour of the results for (a) the conventional L2 norm of
residuals and (b) the more robust L1 norm, which is less sensitive
to the deficiencies of the simple 1-D regional model. In each case
we have used a weighting function directly on data misfit � with

β = 2.0, �0 = 0.999�min, �r = 2�0: where �min is the least misfit
in the location ensemble. The weighting threshold is specified by
t = 0.979.

Fig. 3 shows the progress of the neighbourhood algorithm for the
location of this Kara sea event, through the evolution of the weight-
ing function and projections of the location estimates for a small
region near the best fitting location (±20 km in horizontal position,
±10 km in depth and ±2 s in origin time). The parameter space
searched comprised an 800 × 800 km2 region in horizontal posi-
tion, ±40 km depth in depth and ±10 s in origin time centered on the
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position 72.5◦N, 57.5◦E and 40 km in depth. The open symbols, for
estimates whose weights lie below the threshold, get darker as the
data misfit is reduced. Estimates whose weights lie above the thresh-
old are shown as solid pentagons. The polyhedral representation of
the consistency regions is indicated by the grey tone.

The choice of threshold t = 0.979 was made after a few trials
to give compact consistency regions. Because this assessment is
retrospective, it can be carried out rapidly using the stored properties
of the trial models.

The same form of threshold weighting was applied to the L2 and
L1 location results. Both Figs 3(a) and (b) are drawn for a small
region around the same reference point (displaced from the centre
of the original search space). The distinct change in the location
estimates arises because of the strong lateral heterogeneity across
the region. The locations with the L2 norm for data misfit have
problems with poor fits to some phase picks and this enlarges the
zone of comparable misfit, particularly in depth and origin time.
The use of the L1 norm compensates for the limitations of the 1-D
velocity model (barey) by reducing the influence of the difficulty of
fitting some stations and phases. With the same weight threshold, it
is clear that the consistency region for the L1 norm is tighter, notably
in time and depth. The convergence of the location estimates was
more rapid for case (b) and there is closer agreement between the
best-fitting model found and that determined as an ensemble average
over the models within the consistency region.

Through the use of the auxiliary weighting scheme, we are able
to make a direct comparison of the consistency regions for the two
different choices of data misfit function. A polyhedral representation
of the consistency zone simply provides a summary of the collection
of models whose weights lie above the threshold for the given misfit
function. In this simple example, the projection of the hypocentres
is sufficient to provide a visual assessment, but this will be more
complex for problems with more parameters.

5 D I S C U S S I O N : C O N S I S T E N C Y
Z O N E S C O M B I N I N G DATA F I T
A N D M O D E L P RO P E RT I E S

The exploration of model parameter space for suitable models to
explain observations is most easily performed using a single mea-
sure to represent the behaviour of the model. This is why com-
posite measures incorporating both data misfit and regularization
are commonly employed. The search in parameter space is then di-
rected towards models that have both good fit to data and desirable
properties.

However, although the progress of the inversion may be conve-
niently controlled by the minimization of a single parameter, it is
little extra effort to also store the ensemble of data misfit values
{�i} and the set of measures of model properties {ψ i}, which can
be combined to produce the regularization term {� i}.

In the assessment stage of the inversion we can then make use
of the ensemble of properties {�i}, {ψ i} across the samples in
model space to find consistency regions that make direct use of
the data misfit and model characteristics (cf. Kennett 1978). There
are a number of different ways in which such regions can be de-
fined depending on the relative emphasis placed on data fit and
regularization.

Rather than develop a consistency region for the composite mea-
sure E via w(E), a data consistency zone can be constructed by
applying the threshold test to the data misfit using w(�). Within
this region with suitable data fit properties, we can then map out the

Figure 4. The intersection of the consistency region for data misfit, de-
termined using w(�), with the regions defined by constraints on model
properties {ψ} defining a consistency region for suitable models.

associated properties of the models through the summary measures
{ψ}. The subset of the consistency region for data fit with appropri-
ate model properties can then be regarded as the desired consistency
zone of suitable models.

The separation of the data fit and regularization terms gives con-
siderable flexibility in the specification of the outcomes of the in-
version. We can readily place a priori specifications on the model
properties, whilst the consistency region for data fit retains the ben-
efits discussed above.

The consistency zone is then the intersection of the regions de-
fined by the different criteria, as indicated schematically in Fig. 4.
This approach provides an unfettered framework for a posteriori
analysis. Additional model characteristics can be investigated, such
as the use of separate constraints on model norm, gradients and
curvature as opposed to a composite Sobolev norm.
In some circumstances, data depends on multiple sets of physical
parameters, as in the relation of the frequencies of the normal modes
of the Earth to the P- and S-wave-speed distribution and the density
(see, e.g. Dahlen & Tromp 1998). The properties of the subsets of
model parameters can then be used independently and collectively
with the data fit in the characterization of suitable models.

In the situation where multiple classes of data are generated from
a single model description, as for the traveltimes of seismic phases
for a 1-D global Earth model (e.g. Kennett et al. 1995), multiple
data fit zones for the different data classes can be defined in param-
eter space. The inter-relation of these various zones controlled by
different aspects of the data with the model constraints provides a
measure of the resolution achieved in the model.
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