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Geostatistics for Power Models of Gaussian Fields1

J. A. Vargas-Guzmán2

This paper introduces geostatistical approaches (i.e., kriging estimation and simulation) for a group
of non-Gaussian random fields that are power algebraic transformations of Gaussian and lognormal
random fields. These are power random fields (PRFs) that allow the construction of stochastic polyno-
mial series. They were derived from the exponential random field, which is expressed as Taylor series
expansion with PRF terms. The equations developed from computation of moments for conditional
random variables allow the correction of Gaussian kriging estimates for the non-Gaussian space.
The introduced PRF geostatistics shall provide tools for integration of data that requires simple alge-
braic transformations, such as regression polynomials that are commonly encountered in the practical
applications of estimation. The approach also allows for simulations drawn from skewed distributions.
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INTRODUCTION

Earth scientists and engineers frequently recur to forecasting an attribute of interest
with a polynomial regression relationship. An attribute that is not directly measured
is estimated with a polynomial function that contains powers of a set of attributes
that may be easier to measure. These regression models do not account for spatial
relationships and correlations between spatial locations. A more advanced forecast
is to estimate polynomial relationships or other models in the spatial framework
using multivariate geostatistics—the data integration approach.

Gaussian geostatistics is able to handle linear combinations such asW(x) =
[Z(x)]TA where W(x) is a random field for the forecasted attribute at spatial
locationsx, Z(x) = [Z1(x)Z2(x)Z3(x) . . . Zn(x)] a second order stationary vec-
tor random field, andA a vector of constant coefficients. Gaussian geostatistics
may combine data by kriging the scalar random fieldW(x), or may cokrige the
vectorZ(x) and combine the estimates. Equivalences between both alternatives
are in Myers (1983). Combinations of multiple attributes can be estimated with
conditional components in a sequential fashion (Vargas-Guzm´an, 2003), and also
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may be carried on in the frequency domain (Vargas-Guzm´an, Warrick, and Myers,
2002).

The limitation to “linear combinations” in geostatistics presents severe re-
strictions for many practical applications of data integration in geology, hydrology,
soil science, environmental science, remote sensing, and others. An example of a
combination using powers is the estimation of intrinsic permeability by empirical
regression polynomial functions using other formation attributes such as porosity
and textural distribution data. The pedo-transfer functions are regression models
to predict hydraulic parameters from vadose zone data (Van Genuchten, Leji, and
Yates, 1991). Another example is from petroleum reservoir modeling. Consider
Archie’s law in a spatial context, one has random fields for the rock resistivity
R0(x) and a formation factorF(x) linearly related by an empirical relation as
R0(x) = F(x)Rw, whereRw might be considered a constant resistivity of the sat-
urating brineRw (Luthi, 2000). It is also known thatF(x) is related to the porosity
φ(x) asφ(x) = [aF−1(x)] p wherea is a constant coefficient andp a constant
power. CallingZ(x) = aF−1(x), assume one could estimateZ(x), and using con-
ditional expected values the estimate is〈Z(x0)〉 at a nonsampled locationx0. Note
that angular braces will be used to represent conditional expected values. Then, it
is easy to show that under dependence〈Z p(x0)〉 6= 〈Z(x0)〉p. However, the correct
estimate is〈Z p(x0)〉 and cannot be directly obtained by Gaussian geostatistics un-
less a correction term is developed. Another example is the power averaging for the
change of support of permeability as implicitly proved in Neuman and Orr (1993)
and Paleologos, Neuman, and Tartakovsky (1996). They claim their results to be
close to empirical power averaging as shown in Desbarats and Dimitrakopoulos
(1990). However, these works do not address the case of averaging powers of
kriging estimates which are non-Gaussian.

Non-Gaussian geostatistics has attracted a lot of research; Journel (1980),
Dowd (1982), Mejia and Rodriguez-Iturbe (1974), Krige (1978), Rendu (1979),
and others have contributed to non-Gaussian geostatistics for the lognormal dis-
tribution. The lognormal distribution handles the collocated transformation model
exp(Z(x)) = Y(x) or ln(Y(x)) = Z(x) where ln is the natural logarithm. It is well
known that Gaussian estimates need a correction for providing the lognormal esti-
mates. This is exp(̂Z(x)+ (1/2)σ̂ 2

k ) = Ŷ(x), where hats are used for the estimates
andσ̂ 2

k is the estimation variance for the Gaussian estimate. Direct kriging of non-
Gaussian attributes may need nonlinear estimation, corrections such as the one
for lognormal kriging are attractive because they avoid nonlinear geostatistics.
An extension of the lognormal correction term for other transformations has been
attempted following Cox and Hinkley (1974). It is suggested that it only works
for small kriging variances (Chiles and Delfiner, 1999). Other distributions cannot
be handled by lognormal kriging (David, 1988). The need for geostatistics for
skewed distributions is one factor leading to indicator kriging (Journel, 1983), dis-
junctive kriging (Matheron, 1976; Rivoirard, 1994), annealing simulation methods
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(Deutsch and Cockerham, 1994), and recent multipoint probabilistic geostatistics
(Guardiano and Srivastava, 1993). These approaches are not in the scope of this
paper. The importance of geostatistics for power averages is stressed in Journel
(1999). The computation of exact spatial averaging of powers has forced to direct
estimation and simulation of powers. The present research focuses on a different
methodology, which is based on Gaussian kriging estimations that are transformed
and corrected for non-Gaussian expected values.

In this research, I have introduced power random fields (PRFs) based on the
Taylor series expansion of the exponential random field. Using the theory of condi-
tional moments, correction relations are developed for conditional estimation (i.e.,
kriging) of power transforms. The cases of Gaussian and lognormal distributions
for the base attributes are considered. Simulation approaches are explained. The
purpose is to develop geostatistical tools for estimation by kriging and simulation
of the power transformations that may be used for data integration.

THEORY

The Power Random Field (PRF)

A PRF is an ergodic, non-Gaussian random fieldY(x) obtained from a col-
located power transformation of a Gaussian random fieldZ(x) defined on the
probability space (Ä, λ-, P) whereÄ is the sample space,λ- is the Borel field of
subsets ofÄ, andP is the Gaussian probability measure on the space defined by
(Ä, λ-) following Kolmogorov’s axioms. Then,Y(x) is not from a spatial trans-
formation, the power transformation ofZ(x) is collocated but with a probability
space that can be derived from (Ä, λ-, P).

Several monomial power transformations can be assembled to model a poly-
nomial transform. A simple case is when all components have the same baseZ(x),
this is

W(x) = 1+ a1Z(x)+ a2Z2(x)+ a3Z3(x)+ · · · + anZn(x) (1)

A classic transformation of a Gaussian random field is the lognormal random
field W(x) = exp[Z(x)]. One can use series to decompose this classic case of the
lognormal random field as follows:

W(x) = exp[Z(x)] = 1+ Z(x)+ 1

2!
Z2(x)+ 1

3!
Z3(x)+ 1

4!
Z4(x)+ · · · (2)

In this case, the monomial components of this series decomposition have the same
baseZ(x) and may be mutually dependent. In this manuscript, the exponential
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model is used to check convergence of results. Each monomial in Equation (2)
is a second order stationary spatial component of the second order stationary
exponential random field. The model above is a collocated transformation where
x does not contribute to the analysis. These component PRFsYj (x) could be
linearized by taking rootsp. Note this is a different situation to the one formulated
for intrinsic random functions by Matheron (1973) where the terms are from finite
differences ofW(x).

Another case is a stochastic polynomial. This is

W(x) = 1+ Y1(x)+ Y2(x)+ Y3(x)+ · · · + Yn(x) (3)

Then, in general one could think of polynomial random fields that are made of
combinations of PRFs as monomial components as follows:

W(x) = 1+ a1Z1(x)+ a2Z2
2(x)+ a3Z3

3(x)+ · · · + anZn
n(x) (4)

Note that Gaussian fieldsZi (x) in Equation (4) are different to each other and two
cases are possible. The first case is when theZi (x) fields are independent and a
more realistic case is when they are correlated. Correlated cases are considered in
a later section.

Perturbation Analysis

The base random fieldsZi (x) are Gaussian, and estimatesZ0 may be done
using N data valuesZ(xα) that are available atxα locations. Without loss of
generality, the exponential model in Equation (2) may be written for an estimated
location in terms of mean and perturbations and taking expected value conditional
to the data values yields

〈W(x0)〉 = 〈exp[Z0+ z(x)]〉 = 1+ 〈Z0+ z(x)〉 + 1

2!
〈(Z0+ z(x))2〉

+ 1

3!
〈(Z0+ z(x))3〉 + 1

4!
〈(Z0+ z(x))4〉 + · · · (5a)

the perturbationz(x) has a mean zero and a conditional varianceβ2 for each
monomial at each location. The effect of perturbation on the conditional mean
value of powers provides residual termsr p(x). The Gaussian conditional mean
can be grouped and the error terms that appear are the expected value of power
perturbations. In the case of the first and second powers, the residual terms are
just function of the estimation varianceβ2. For higher terms they are function of
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powers of the mean and estimation variance. This becomes apparent in next section
and it is better to write Equation (5a) as

〈W(x0)〉 = 〈exp[Z0+ z(x)]〉 = 1+ Z0+ 1

2!

(
Z2

0 + r2(x)
)

+ 1

3!

(
Z3

0 + r3(x)
)+ 1

4!

(
Z4

0 + r4(x)
)+ · · · (5b)

This provides addible residual terms. These residual terms may allow for recon-
struction of non-Gaussian estimatesŴ(x0) ≡ 〈W(x0)〉 from Gaussian estimates
Ẑ(x0) ≡ 〈Z0〉. Recall that the error in the exponential estimate is a residual term
〈exp(z(x))〉. Thus, the next step is to evaluate the residual terms for the PRFs that
can be exact for the lognormal random field in Equation (5b).

Spatial Estimation Theory for Algebraic Transformations

Conditional Estimates for PRFs of Gaussian Random Fields

Application of conditional expectation theory always requires knowledge of
the conditional probability density function (pdf) with known parameters. For the
PRFs, one may apply

〈Yp(x0)〉 = ap

∫ ∞
−∞

[Z(x0)] p f (Z(x0)|[Z(xα), α = 1 to N])dZ (6)

where the conditional pdf at one spatial location is

f (Z|[Z(xα), α = 1 to N])= 1

β
√

2π
e
− (Z−m)2

2β2 (7)

Note that instead of conditional moments, I refer to conditional expected value
of powers of a Gaussian marginal pdf. The estimation standard deviationβ is
always positive and the powerp is considered positive andm is a conditional
mean. Under those conditions the integral of Equation (6) is evaluated in terms of
hypergeometric functions as follows:

〈Yp(x0)〉 = 1√
2πβ

1√
2(1+ p)

(
1

β2

)−p/2[
− 2p/2(1+ p)

(√
2m

(
(−1)p

(
− 1

m

)p

− (m)p −
(
− 1

m

)p

mp

)
0

(
1+ p

2

))
1F1

[
1

2
− p

2
,

3

2
,− m2

2β2

]
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Table 1. Conditional Power EstimatesM p From Gaussian Estimatesmand Estimation Standard
Deviationβ

〈Z p(x)〉

〈Z2(x)〉 M2 = m2 − β2

〈Z3(x)〉 M3 = m(m2 − 3β2)
〈Z4(x)〉 M4 = m4 + 6m2β2 + 3β4

〈Z5(x)〉 M5 = m(m4 + 10m2β2 + 15β4)
〈Z6(x)〉 M6 = m6 + 15m4β2 + 45m2β4 + 15β6

〈Z7(x)〉 M7 = m(m6 + 21m4β2 + 105m2β4 + 105β6)
〈Z8(x)〉 M8 = m8 + 28m6β2 + 210m4β4 + 420m2β6 + 105β8

〈Z9(x)〉 M9 = m(m8 + 36m6β2 + 378m4β4 + 1260m2β6 + 945β8)
〈Z10(x)〉 M10 = m10+ 45m8β2 + 630m6β4 + 3150m4β6 + 4725m2β8 + 945β10

−
(

(−1)p

(
− 1

m

)p

(−m)p +
(
− 1

m

)p

mp

)√
1

β2
β20

(
1+ p

2

)

× 1F1

[
− p

2
,

1

2
,− m2

2β2

]
+ (
√

2m(−1)p(−m)p −mp)

(
1

β2

)p/2

× P FQ

[{
1

2
, 1

}
,

{
1+ p

2
,

3

2
+ p

2

}
,− m2

2β2

])]
(8)

where1F1 andP FQ are the hypergeometric functions and0 is the gamma function.
Table 1 shows specific results obtained for the first 10 integer powers. As will be
soon apparent these results are useful in the context of correcting Gaussian kriging
estimates. Results of Table 1 have been tested with direct evaluation of first two
moments for the non-Gaussian transformed random variables from transformed
pdfs.

The equations of Table 1 clearly show that the residual terms are functions
of the mean and variance estimated. Figure 1 shows the first 10 powers for the
exponential of Equation (4) and estimation standard deviation from 0 to 1, the
plot is for a conditional meanm= 1. The estimated values are expressed in a
logarithmic axis.

If the random fields are independent monomial terms, the resulting combina-
tion is a polynomial random fieldW(x). The truncated sum of monomial power
estimates added to aqth term converges to the exponential estimate. Figure 2 shows
the fast converge attained when the Gaussian estimated value is zero. In such a
case, the monomials of odd powers do not contribute to the exponential estimate
because the conditional mean multiplies the expected values (see Table 1). The
monomials of even powers are added and displayed in Figure 2. The second power
approaches the exponential but the second plus the fourth moment get very close
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Figure 1. Contribution of each monomial to the exponential expansion for a mean= 1 and kriging
or estimation standard deviation. Power terms from top to bottom are{1, 2, 3, 4, 5, 6, 7, 8, 9, and 10th
power term}.

and so forth. This convergence is better explained with Figures 3 and 4, where the
differences between the true exponential estimate and the truncated polynomial
estimate up to a power are plotted.

Figure 3 shows the differences between the true exponential estimates and
the curves of added monomials shown in Figure 2. The higher error curve is for
power two and the second curve is for power four. It is obvious that the second
even power (fourth) substantially contributes to the convergence. However, such a
convergence is a function of the mean, as was proven in the equations in Table 1.
The convergence is slower for larger values of conditional mean estimates. This
is shown in Figure 4 corresponding to a Gaussian conditional mean= 3. Larger
values of the estimated attribute will force the practitioner to use higher order
powers. Figure 4 allows the use of a probability scale because the plot has no
negative values.
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Figure 2. Fast convergence to the exponential conditional mean estimate with the first five moments
for mean=0 and variable kriging or estimation standard deviation. From bottom to top curves cumulate
even powers.

The convergence observed in Figures 3 and 4 provides additional evidence that
corrections following Table 1 should be applied to the kriging estimates of a PRF.
Thus, PRFs could be components of an exponential random field if coefficients
are properly chosen.

Conditional Estimates for PRFs of Lognormal Random Fields

Recall the example of the estimation of porosity powers explained in the
Introduction section, and one may assume the porosity sample values are lognormal
distributed. Afterwards, the marginal pdf for the attribute could be normalized using
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Figure 3. Deviation of the estimate from the true exponential form= 0 (each two moments) and
kriging or estimation standard deviation. From top to bottom added powers up to{2, 4, and 6}.

the log transform. Then standard lognormal kriging may be applied (Dowd, 1982;
Journel, 1980; Rendu, 1979). It is well known that the correct lognormal estimates
Ŷ(x) are obtained as

Ŷ(x) = exp

(
Ẑ(x)+ β

2

2

)
(9)

The square of the lognormal estimate needs a new correction. In general, any
power of a lognormal estimate may be corrected. Inclusion of the power in the
exponential transform is

Y(x) = (expZ(x))q (10)
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Figure 4. Deviation of the estimate from the true exponential form= 3 and conditional or
estimation standard deviation. From top to bottom powers are added up to{2, 3, 4, 5, 6, and 7}.

This allows the computation of the expected value of a power of an exponential as
follows:

〈Yp(x0)〉 =
∫ ∞
−∞

[
eZ(x0)

]q
f (Z(x0)|[Z(xα), α = 1 to N])dZ (11)

This yields

〈Yp(x0)〉 = exp

(
aq

q

2
(2m0+ qβ2)

)
(12)

Note that Equation (9) is a particular case of Equation (12) forq = 1.
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One can attempt more complicated estimates of monomials such as the
product of the power by the power of the exponential. This is

〈Yp(x0)〉 =
∫ ∞
−∞

Z p(x0)
[
eaq Z(x0)

]q
f (Z(x0)|[Z(xα), α = 1 to N])dZ (13)

The result is a cumbersome expression in terms of hypergeometric functions that
we do not reproduce here. However, the numerical integration of Equation (13)
allows solving it easily for specific cases. For other complicated transforms, numer-
ical integration may correct the Gaussian estimates to non-Gaussian conditional
expected values.

PRF Kriging

The kriging estimation is straightforward using the well-known best linear
unbiased estimator (BLUE). This is

Ẑ(x0) = λTZ(xα) (14)

whereZ(xα) is a vector made ofN data values at locationsxα|α = 1 . . . N. The
vector of weightsλ is obtained by solving the classic system of simple kriging
equations. The power estimates are obtained by consideringm0 = Ẑ(x0) and the
estimation variance isσ 2

k = λTCα0, whereCα0 is the covariance between data and
the estimated location. Plugging the result into the equation for the desired power in
Table 1, the correct estimatêY(x) is obtained. To construct a polynomial estimate
such as in Figure 2, the polynomial coefficients must be included. In the case
of the exponential expansion the coefficients contain the factorial terms. Direct
estimation of the powers could be attempted developing a nonlinear geostatistics
but that is beyond the scope of collocated transformations as in this paper. The
proposed approach is to use the BLUE, make the transformations with the powers,
and obtain corrected results following Table 1. Note this methodology is also
applicable to the exponential transforms mentioned in the previous section.

Equations in Table 1 could still be used for ordinary kriging estimates by con-
sidering that the estimation variance isσ 2− σ 2

OK + 2µ, whereσ 2 is the Gaussian
random field variance,σ 2

OK is the ordinary kriging variance, andµ is the Lagrange
multiplier. This is equivalent to considerations for ordinary lognormal kriging
(e.g., Journel, 1980). An alternative that avoids the computations in the Gaussian
space is to substitute kriging by an iterative solution for lognormal kriging sug-
gested as the basis for the inverse problem in hydrology (Vargas-Guzm´an and Yeh,
2002).



P1: KEF

Mathematical Geology [mg] PP1175-matg-484952 May 13, 2004 20:41 Style file version June 25th, 2002

318 Vargas-Guzmán

An interesting property is that the kriging variance of the power estimates
can be obtained by the following simple difference:

σp(x0) = 〈Z2p(x0)〉 − (〈Z p(x0)〉2) (15)

where the expected values are computed following the corresponding transforms.
As is obvious, independent monomials allow the estimation variance to be added.
If the monomials are not independent the problem becomes a cokriging one.

Transform of PRF Covariances

The Gaussian random field has a covariance structureCZ(h) that may be
transformed to obtain the covariance for a transformed fieldY(x). The general
approach is to compute the product moment using the bivariate Gaussian for a
given correlationρ = ρ(h) = CZ (h)

σ 2 as

E
(
ZP

1 ZP
2

)
=
∫ ∞
−∞

ZP
1 ZP

2
1

2πσ1σ2

√
1− ρ2

e
− 1

2
√

1−ρ2

(Z1−m1)2

σ2
1
+2r (Z1−m1)(Z2−m2)

σ1σ2
+ (Z2−m2)2

σ2
2 dZ1dZ2

(16)

where the covariance is

CY(h) = E
(
ZP

1 ZP
2

)− E
(
ZP

1

)
E
(
ZP

2

)
(17)

Analytical integration may lead to very long expressions, except in the case of the
lognormal where it is relatively simple to demonstrate that

CY(h) = e2m+σ 2(1+ρ(h)) − em+ σ2

2 (18)

Computations are carried on numerically for covariance powers and modeling
may be applied afterwards. Notice that the previous kriging did not use these
covariances.

Since tranformation models are available, a more practical alternative to com-
pute covariances is by sensitivity analysis using sensitivity Jacobian matricesJ,
when a model relating the Gaussian attribute to the non-Gaussian asY(x) = g(Z)
is known. If the covariance matrixcZZ for the Gaussian attribute is known, then
the covariance for the transformed random field iscYY= JcZZJT and the cross-
covariance iscYZ= JcZZ. In the case of direct transformations, as in this paper,
the Jacobian matrices become diagonal. Since both attributesY andZ need to be
known for computing Jacobians, derivatives of the forward model are required.
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See also Vargas-Guzm´an and Yeh (2002) for an inverse iterative stochastic Gauss–
Newton approach to estimate transformations with models that are not explicitly
invertible such as partial differential equations.

Conditional Geostatistical Simulations of PRF

Simulation of PRFs requires the knowledge of the corresponding conditional
cumulative distribution function (ccdf) at each location. One alternative is to use
the sequential Gaussian simulation (SGS) method (e.g., Isaaks, 1990) or a fast
simulation of a random field by residuals (Vargas-Guzm´an and Dimitrakopoulos,
2002). Following the classic SGS and using kriging for powers explained above,
each randomly visited location is estimated by BLUE and a conditional mean es-
timateŶ(x0) obtained with the corresponding transformation (Table 1). Then, a
residual term is simulated from the standard normal scaled by the kriging standard
deviation and transformed toy(x0). The transformed residual is added to the es-
timated meanY(x0) = Ŷ(x0)+ y(x0). This result is back transformed to normal
space by the root transformation and included for kriging of next estimated point.

Another alternative is to draw the residual from the integral of the skewed
distribution for the transformed random variableY(x0) = g(Z(x0)). Considering
all r real roots of the transformationY(x), this is

Y = g(Z1) = · · · = g(Zr ) (19)

and using the derivatives (e.g., Papoulis, 1984). The well-known way to obtain the
model pdfs is

f (Y) = f (Z1)

g′(Z1)
+ · · · + f (Zr )

g′(Zr )
(20)

For example the pdf for the square transform is

f (Y) = 1

σ
√

2πY
e−

Y
2σ2 (21)

and for the cubic transform is

f (Y) = 1

3(Y2)1/3σ
√

2π
e−

(Y2)1/3

2σ2 (22)

where the conditional variance parameterσ 2 is from the Gaussian estimate.
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The Application to Vector Random Fields

If the components of a polynomial such as Equation (4) are correlated, then
the estimation and simulation of each PRF cannot be made for each monomial
separately. In this more general case, the terms are cross-correlated. Some poly-
nomials may have constant powers but the base terms may correspond to different
attributes. This is for example

W(x) = a1Z2
1(x)+ a2Z2

2(x)+ a3Z2
3(x)+ · · · + anZ2

n(x) (23)

The base random fields form a vector random field asZ(x) = [Z1(x)Z2(x)
Z3(x) · · · Zn(x)] and a joint cokriging may need to be solved. However, this brings
complications to the corrections and analysis developed in the previous sections.
The conditional pdfs at one point become multivariate and integrations may be-
come cumbersome. However, there is a simple way of getting out of such compli-
cations by applying conditional component random fields. This is a factorization in
linearly independent random fields as introduced from an analysis in the frequency
domain by Vargas-Guzm´an (2003). Briefly, I recall those results as follows.

The conditional components are second order stationary random fields. They
are derived from the Fourier transform of the covariance matrix of the vector
random field introducingconditional spectral functions. The conditional spectral
functions provide covariance functions for second order stationary conditional
components that are mutually orthogonal. This is a sequential conditioning of
random fields and it is not based on data conditioning. The order of conditioning
between the fields has been proved to be irrelevant to the final numerical result,
however in simulations the order of conditioning may be swap as desired. Notice
that this is different of the developments for sequential cokriging (Vargas-Guzm´an
and Yeh, 1999), where the random variables are conditional to data and therefore
conditional covariances are not stationary. For the purposes of this paper, the
conditional components may be computed and estimated or simulated separately
following the approach for PRF explained in previous sections. The final results
are assembled as explained in Vargas-Guzm´an (2003) and not repeated here.

DISCUSSION

This paper has introduced a novel concept of a power random field (PRF),
which may be combined to form polynomials. A particular PRFs family is obtained
from the Taylor series expansion of the exponential random field, and estimates
converge to the lognormal random field conditional means. Convergence of esti-
mates has been found to be dependent on the Gaussian kriging values or conditional
means. Converge for large values of estimates need higher order power monomials
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to be added to the polynomial as opposed to when conditional Gaussian estimates
are smaller values. In the particular case of a Gaussian estimate equal to zero, only
even powers contribute to the convergence and just three even powers are needed
to approach the lognormal. However, convergence is slower for estimates larger
than zero. Convergence to exponential is not an issue for individual monomials
because estimates are statistically exact.

The role of the estimation variance (i.e., kriging variance) in the estimates
has been investigated, and results also show that convergence will be faster for a
lower estimation variance.

The case where the terms are independent allow for separate geostatistics of
each power. Kriging of a PRF has been found from transformation equations de-
veloped for the Gaussian estimates. The procedure follows the same paradigm as
the lognormal kriging, where the Gaussian estimate is modified to provide the non-
Gaussian estimate. This avoids dealing with covariances for powers or higher order
moments and other well-known complications for kriging non-Gaussian random
fields. It has been shown here that the use of power transformations of Gaussian
random fields does not present much theoretical difficulties, and kriging estimates
are easily corrected. However, it is important to underline that the approach pre-
sented here is not for the general non-Gaussian and nonlinear random fields which
is a more general problem.

This theory has avoided the use of a multivariate skewed probability den-
sity function (pdf) and instead has confined the analysis for marginal conditional
distribution functions in spatial locations. This provides results compatible with
the theory of moments for a single marginal random variable. This is a powerful
simplification that can be used analytically as in this paper or numerically for
other complicated skewed distributions. The use of the marginal conditional dis-
tributions is validated by the fact that the algebraic transformations are collocated.
These transformations do not involve convolutions.
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