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Fitting the Linear Model of Coregionalization
by Generalized Least Squares1
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In geostatistical studies, the fitting of the linear model of coregionalization (LMC) to direct and cross
experimental semivariograms is usually performed with a weighted least-squares (WLS) procedure
based on the number of pairs of observations at each lag. So far, no study has investigated the efficiency of
other least-squares procedures, such as ordinary least squares (OLS), generalized least squares (GLS),
and WLS with other weighing functions, in the context of the LMC. In this article, we compare the
statistical properties of the sill estimators obtained with eight least-squares procedures for fitting
the LMC: OLS, four WLS, and three GLS. The WLS procedures are based on approximations of
the variance of semivariogram estimates at each distance lag. The GLS procedures use a variance–
covariance matrix of semivariogram estimates that is (i) estimated using the fourth-order moments with
sill estimates (GLS1), (ii) calculated using the fourth-order moments with the theoretical sills (GLS2),
and (iii) based on an approximation using the correlation between semivariogram estimates in the
case of spatial independence of the observations (GLS3). The current algorithm for fitting the LMC
by WLS while ensuring the positive semidefiniteness of sill matrix estimates is modified to include any
least-squares procedure. A Monte Carlo study is performed for 16 scenarios corresponding to different
combinations of the number of variables, number of spatial structures, values of ranges, and scale
dependence of the correlations among variables. Simulation results show that the mean square error
is accounted for mostly by the variance of the sill estimators instead of their squared bias. Overall,
the estimated GLS1 and theoretical GLS2 are the most efficient, followed by the WLS procedure that
is based on the number of pairs of observations and the average distance at each lag. On that basis,
GLS1 can be recommended for future studies using the LMC.

KEY WORDS: direct and cross semivariograms, empirical variance and bias, fourth-order moments,
multivariate nested semivariogram model, positive semidefiniteness, sill estimators.

INTRODUCTION

In geostatistical studies, the linear model of coregionalization (LMC) is fitted
to direct and cross experimental semivariograms evaluated from multivariate
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spatial data collected forp random variables. The particularity of the LMC is
that all p(p+ 1)/2 semivariograms are modeled as linear combinations of the
same set ofS basic semivariogram functions (Journel and Huijbregts, 1978,
p. 172). The LMC can be written as a multivariate nested semivariogram
model:

Γ(h) =
S∑

s=1

Bsgs(h) (1)

whereΓ(h) is the p× p matrix of semivariogram values at lagh andBs is the
p× p matrix of sills of the basic semivariogram functiongs(h), which denotes
any permissible semivariogram model. TheSbasic semivariogram functions corre-
spond to spatial structures or processes with different ranges, including the nugget
effect. For the LMC to be permissible, each matrixBs is constrained to be posi-
tive semidefinite. This is a necessary condition for the positive semidefiniteness of
the variance–covariance matrix in the system of cokriging equations (Goovaerts,
1994; Journel and Huijbregts, 1978) and for the valid utilization of sill matri-
ces as variance–covariance matrices in multivariate analyses (Wackernagel, 1995,
chap. 27; Wackernagel, Petitgas, and Touffait, 1989).

An iterative algorithm was proposed by Goulard (1989) for fitting the LMC
by weighted least squares (WLS), while ensuring the positive semidefiniteness of
sill matrix estimates. In the application of the LMC algorithm described in Goulard
and Voltz (1992), the weighing function involved in the WLS fitting isN(h), the
number of pairs of observations used to estimate the semivariogram values at each
lag. Accordingly, most studies based on the LMC have usedN(h) as the WLS
weighing function (Castrignan`o and others, 2000a,b; Dobermann, Goovaerts, and
George, 1995; Dobermann, Goovaerts, and Neue, 1997; Goovaerts, Sonnet, and
Navarre, 1993; Goovaerts and Webster, 1994; Voltz and Goulard, 1994; Webster,
Atteia, and Dubois, 1994). To our knowledge, however, the statistical properties of
that WLS estimator of sills have not been thoughtfully investigated in the context
of the LMC, and have not been compared to those of other estimators obtained by
ordinary least squares (OLS), generalized least squares (GLS), or WLS based on
other weighing functions in this context.

Studies comparing different least-squares estimation procedures have been
conducted primarily for the fitting of a single direct semivariogram model (Cressie,
1985; Genton, 1998b; M¨uller, 1999; Pardo-Ig´uzquiza, 1999; Zhang, Van Eijkeren,
and Heemink, 1995; Zimmerman and Zimmerman, 1991). In these studies, it is
generally acknowledged that GLS should be better than OLS because the former
takes into account the heteroscedasticity and correlation of semivariogram esti-
mates at different lags (Cressie, 1985; Genton, 1998b; Jian, Olea, and Yu, 1996;
McBratney and Webster, 1986; M¨uller, 1999; Zimmerman and Zimmerman, 1991).
In the common situation where the number of model parameters to be estimated
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is smaller than the number of lags, Lahiri, Lee, and Cressie (2002) have demon-
strated that the GLS estimator is asymptotically more efficient than the OLS and
WLS estimators. In practice, however, many authors have preferred to work with
WLS because GLS requires the estimation of the variance–covariance matrix of
semivariogram estimates, which has been considered to be too computationally
intensive until recently (Cressie, 1985; Jian, Olea, and Yu, 1996; McBratney and
Webster, 1986). With the increase in computer power, the processing time has
become less prohibitive and a number of recent studies have proposed GLS esti-
mation procedures for fitting a single direct semivariogram model (Genton, 1998b;
Müller, 1999; Pardo-Ig´uzquiza and Dowd, 2001).

The main objective of our study was to test the expectation that the GLS
estimator of sills possesses better statistical properties than the OLS and WLS es-
timators in the context of the LMC. We proceeded by simulation and conducted a
Monte Carlo study because of the effect that ensuring the positive semidefiniteness
of sill matrix estimates was likely to have, and in fact had on the final individual
sill estimates. This effect prevented the application of theoretical properties known
for sill estimators in the case of the fitting of a single direct semivariogram model.
In a preliminary step, we present a simple procedure for the estimation of the
variance–covariance matrix of semivariogram estimates for Matheron’s (1962)
classical estimator. We have used the matrix notation extensively, which greatly
simplifies the theoretical development. Thereafter, we modify the LMC fitting
algorithm proposed by Goulard (1989) to make it more general and applicable
to GLS or any other least-squares estimation procedure such as OLS and WLS.
Recall here that in the framework of semivariogram model fitting, OLS assumes
the homoscedasticity and independence of the semivariogram estimates, whereas
WLS relaxes the homoscedasticity assumption while maintaining the indepen-
dence condition on the semivariogram estimates.

GENERALIZED LEAST SQUARES FOR THE LINEAR
MODEL OF COREGIONALIZATION

Consider a second-order stationary,p-variate spatial process{Z(u) | u ∈ D}
with Z(u)= (Z1(u), . . . , Zp(u))T andD ⊂ Rd, d ≥ 1. Let{u1, . . . , un} be a set of
n sampling locations andγ ∗i j (h) be the experimental semivariogram between the
random fieldsZi andZ j at lagh; γ ∗i j (h) is a direct semivariogram ifi = j and a
cross semivariogram otherwise.

So far, the use of the GLS estimation method in semivariogram model fitting
has been limited to a single direct semivariogram (i.e.,p = 1 andi = j ), where
the vector of sills and the vector of ranges are the parameters to be estimated
(Cressie, 1985; Genton, 1998b; M¨uller, 1999; Pardo-Ig´uzquiza and Dowd, 2001).
In this case, the estimation of model parameters can be viewed as a nonlinear
regression problem (Lahiri, Lee, and Cressie, 2002, p. 77), based on the following
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model:

γ∗i i = γ(βi i ,ϕi i )+ εi i (2)

whereγ∗i i = (γ ∗i i (h1), . . . , γ ∗i i (hK ))T is theK × 1 observable random vector of the
direct experimental semivariogram at distance lags{h1, . . . , hK }, ϕ(βi i ,ϕi i ) =
(γ (h1,βi i ,ϕi i ), . . . , γ (hK ,βi i ,ϕi i ))

T is theK × 1 vector of values of the semi-
variogram model at distance lags{h1, . . . , hK } for the S× 1 vector of rangesϕi i

and the correspondingS× 1 vector of sillsβi i , andεi i is theK × 1 unobservable
random vector of errors. The semivariogram model is defined by

γ(βi i ,ϕi i ) = G(ϕi i )βi i (3)

whereG(ϕi i ) is theK × Smatrix of values of the basic semivariogram functions
for the vector of rangesϕi i . The variance–covariance matrix of the random vector
of errorsεi i is then a function of both the sill and the range parameters:

Var(εi i ) = Σ(βi i ,ϕi i ) (4)

and the GLS fitting procedure consists in minimizing with respect toβi i andϕi i

the function

WSS (βi i ,ϕi i ) = (γ∗i i −G(ϕi i )βi i )
T Σ(βi i ,ϕi i )

−1(γ∗i i −G(ϕi i )βi i ) (5)

In the LMC, the p direct semivariograms and thep(p− 1)/2 cross semi-
variograms need to be modeled simultaneously, using the sameS basic semi-
variogram functions. It follows that the vector of rangesϕ is the same for all
semivariograms and that the sills become the only model parameters to be
estimated.

The vector of rangesϕ can be identified in different ways. It can be fixed
by the experimenter on the basis of expert knowledge, ancillary information, or
research hypotheses about the system under study (Goovaerts, 1997, p. 106). Dif-
ferent combinations of the number of spatial structures, type of basic semivari-
ogram functions (e.g., spherical, exponential, Gaussian), and value of ranges can
be compared on the basis of a weighted sum of squares (Goulard and Voltz, 1992).
Semivariogram model fitting can also be viewed as a least-squares estimation prob-
lem for nonlinear models whose parameters separate (Golub and Pereyra, 1973;
Guttman, Pereyra, and Scornik, 1973; Osborne, 1970). Accordingly, the ranges
(i.e., the nonlinear parameters) can be estimated by least squares prior to the sills
(i.e., the linear parameters).
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For a given vector of rangesϕ, the problem of estimating the sills for any
semivariogram in the LMC becomes a problem of linear regression:

γ∗i j = G(ϕ)βi j + εi j (6)

whereγ∗i j can represent a direct or a cross experimental semivariogram depending
on the values ofi and j , andG(ϕ) is theK × Smatrix of values of the basic semi-
variogram functions. In this case, the variance–covariance matrix of the random
errors is a function of the sills to be estimated andϕ:

Var(εi j ) = Σ(βi j ;ϕ) (7)

The GLS fitting procedure for the LMC consists in minimizing with respect toβi j

the function

WSS(βi j ) = (γ∗i j −G(ϕ)βi j )
T Σ(βi j ;ϕ)−1(γ∗i j −G(ϕ)βi j ) (8)

for i , j = 1, . . . , p. This is equivalent to minimizing

WSS(B) =
p∑

i=1

p∑
j=1

WSS(βi j ) (9)

with respect toB whose entry (i , j ) is βi j (i , j = 1, . . . , p). Note that each cross
semivariogram is counted twice in Equation (9) in order to have a criterion for a
Euclidean-like distance. Since the rest of this article is about GLS for the LMC
where the ranges are assumed to be known, from now on the symbolϕ will be
dropped from formulas for notational simplicity.

Because the variance–covariance matrix of the experimental semivariogram
in Equation (8), now denoted byΣ(βi j ), is itself a function of the sill parameters to
be estimated, the GLS fitting procedure is iterative (Cressie, 1985; M¨uller, 1999).
Accordingly, the sill estimates at stepτ + 1 in this procedure are calculated as
follows:

β̂
τ+1
i j =

(
GTΣ

(
β̂
τ

i j

)−1
G
)−1

GT Σ
(
β̂
τ

i j

)−1
γ∗i j (10)

until successive sill estimates provide criterion values that differ by less than a
predetermined (usually very small) quantity, which means that a minimum of
WSS(βi j ) is reached. The OLS estimates or any of the WLS estimates of sills
provide a suitable initial solution (i.e.,τ = 0). The estimation ofΣ(βi j ) is a key
point in the iterative GLS procedure. The development below is for Matheron’s



P1: KEE

Mathematical Geology [mg] PP1175-matg-484953 May 6, 2004 1:51 Style file version June 25th, 2002

328 Pelletier, Dutilleul, Larocque, and Fyles

classical semivariogram estimator. We discuss the cases of other, more robust
estimators later in this article.

In its most general form, Matheron’s estimator can be expressed as a bilinear
form

γ ∗i j (h) = zT
i A(h)z j (11)

wherez = (Z(u1), . . . , Z(un))T is the data vector for the random fieldZ and
A(h) is the spatial design matrix described in the Appendix (Eq. (A1)). Under
the Gaussian assumption, the entry (hk, hk′ ) of Σ(βi j ) can be calculated as the
covariance between two bilinear forms (Searle, 1971, p. 66):

Cov(γ ∗i j (hk), γ ∗i j (hk′ )) = tr(A(hk)C(βi j )A(hk′ )C(βi j ))

+ tr(A(hk)C(βii )A(hk′ )C(βjj )) (12)

whereC(βi j ) is then× n matrix of covariances betweenzi andz j , while C(βi i )
andC(β j j ) are then× n variance–covariance matrices ofzi andz j , respectively.
The variance of the semivariogram estimator at distance lagh follows from hk =
hk′ = h in (11). If i = j , the experimental semivariogram is direct and its estimator
is expressed as a quadratic form, so that Equation (12) becomes:

Cov(γ ∗i i (hk), γ ∗i i (hk′ )) = 2 tr(A(hk)C(βi i )A(hk′ )C(βi i )) (13)

which provides a much simpler expression for the evaluation of the fourth-order
moments described in Pardo-Ig´uzquiza and Dowd (2001) and Ortiz and Deutsch
(2002). A modification of Equation (12) that accelerates the process of evaluation
is given in the Appendix. In practice (see Eq. (10)), an estimateΣ(β̂i j ) of the
variance–covariance matrix of the semivariogram estimator is obtained by substi-
tuting sill estimatesβ̂i j for βi j in Equation (12).

GLS FITTING ALGORITHM FOR THE LMC

The separate estimation of sill vectorsβi j (i , j = 1, . . . , p) by iterative GLS
(see above) does not ensure the positive semidefiniteness of thep× p sill ma-
trix estimateŝBs = (β̂ i j ,s) wheres= 1, . . . , Sandβ̂ i j ,s denotes the GLS estimate
of the sill for structures in semivariogram (i , j ). The algorithm proposed by
Goulard (1989) to fit the LMC while ensuring that the sill matrix estimates are
positive semidefinite was described for WLS using model-free weighing functions
such asN(h), the number of pairs of observations used to evaluate the semivar-
iogram estimates at distance lagh. In this section, the algorithm is modified to
permit the use of any least-squares procedure, including those (e.g., Cressie’s
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WLS, GLS) for which a model-based metric is used in the minimization of the
objective function. The GLS fitting algorithm for the LMC follows the same
basic steps as Goulard’s (1989) algorithm and hence, some details about these
steps are omitted below, while the differences between the algorithms are high-
lighted.

Step 0—Initialize τ to 0 and evaluate WSS(B̂τ ). Sills estimated by OLS or GLS
are examples of initial values for̂Bs (s= 1, . . . , S); the latter are obtained at
the end of the iterative procedure defined by Equation (10). Eventually, they
both provide the same results (not reported here).

Step 1—Among theS spatial structures, select structures0 and subtract from
the experimental semivariograms the part that is modeled by the otherS− 1
structures:

Γ∗s0
(hk) = Γ∗(hk)−

∑
s6=s0

B̂τsgs(hk), k = 1, . . . , K (14)

where Γ∗(hk) is the matrix of total experimental semivariograms{γ ∗i j (hk);
i, j = 1, . . . , p} at distance laghk.

Step 2—Fit a model to eachγ∗i j ,s0
individually:

β̂τ+1
i j ,s0
= (gT

s0
Σ
(
β̂
τ

i j

)−1
gs0

)−1
gT

s0
Σ
(
β̂
τ

i j

)−1
γ∗i j ,s0

, i, j = 1, . . . , p (15)

wheregs0 is the K × 1 vector of values of the basic semivariogram function
gs0(hk) for spatial structures0 at hk (k = 1, . . . , K ).

Step 3—Perform the spectral decomposition of thep× p matrix (β̂τ+1
i j ,s0

) to obtain
Q Λ QT, whereQ contains the eigenvectors andΛ is the diagonal matrix of
eigenvalues. Any element ofΛ that is negative is then set at zero to obtain
Λ+ and the matrix of sill estimateŝB

τ

s0
is replaced byQ Λ+QT. The vector

β̂
τ

i j in 6(β̂
τ

i j ) is updated by replacing itss0th component by the entry (i , j ) of
Q Λ+QT.

Repeat Steps 1–3 until theSstructures have been completed once.

Step 4—Compute WSS(̂B
τ+1

). If WSS (B̂
τ+1

) differs from WSS(̂B
τ
) by less than

a predetermined, very small quantity, then stop. Otherwise, incrementτ by 1
(i.e.,τ = τ + 1) and go to Step 1.

The check for positive semidefiniteness in Step 3 above differs from the one
in Goulard (1989) in that it is performed on (β̂τ+1

i j ,s0
) instead of thep× p matrix

with entry (i , j ) = gT
s0
Σ(β̂

τ

i j )
−1γ∗i j ,s0

. This difference is due to the fact that Goulard
(1989) uses only one vector of weights{w(hk); k = 1, . . . , K } for the WLS fitting
of all semivariograms instead ofp(p+ 1)/2 matricesΣ(β̂

τ

i j )
−1. Consequently,
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the equation in Goulard (1989) that corresponds to Equation (15) here can be
rewritten as

β̂τ+1
i j ,s0
=
(

K∑
k=1

w(hk) gs0(hk)2

)−1 K∑
k=1

w(hk)gs0(hk)γ ∗i j ,s0
(hk) (16)

Because the first multiplicative factor on the right-hand side of Equation (16) is
constant for all semivariograms, the check for positive semidefiniteness needs
to be performed only on the second factor, as proposed by Goulard (1989).
In the cases of model-based WLS and GLS, however, the check for positive
semidefiniteness must be performed on thep× p matrix (β̂τ+1

i j ,s0
) because both

factors on the right-hand side of Equation (15) are then expected to differ among
semivariograms.

The algorithm presented in this section can also be used for OLS and WLS
procedures. It suffices to replace matricesΣ(βi j ) (i, j = 1, . . . , p) by the identity
matrixI K for OLS, by the diagonal matrixV = diag(v(h1), . . . , v(hK )) for model-
free WLS procedures (e.g.,v(hk) = N(hk)−1 (k = 1, . . . , K )) and by diagonal
matricesV(βi j ) = diag(v(h1,βi j ), . . . , v(hK ,βi j ))(i, j = 1, . . . , p) for iterative
model-based WLS procedures (e.g., Cressie, 1985). The diagonal entries of ma-
tricesV andV(βi j ) are measures of the uncertainty of semivariogram estimates
at each lag. Note that the vector of weights(w(h1), . . . , w(hK )) described for
WLS by Pardo-Ig´uzquiza (1999) and Goulard and Voltz (1992), among others,
corresponds to the diagonal of the inverse ofV or V(βi j ) above.

MONTE CARLO STUDY

A Monte Carlo study was performed to compare the statistical properties
of eight least-squares estimators of sills in the context of the LMC: the OLS
estimator plus four WLS and three GLS estimators. The weighing functions of the
four WLS estimators are based on those presented in Pardo-Ig´uzquiza (1999) for
fitting a single direct semivariogram model. The WLS procedures are defined by
the following matrices whose diagonal entries follow from four approximations
of the variance of direct semivariogram estimates atK lags:

WLS1: V = diag(N(h1)−1, . . . , N(hK )−1), whereN(hk) denotes the number of
pairs of observations at distance laghk (Goulard and Voltz, 1992);

WLS2: V = diag(δ(h1)2/N(h1), . . . , δ(hK )2/N(hK )), whereδ(hk) denotes the av-
erage distance for thekth lag (Zhang, Van Eijkeren, and Heemink, 1995);

WLS3: V(βi j ) = diag(γ (h1,βi j )
2/N(h1), . . . , γ (hK ,βi j )

2/N(hK ))(i, j = 1, . . . ,
p), using Cressie’s (1985) approximation for the variance of semivariogram
estimates;
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WLS4: V(βi j ) = diag({γ (h1,βi j )}2, . . . , {γ (hK ,βi j )}2)(i, j = 1, . . . , p), using
the square of the modeled semivariogram ordinate as an approximation of the
variance (Pardo-Ig´uzquiza, 1999).

The WLS3 and WLS4 procedures are model-based and iterative. Since the cor-
responding weighing functions were only discussed for direct semivariograms
(Cressie, 1985; Pardo-Ig´uzquiza, 1999), it was necessary to adapt them for cross
semivariograms (see the Appendix).

We studied the following three GLS procedures:

GLS1: Iterative procedure based on the variance–covariance matrix estimates
Σ(β̂i j )(i, j = 1, . . . , p) obtained by using Equation (12) with sill estimates;

GLS2: Procedure based on the true variance–covariance matricesΣ(βi j )(i, j =
1, . . . , p) calculated by using Equation (12) with the theoretical sills, for
purposes of comparison with GLS1 in which theβi j ’s are estimated—GLS2
is iterative only if any of the sill matrix estimates is not positive
semidefinite;

GLS3: Iterative procedure based on an approximation of variance–covariance ma-
trices Σ(βi j )(i, j = 1, . . . , p) that uses the formula for the correlation be-
tween semivariogram estimates in the case of spatial independence of the
observations (Genton, 1998b). The GLS3 procedure follows from the sug-
gestion made by Genton (1998b) and Furrer and Genton (1999) of using
only the lags corresponding to the vertical and horizontal directions in a reg-
ular sampling grid. Technical details about GLS3 are given in the
Appendix.

All simulated data were generated on a 12× 12 regular grid (i.e.,n = 144).
We considered 16 scenarios for our Monte Carlo study, corresponding to different
combinations of four simulation parameters (Table 1):

(1) the number of spatial structuresS was 2 or 3, that is, a nugget effect
representing the measurement error and spatial sources of variation at
distances smaller than the shortest sampling distance (i.e., 1 unit) and
one or two spherical semivariogram models;

(2) for scenarios withS= 2, three increasing values of range were considered
for the spherical model: 2, 3.5, and 5; forS= 3, all scenarios were
based on ranges of 2 and 5 for short- and long-range spherical models,
respectively;

(3) the number of variablesp was 2 or 6;
(4) the correlations between variables were of same sign, or not, for all spatial

structures. This latter parameter reflects various scale dependencies in
the correlations among variables. Scale dependence here is defined as a
change in the sign or in the magnitude, or both, of the correlation between
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Table 1. Simulation Parameter Values used in the 16 Scenarios of the Monte Carlo Study, With the
Location of Each Scenario in Figures 1–4

Ranges for
Number of spherical models Correlation sign
spatial Scale Number of Panel in

Scenario structuresS ϕ2 ϕ3 dependence s1 s2 s3 variablesp Figures 1–4

1 2 2 No + + 2 A
2 2 2 No + + 6 A
3 2 2 Yes − + 2 A
4 2 2 Yes − + 6 A
5 2 3.5 No + + 2 B
6 2 3.5 No + + 6 B
7 2 3.5 Yes − + 2 B
8 2 3.5 Yes − + 6 B
9 2 5 No + + 2 C

10 2 5 No + + 6 C
11 2 5 Yes − + 2 C
12 2 5 Yes − + 6 C
13 3 2 5 No + + + 2 D
14 3 2 5 No + + + 6 D
15 3 2 5 Yes + − + 2 D
16 3 2 5 Yes + − + 6 D

variables from one spatial structure to another. For each spatial structure,
the magnitude of the (multiple) correlation was

√
0.5 for all scenarios.

For p = 6, only some of the pairs of variables were correlated, namely
Z1 with Z4, Z2 with Z5, andZ3 with Z6.

The matrix of theoretical sill valuesBs was calculated as the product of
the p× p matrix of correlations between variables at spatial structures and the
proportion of the total variation allocated to that structure, to insure that

∑S
s=1 Bs =

Cov(Z) under the assumption of second-order stationarity. ForS= 2, the nugget
effect and the spherical semivariogram model were given respectively 1/3 and 2/3
of the total variation, while forS= 3, each spatial structure was allocated 1/3 of
the total variation.

Eachp-variate spatial data set was simulated using

z= Ψε (17)

wherez is thenp× 1 vector of simulated data,ε is annp× 1 vector ofN(0, 1)
pseudo-random numbers, andΨ is thenp× np lower triangular matrix resulting
from the Cholesky decomposition of thenp× np variance–covariance matrixC,
such thatC=ΨΨT. The matrixC was calculated as

∑S
s=1 (Bs⊗ ρs), with ρs the
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n× n matrix of values of the basic auto- or cross-correlation function for spatial
structures and⊗ the Kronecker product. Sample data for each random variable
were standardized to zero mean and unit variance.

The experimental semivariograms were evaluated up to the 6-unit distance lag.
Distance lags{h1, . . . , hK } were chosen to correspond to exact distances between
grid nodes, so that all pairs of observations used to evaluate the semivariogram at a
given distance laghk were located exactly at that distance and the average distance
at thekth lag was equal to the exact distance. The number of lagsK was thus
18 for all procedures, except GLS3 for which K = 6 (Genton, 1998b). An LMC
was fitted to thep(p+ 1)/2 experimental semivariograms, using the algorithm
described in the previous section.

For each of the eight least-squares estimators of sills, the empirical bias,
the empirical variance, and the mean square error were calculated from 2500
simulation runs for each of the 16 scenarios. We used our own simulation pro-
gram written in MATLAB language (The MathWorks, 2002) for this
purpose.

SIMULATION RESULTS

Results on the empirical variance of sill estimators in the 16 scenarios are
reported separately for direct and cross semivariograms (Figs. 1 and 2), and so
are results on the empirical bias (Figs. 3 and 4). The values reported are average
empirical variances or biases calculated over the total number of direct or cross
semivariograms for a given spatial structure in each of the scenarios. The statis-
tical properties of the eight least-squares estimators of sills were compared for
12 scenarios withS= 2 and four scenarios withS= 3, that is, in 36 situations. By
definition, the mean square error (MSE) of an estimator is equal to its empirical
variance plus its squared empirical bias; the empirical bias is obtained by subtract-
ing the theoretical value of the parameter from the sample mean of estimates. In
our study, the MSE of all sill estimators was accounted for mostly by the empir-
ical variance instead of the squared empirical bias whose values were relatively
small—outside the context of the LMC, this could be expected on a theoretical
basis—and this is why we do not report results on the MSE. We present results on
the empirical bias instead of the squared empirical bias for the following reason.
Although a low value of average empirical bias can result from the combination
of positive and negative empirical biases, we observed that the sign of empiri-
cal biases for a given spatial structure in a given scenario was generally constant
and that the patterns were basically the same. We also chose to report results on
nonsquared empirical biases because of the additional information that their sign
provided in terms of direction (upwards vs. downwards). Below, we give a gen-
eral overview of our simulation results before reporting on specific effects of the
simulation parameters.
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Figure 1. Empirical variance of sill estimators for direct semivariograms. See Table 1 for the de-
scription of the scenarios found in panels A–D. The number following the panel letter identifies the
spatial structures, with 1 for the nugget effect. Circles (•,◦) are for p = 2 variables, and triangles
(M,N) for p = 6. Filled symbols (•,N) represent the absence of scale dependence of the correlations,
and empty symbols (◦,M), the presence of such scale dependence. See text for the definition of the
least-squares estimation procedures.

General Overview

Differences in the empirical variance of the eight least-squares estimators of
sills are relatively constant among spatial structures and scenarios (Figs. 1 and 2).
For direct semivariograms, the GLS1 and GLS2 estimators have the two smallest
variances in 26 situations, and are among the best three in 32 situations (Fig. 1).
For cross semivariograms, GLS1 and GLS2 have the two smallest variances in
32 situations, and are among the best three in all 36 situations (Fig. 2). Results
for the GLS3 procedure proposed by Genton (1998b) are more dependent on the
combination of simulation parameter values considered in a given scenario. GLS3

is also the only least-squares procedure for which the algorithm did not converge
for some of the 2500 simulation runs. Since the major part of the MSE comes
from the empirical variance of sill estimators, the results above already support
the conclusion that the GLS1estimator be recommended in practice in the context
of the LMC because of its greater efficiency overall, compared to the OLS, WLS1–4

and GLS3 estimators.
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Figure 2. Empirical variance of sill estimators for cross semivariograms. See Table 1 and caption
of Figure 1 for the description of scenarios represented in each panel and the meaning of symbols.

The other least-squares estimation procedure that performs well in terms
of empirical variance is the model-free WLS2, which is among the best three
in 24 situations for direct semivariograms (Fig. 1) and 35 situations for cross
semivariograms (Fig. 2). The model-based WLS3 and WLS4 generally possess a
smaller empirical variance than OLS and WLS1, but rarely perform better than
GLS1, GLS2, or WLS2.

The patterns observed for the empirical bias (Figs. 3 and 4) vary with the
combinations of simulation parameter values in the scenarios. Squared empiri-
cal biases tend to be of one or two orders of magnitude smaller than empirical
variances.

Effect of Simulation Parameters

The four simulation parameters used to define the 16 scenarios in the Monte
Carlo study—number of spatial structures, value of ranges, number of variables,
and scale dependence of the correlations—have less complex effects on the em-
pirical variance than on the empirical bias of sill estimators. For direct and cross
semivariograms (Figs. 1 and 2), the following effects on the empirical variance are
observed: (i) all other things being equal, variances are greater when correlations
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Figure 3. Empirical bias of sill estimators for direct semivariograms. See Table 1 and caption of
Figure 1 for the description of scenarios represented in each panel and the meaning of symbols.

are not scale-dependent; (ii) WLS3 and WLS4 have smaller variances than OLS as
the range increases; (iii) GLS3 has relatively higher variances at spatial structures
that are more autocorrelated.

The sign or direction of the empirical bias is associated primarily with the
spatial structure for which the sills are estimated. ForS= 2, there is a positive
bias for the nugget effect and, for most of the least-squares estimation procedures,
a negative bias for the spherical structure (Fig. 3, panels A and B; and Fig. 4,
panels A and B). ForS= 3, the sill estimates for the first spherical structure
are biased upwards for direct and cross semivariograms (Fig. 3, panel D2 and
Fig. 4, panel D2). Differences in the sign or direction of the empirical bias among
least-squares estimation procedures exist, however (Fig. 3, panels C2 and D1;
and Fig. 4, panel C2). Another noticeable effect is that the empirical bias of sills
for cross semivariograms is inflated when correlations are scale-dependent (Fig. 4,
with the exceptions of panels B1, C1, and C2). This notwithstanding, results on the
empirical bias suggest complex interactions among the four simulation parameters.

The differences in the simulation parameter values among scenarios affected
the ability of the LMC algorithm to converge for one of the least-squares proce-
dures, GLS3. For this procedure, the algorithm converged in all 2500 simulation
runs for only four scenarios (1, 3, 4, and 13), but did not converge in more than
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Figure 4. Empirical bias of sill estimators for cross semivariograms. See Table 1 and caption of
Figure 1 for the description of scenarios represented in each panel and the meaning of symbols.

100 simulation runs for six scenarios, all characterized byp = 6 (14, 8, 16, 12, 6,
and 10).

DISCUSSION

To the best of our knowledge, all studies comparing the statistical properties of
different least-squares estimators have been conducted within the context of fitting
a single direct semivariogram model (see our literature review in the Introduction).
A main question is, therefore, to determine whether the statistical properties of
least-squares estimators reported in these studies are maintained within the context
of the LMC.

The general overview of our simulation results suggests that some of the pat-
terns observed in the studies focusing on the fitting of a single direct semivariogram
model are, in fact, maintained in the context of the LMC. On the one hand, OLS is
always among the worst, when not the worst of all least-squares estimators. On the
other hand, the greater efficiency of the GLS estimator compared to the OLS and
WLS estimators, which was demonstrated in past studies (Genton, 1998b; Lahiri,
Lee, and Cressie, 2002; M¨uller, 1999; Pardo-Ig´uzquiza and Dowd, 2001), is also
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observed in the context of the LMC. In particular, it must be noted that WLS1, which
has been used for many studies based on the LMC in the past, performs relatively
poorly. Furthermore, we observed that the better performance of the GLS estima-
tors of sills is more pronounced for cross than for direct semivariograms, which
strongly supports their use in studies investigating scale-dependent relationships
among variables. To our knowledge, our study is the first that addressed the issues
of estimating the vector of weights (WLS) and the variance–covariance matrix of
cross semivariogram estimates (GLS) for fitting a cross semivariogram model and
assessed the statistical properties of the corresponding least-squares estimators.

Results for GLS1 and GLS2 are very similar. There are at least three possible
explanations for this similarity. First, the use ofβ̂i j in Σ(β̂i j ) is adequate in GLS1,
so thatΣ(β̂i j ) is close to the theoreticalΣ(βi j ) that is used in GLS2 but is unknown
in practice. Second, the knowledge of the correct autocorrelation structure through
the ranges in the semivariogram model is more important than the sills themselves.
Third, the sill matrix estimates of GLS1 and GLS2 require similar correction for
positive semidefiniteness. These three explanations may apply altogether or not,
depending on the situation. For instance, the constraint of positive semidefiniteness
may be more a problem forp = 6 than forp = 2.

The GLS3 procedure proposed by Genton (1998b) did not perform as well as
the GLS1 procedure based on the direct computation of the variance–covariance
matrix of semivariogram estimates that we propose. In fact, simulation results pre-
sented in Genton (1998b, Table 2, p. 336) for regularly spaced data in R1 indicated
that, although his GLS procedure was more efficient than WLS3 (Cressie, 1985) for
estimating the range of the model, there were no clear differences between proce-
dures in the empirical bias and variance of sill estimators for the nugget effect and
the spherical structure. Note that in the GLS procedure of Genton (1998b), a direct
semivariogram model can be fitted to robust semivariogram estimators (Cressie
and Hawkins, 1980; Genton, 1998a; Lark, 2000) which, contrary to Matheron’s
classical estimator, are not expressed as a quadratic form. In the same procedure,
however, the correlation matrix of Matheron’s semivariogram estimates is used
as an approximation to the correlation matrix of robust semivariogram estimates.
Incorporating robust semivariogram estimators in the context of the LMC seems
possible to us, but will require further investigation with regard to cross semivari-
ograms (Lark, 2002).

The good performance of WLS2 (Zhang, Van Eijkeren, and Heemink, 1995)
observed in our study is in agreement with results of studies focusing on the fitting
of a single direct semivariogram model. Indeed, those results demonstrated that
WLS2 had better finite sample properties than Cressie’s (1985) WLS3 procedure
(Zhang, Van Eijkeren, and Heemink, 1995) and that WLS2 performed better than
other WLS procedures in the presence of a nugget effect (Pardo-Ig´uzquiza, 1999).
An interesting aspect of WLS2 is that it is model-free and hence, depends only
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on the spatial design of the sampling scheme. Although it is not clear why WLS2

performs better than other WLS procedures, Zhang, Van Eijkeren, and Heemink
(1995) highlighted the fact that the model-based WLS3 was not using the same
weight when positive and negative deviations of the empirical semivariogram
ordinate from the fitted model were of same magnitude. Note that this is also true
for WLS4 and GLS3 (Genton, 1998b), since both use values of the experimental
semivariogram for their weighing procedure (see Equation (A7) in the Appendix).

The contribution of the squared empirical bias to the mean square error of
sill estimators was found to be relatively small in our study. However, the fact that
there is a bias is indicative of some effect of the LMC algorithm on the statistical
properties of sill estimators because in theory, least-squares estimators of slopes
in linear models are known to be unbiased (Searle, 1971, p. 89). There may be
two reasons for such an effect. First, some of the matrices of initial sill estimates
had to be transformed to ensure their positive semidefiniteness. Second, since all
direct and cross semivariogram models were fitted using the same set of basic
semivariogram functions, the range(s) imposed by the LMC might not correspond
exactly to the best range(s) possible in the least-squares sense for some of the
empirical semivariograms. This problem might have been exacerbated when a
certain degree of nonstationarity was induced in the simulated data, especially in
scenarios with longer theoretical range. The complex patterns of the empirical
bias observed in our Monte Carlo study may also reflect interactions between the
LMC algorithm and the simulation parameter values used in the scenarios. The
difference in the effect of scale dependence of the correlations on the results for
direct and cross semivariograms suggests that the estimators of their respective
sills present different characteristics.

CONCLUDING REMARKS

Our main objective was to test the expectation that the GLS estimator of
sills possesses better statistical properties than the OLS and WLS estimators in the
context of the LMC, when the ranges are assumed to be known and only the sills are
unknown. The results of our Monte Carlo study support the conclusion that this is
the case because the better properties in terms of variance insured in theory appear
to be maintained with minimum bias after application of the LMC algorithm. In
addition, the algorithm for fitting the LMC presented in this article extends the
algorithm proposed by Goulard (1989), by including any type of least-squares
procedure. Thus, the use of GLS can improve the performance of future studies
using the LMC. It must be noted that the use of distance classes instead of exact
distances in the computation of direct and cross empirical semivariograms has an
effect at various degrees on the performance of all least-squares procedures, but
when this is the case, the GLS procedure appears to keep its better relative efficiency
overall (results not reported here). Another point that is worth mentioning for future
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applications to real data sets is that the standardization of sample data for each
variable that is commonly performed prior to any quantitative analysis has an
effect on the distribution of sill estimates because it results in a different plateau
in direct empirical semivariograms. Guidelines for future work in the context
of the LMC include the question of robust estimation of cross semivariograms,
the assessment of GLS sill estimators to investigate scale-dependent relationships
among variables, and the development of a theoretical framework to further explain
the statistical properties of sill estimators.

ACKNOWLEDGMENTS

The second and fourth authors acknowledge individual research grants from
the Natural Sciences and Engineering Research Council of Canada. For the Monte
Carlo study, we benefited from computing facilities made available through a
Canada Foundation for Innovation grant. We are grateful to two reviewers for their
comments on an earlier draft of this article.

REFERENCES

Castrignan`o, A., Giugliarini, L., Risaliti, R., and Martinelli, N., 2000a, Study of spatial relationships
among some soil physico-chemical properties of a field in central Italy using multivariate geo-
statistics: Geoderma, v. 97, no. 1–2, p. 39–60.

Castrignan`o, A., Goovaerts, P., Lulli, L., and Bragato, G., 2000b, A geostatistical approach to estimate
probability of occurrence of Tuber melanosporum in relation to some soil properties: Geoderma,
v. 98, no. 3–4, p. 95–113.

Cressie, N., 1985, Fitting variogram models by weighted least squares: Math. Geol., v. 17, no. 5,
p. 563–586.

Cressie, N., and Hawkins, D. M., 1980, Robust estimation of the variogram, I: Math. Geol., v. 12, no. 2,
p. 115–125.

Dobermann, A., Goovaerts, P., and George, T., 1995, Sources of soil variation in an acid Ultisol of the
Philippines: Geoderma, v. 68, no. 3, p. 173–191.

Dobermann, A., Goovaerts, P., and Neue, H. U., 1997, Scale-dependent correlations among soil
properties in two tropical lowland rice fields: Soil Sci. Soc. Am. J., v. 61, no. 5, p. 1483–
1496.

Furrer, R., and Genton, M. G., 1999, Robust spatial data analysis of Lake Geneva sediments with
S+SpatialStats: Syst. Res. Inform. Sci., v. 8, no. 4, p. 257–272.

Genton, M. G., 1998a, Highly robust variogram estimation: Math. Geol., v. 30, no. 2, p. 213–221.
Genton, M. G., 1998b, Variogram fitting by generalized least squares using an explicit formula for the

covariance structure: Math. Geol., v. 30, no. 4, p. 323–345.
Golub, G. H., and Pereyra, V., 1973, The differentiation of pseudo-inverses and nonlinear least

squares problems whose variables separate: SIAM J. Numer. Anal., v. 10, no. 2, p. 413–
432.

Goovaerts, P., 1994, On a controversial method for modeling a coregionalization: Math. Geol., v. 26,
no. 2, p. 197–204.

Goovaerts, P., 1997, Geostatistics for natural resources evaluation: Oxford University Press, New York,
483 p.



P1: KEE

Mathematical Geology [mg] PP1175-matg-484953 May 6, 2004 1:51 Style file version June 25th, 2002

GLS Fitting of the Linear Model of Coregionalization 341

Goovaerts, P., Sonnet, P., and Navarre, A., 1993, Factorial kriging analysis of springwater contents in
the Dyle River basin, Belgium: Water Resour. Res., v. 29, no. 7, p. 2115–2125.

Goovaerts, P., and Webster, R., 1994, Scale-dependent correlation between topsoil copper and cobalt
concentrations in Scotland: Eur. J. Soil Sci., v. 45, no. 1, p. 79–95.

Gorsich, D. J., Genton, M. G., and Strang, G., 2002, Eigenstructures of spatial design matrices: J.
Multivariate Anal., v. 80, no. 1, p. 138–165.

Goulard, M., 1989, Inference in a coregionalization model,in Armstrong, M., ed., Geostatistics, vol. 1:
Kluwer Academic, Dordrecht, p. 397–408.

Goulard, M., and Voltz, M., 1992, Linear coregionalization model: Tools for estimation and choice of
cross-variogram matrix: Math. Geol., v. 24, no. 3, p. 269–286.

Guttman, I., Pereyra, V., and Scornik, H. D., 1973. Least-squares estimation for a class of nonlinear
models: Technometrics, v. 15, no. 2, p. 209–218.

Jian, X. D., Olea, R. A., and Yu, Y. S., 1996, Semivariogram modeling by weighted least squares:
Comput. Geosci., v. 22, no. 4, p. 387–397.

Journel, A. G., and Huijbregts, C. J., 1978, Mining geostatistics: Academic Press, London, 600 p.
Lahiri, S. N., Lee, Y. D., and Cressie, N., 2002, On asymptotic distribution and asymptotic efficiency

of least squares estimators of spatial variogram parameters: J. Stat. Plan. Infer., v. 103, no. 1–2,
p. 65–85.

Lark, R. M., 2000, A comparison of some robust estimators of the variogram for use in soil survey:
Eur. J. Soil Sci., v. 51, no. 1, p. 137–157.

Lark, R. M., 2002, Robust estimation of the pseudo cross-variogram for cokriging soil properties: Eur.
J. Soil Sci., v. 53, no. 2, p. 253–270.
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APPENDIX

1. The spatial design matrixA(h) is calculated as

A(h) = η(h)−M (h)

2N(h)
(A1)

whereM (h) is then× n binary matrix (muv) with muv = 1 if the vector
linking sampling locationsu and v corresponds to lagh and muv = 0
otherwise,η(h) is then× n diagonal matrix (ηuv) with ηuu =

∑N
v=1 muv

(i.e., the number of neighbors for sampling locationu at lagh), andN(h)
is the number of pairs of observations at lagh.

2. Then× n covariance matrixC(βi j ) can be calculated as

C(βi j ) =
S∑

s=1

βi j ,sρs (A2)

whereρs is then× nmatrix of values of the basic auto- or cross-correlation
function for spatial structures. Instead of evaluating Equation (12),p(p+
1)/2 times one entry at a time, it is possible to take advantage of the
fact thatρs is the same for all semivariograms, by using the following
equation:

Cov(γ ∗i j (hk), γ ∗i j (hk′ ))

=
S∑

r=1

S∑
q=1

[(βi j ,rβi j ,q + βi i ,rβ j j ,q) tr (ρr A(hk)ρqA(hk′ ))] (A3)

where each term tr(ρr A(hk)ρqA(hk′ )) needs to be calculated only once.
3. We adapted Cressie’s (1985) approximation for the variance of a direct

semivariogram to use it with a cross semivariogram, by applying the gen-
eral form of Equation (12) withi 6= j andhk = hk′ . This adaptation pro-
vided us with the following approximation for the variance of a cross
semivariogram

var(γ ∗i j (hk))

∼= γi j (hk,βi j )
2+ γi i (hk,βi i )γ j j (hk,β j j )

N(hk)
, k = 1, . . . , K (A4)
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4. In Genton (1998b, p. 332), the covariance matrix of semivariogram esti-
mates is given by

Σ(βi j ) = R ◦ ξ(βi j ) (A5)

where the symbol◦ denotes the Hadamard product of two matrices. The
entry (hk, hk′ ) of theR matrix is

Corr(γ ∗i j (hk), γ ∗i j (hk′ )) = tr[A(hk)A(hk′ )]√
tr[A(hk)A(hk)]tr[A(hk′ )A(hk′ )]

(A6)

which is calculated under the assumption of spatial independence of the
observations and hence, depends only on the spatial design matrixA(h).
The entry (hk, hk′ ) of the matrixξ(βi j ) in Equation (A5) is calculated by
using an extension of Equation (A4) without the constrainthk = hk′ :

0.5(γi j (hk,βi j )γi j (hk′ ,βi j )+ γi i (hk,βi i )γ j j (hk′ ,β j j ))√
N(hk)N(hk′ ),

i, j = 1, . . . , p

(A7)

GLS3 utilizes only the distance lagshk that are found on the vertical
and horizontal directions of a regular 12× 12 grid and that correspond to
integer values. This is why forhk = 5, a different spatial design matrix
A(hk) had to be calculated for GLS3 in our Monte Carlo study because the
one used for the other seven least-squares procedures included diagonal
directions. In this case, we followed Genton (1998b) and Gorsich, Genton,
and Strang (2002), who used the Kronecker product of the spatial design
matrices calculated separately for each direction to compute spatial design
matrices in 2D.


