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Reproduction of the Mean, Variance, and Variogram
Model in Spectral Simulation1

Tingting Yao2

The application of spectral simulation is gaining acceptance because it honors the spatial distribution
of petrophysical properties, such as reservoir porosity and shale volume. While it has been widely
assumed that spectral simulation will reproduce the mean and variance of the important properties
such as the observed net/gross ratio or global average of porosity, this paper shows the traditional way
of implementing spectral simulation yields a mean and variance that deviates from the observed mean
and variance. Some corrections (shift and rescale) could be applied to generate geologic models yield-
ing the observed mean and variance; however, this correction implicitly rescales the input variogram
model, so the variogram resulting from the generated cases has a higher sill than the input variogram
model. Therefore, the spectral simulation algorithm cannot build geologic models honoring the de-
sired mean, variance, and variogram model simultaneously, which is contrary to the widely accepted
assumption that spectral simulation can reproduce all the target statistics. However, by using Fourier
transform just once to generate values at all the cells instead of visiting each cell sequentially, spectral
simulation does reproduce the observed variogram better than sequential Gaussian simulation. That
is, the variograms calculated from the generated geologic models show smaller fluctuations around
the target variogram. The larger the generated model size relative to the variogram range, the smaller
the observed fluctuations.

KEY WORDS: Fourier transform, Fourier coefficient, density spectrum, sequential-Gaussian simu-
lation, fluctuation.

INTRODUCTION

A spectral-simulation method, called Fourier Integral Method (FIM), has been
proposed to generate models that will honor the spatial continuity/variogram of
a modeled areaz(u) in one-, two-, or three dimensions (Borgman, Taheri, and
Hagan, 1984; Gutjahr, Kallay, and Wilson, 1987; Mckay, 1988; Pardo-Iguzquiza
and Chica-Olmo, 1993). This method is gaining acceptance because it honors
the spatial continuity of petrophysical properties, such as reservoir permeability,
porosity, and shale volume than do traditional sequential simulation algorithms.
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The spatial structure is characterized by a covariance/variogram model in the space
domain and is represented by a density spectrum in the frequency domain. Dis-
tinct from the traditional sequential simulation methods such as sequential Gaus-
sian simulation, spectral simulation is a global method in the sense that a global
density spectrum is calculated once from the variogram model and the inverse
Fourier transform is performed on the Fourier coefficient only once to generate
a model. The advantage associated with this method is a better reproduction of
the observed spatial properties. However, the widely accepted assumption that
spectral simulation will reproduce the mean, variance, and variogram model of
the interested properties simultaneously is not true as we will show in this paper.
The theoretical background of the spectral simulation is first reviewed using 1D
notations.

The spatial structure of a reservoir propertyz(u) is characterized by the co-
varianceCz(h) or variogramγz(h) in the space domain. In 1D, the covariance of
z(u) is defined as the convolution product (Bracewell, 1986):

Cz(h) =
∫ +∞
−∞

z(u) · z(u+ h) du= z ∗ ∨z,where
∨
z(u) = z(−u) (1)

The Fourier transform (FT) of the covariance into the density spectrum ofz(u) in
the frequency domain exchanges convolution and multiplicative products:

s(ω) = FT(Cz) = FT(z) · FT(
∨
z) = Z(ω) · Z∗(ω) = |Z(ω)|2 (2)

whereZ(ω) = FT(z) = ∫ z(u)e−iωudu, andZ∗(ω) is the complex conjugate. The
terms(ω) is referred to as the density spectrum, the module|Z(ω)| as the amplitude
spectrum,Z(ω) = |Z(ω)|e−iφ(ω) as the Fourier coefficient, andφ(ω) as the phase.
The spectral-simulation method is based on the correspondence between the space
property,z(u), and the frequency counterparts,s(ω) andϕ(ω), as illustrated in
Figure 1.

In order to generate realizations ofz(u), it is sufficient to know its covari-
ance values. The sample covariance can be estimated from the sample data of
z(u):

ĈZ(h) = 1

N(h)

N(h)∑
α=1

z(uα) · z(uα + h)−mz−hmz+h (3)

where N(h) is the number of data pairs approximately separated by distance
h, mz−h = 1

N(h)

∑N(h)
α=1 z(uα) is the mean of the tail values,mz+h = 1

N(h)

∑N(h)
α=1

z(uα + h) is the mean of the head values.
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Figure 1. The correspondence between the space domain variable,z, and the frequency
counterparts,s(ω) andϕ(ω).

Although covariance values are used in spectral simulation, the semivari-
ogram alternative is preferred in characterizing spatial structure, which is related
to covariance as:

γz(h) = 1

2

∫
Var{z(u+ h)− z(u)} = Cz(0)− Cz(h), if Cz(0) exists (4)

whereCz(h) is the covariance, andCz(0)= V ar{z(u)} is the stationary variance.
The sample semivariogram can be estimated as:

γ̂z(h) = 1

2N(h)

N(h)∑
α=1

(z(uα)− z(uα + h))2 (5)

Due to the limited number of samples available, only a few experimental vari-
ogram values, ˆγz(hi ), i = 1, . . . ,n, can be inferred from the data. These experi-
mental values may display large sampling fluctuations irrelevant to the underlying
spatial structure. Typically, a closed-form analytical model is fitted on the vari-
ogram values to smooth out the sampling fluctuations, as well as to ensure that the
corresponding covariance is positive definite. These analytical models are simply
positive combinations of some basic structures which are known to be positive def-
inite. The permissible basic variogram structures include the nugget-effect model,
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Figure 2. An example of the relation between the variogram, covariance, and density spectrum.

spherical model, exponential model, Gaussian model, and power model. These
structures, except for the power model (which is seldom seen in reality), actually
or asymptotically reach the sillc, i.e., the varianceCz(0), at a distance called range
a. For example, for the spherical model,

γz(h) = c× Sph

(
h

a

)
=
{

c×
[
1.5h

a − 0.5
(

h
a

)3]
, if h ≤ a

c otherwise

Given a variogram model, the covariance can be calculated asCz(h)=Cz(0)−
γz(h), and the amplitude spectrum|Z(ω)|calculated as

√
FT(Cz) per equation

(2). An example of the relation between the variogram, covariance, and ampli-
tude spectrum is given in Figure 2. Note that the variogram must attain a sill for
Cz(h) = Cz(0)− γz(h) to apply, which is a nonconsequential assumption satisfied
in most situations. To generate realizations through spectral simulation, simply
draw phasesϕ(ω) randomly from a uniform distribution within [0, 2π ] and get the
Fourier coefficientZ(ω) = |Z(ω)|e−iϕ(ω), the inverse Fourier transform of which
provides a realization ofz(u) in the space domain. This can be summarized by the
following relationship:

The implementation details will be discussed in the following section.
There are several advantages of spectral simulation over traditional geostatis-

tical simulation. The spectral-simulation method is fast, particularly when based
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on the Fast Fourier Transform (Bruguera, 1996; Kar, 1994; Lam, 1995; Mckay,
1998). It is a global method in the sense that all of the amplitude-spectrum val-
ues over the whole field,|Z(ων)|, ν = 0, . . . , N − 1, are used simultaneously to
generate the simulated property. Therefore, the amplitude spectrum, or variogram
model in the space domain, can be honored globally over the whole field,3 instead
of only within search neighborhoods as with the traditional sequential-Gaussian
simulation method. It is also widely believed that spectral simulation can reproduce
all the target statistics—mean, variance, and variogram model, simultaneously.

Another practical advantage of using spectral simulation lies in the fact that it
does not call for an analytical variogram model, as do most other simulation algo-
rithms. The density or amplitude spectrum can be obtained either from a training
image or directly from the FFT of the experimental covariance map (cube), the
latter possibly previously smoothed (Yao, 1998b). In addition, conditioning to lo-
cal data could be accomplished through phase identification (Yao, 1998a). Due to
these advantages, spectral simulation is gaining wider application for generating
stochastic realizations of random fields or geologic models for reservoir properties.

In this paper, we will first take a closer look at the properties of the discrete
Fourier transform (DFT) and the implementation details of spectral simulation.
Then, the issue of reproduction of the mean, variance, and variogram model in
spectral simulation is discussed through both theoretical reasoning and numerical
examples. Finally, we compare the ergodic fluctuation of variograms in the real-
izations generated from spectral simulation with those from traditional sequential-
Gaussian simulation.

REVIEW OF DISCRETE FOURIER TRANSFORM
AND SPECTRAL SIMULATION

The discrete Fourier transform is the major calculation involved in spectral
simulation, so it is beneficial to take a close look at properties of the discrete
Fourier transform to be used in spectral simulation. For simplicity, the following
notation is for the 1D case, although it can be easily extended to 2D or 3D.

Given a series ofN discrete valuesf (τ ), τ = 0, . . . , N − 1, by definition the
discrete Fourier transform off (τ ) is given byF(ν), ν = 0, . . . , N − 1, written as:

F(ν) = DFT( f (τ )) = 1

N

N−1∑
τ=0

f (τ )e−i 2πτν/N . (6)

Given the discrete transformF(ν), one may recoverf (τ ) from the discrete
inverse Fourier transform:

f (τ ) = DFT−1(F(ν)) =
N−1∑
ν=0

F(ν)ei 2πτν/N . (7)
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According to the classical spectral representation theorem, any sequence of
N valuesz(hτ ) with covarianceCz(hτ ) can be expressed as a discrete inverse
Fourier transform of a finite series of Fourier coefficientsZ(ων). In 1D, that series
is written as (Bracewell, 1986):

z(hτ ) = DFT−1(Z(ων)) =
N−1∑
ν=0

Z(ων)e
i 2π ·τ ·ν/N, τ = 0, . . . , N − 1 (8)

where:

Z(ων) = |Z(ων)|e−iϕ(ων ) =
√

s(ων)e
−iϕ(ων )

is called the complex Fourier coefficient ands(ω
ν
) = 1

N DFT(C(hτ )) (Bracewell,
p. 368) is called the density spectrum.

Given a variogram modelγz(h) to be honored, the spectral simulation process
is as follows:

Step 1). Use the variogram modelγz(h) to calculate the discrete covariance
values C(hτ ), τ = 0, . . . , N − 1, using the relation C(hτ ) = Cz(h0)−
γz(hτ ), where Cz(h0) is the covariance value at 0 lag distance,Cz(hτ )
is the covariance value athτ lag distance, andhτ = τ1h, with 1h being
the cell size of the random field andτ the number of discrete cells. The
discrete Fourier transform ofCz(hτ ) provides the discrete density spectrum
s(ων), ν = 0, . . . , N − 1, whose square root provides the amplitude spec-
trum |Z(ω)| per equation (2), withωv = ν1ω, and1ω = 2π1 f = 2π ×

1
N1h .

Step 2). Randomly draw phase valuesϕ(ων), v = 0, . . . , N − 1, from a uniform
distribution within [0, 2π ]. Then, build the Fourier coefficient asZ(ων) =
|Z(ων)|e−iϕ(ων ) in the frequency domain.

Step 3). Perform inverse Fast Fourier transform onZ(ων), ν = 0, . . . , N − 1, to get
a realization of the random fieldz(hτ ), τ = 0, . . . , N − 1, in the space domain.

Note:In order for the seriesz(hτ ) to have real values in the space domain, there
should be a symmetric relationship for the corresponding Fourier coefficients in
the frequency domain, i.e.,Z(ων) = Ẑ(ωN−ν), ν = N/2+ 1, . . . , N − 1, where
both Z(ω0) andZ(ωN/2) are real values (Borgman, 1973). This, in turn, requires
that s(ων) = s(ωN−v), andϕ(ων) = −ϕ(ωN−ν) for ν = N/2+ 1, . . . , N − 1;
Z(ω0) = |Z(ω0)| cos(ϕ(ω0)); Z(ωN/2) = |Z(ωN/2)| cos(ϕ(ωN/2)). Because the
Fourier kernels satisfy the Hermitian symmetric relationship:ei 2π ·τ ·ν/N =
êi 2π ·τ ·(N−ν)/N, ν = N/2+ 1, . . . , N − 1, after expansion of equation (8) onz(hτ ),
the imaginary parts cancel out and theN valuesz(hτ ), τ = 0, . . . , N − 1, are
always real. Therefore, to generate a realization ofN real values, the discrete
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covariance values calculated in step 1) of the spectral simulation need only be sam-
pled atC(hτ ), τ = 0, . . . , N/2, i.e., up to the lag distance of half the field sizeN

2 ×
1h. The other half,C(hτ ) = C(hN−τ ), τ = N/2+ 1, . . . , N − 1, are mapped by
the symmetric relation. Therefore, the spectral simulation can
honor the covariance or variogram model only up to the half-field sizeN

2 ×1h.
The ideal way to honor the variogram model up to distanceN1h is to first gener-
ate a realization of two times the field size of interest 0, . . . ,2N − 1, then remove
elementsN, . . . ,2N − 1 and only keep the part of 0, . . . , N − 1. This way, the var-
iogram model will be reproduced up toN1h. This can be seen in the following
numerical examples. In fact under most situations, people are only concerned
about honoring the variogram model at lag distances up to the variogram range.
Therefore, so long as the field size is at least twice the variogram range, spectral
simulation reproduces the variogram model very well.

The discrete Fourier transform has the following properties in regards to
the mean, variance, and variogram of the generated realizations through spectral
simulation:

Property 1). The mean value of the generated realization isµ(z) = 1
N

∑N−1
τ=0

z(hτ ) = Z(ω0), because in DFT,
Z(ω0) = 1

N

∑N−1
τ=0 z(hτ )e−i 2π ·τ ·0/N = 1

N

∑N−1
τ=0 z(hτ ), no matter what the

phasesϕ(ων) are. Moreover,

µ(z) = 1

N

N−1∑
τ=0

z(hτ ) = Z(ω0) =
√

s(ω0) cos(ϕ(ω0)) =
√
µ(Cz) cos(ϕ(ω0)) (9)

becauses(ω) is generated from DFT ofCz.
Property 2). The variance of the generated realization is

σ 2(z) = 1

N

N−1∑
τ=0

z2(hτ )− µ2(z) =
N−1∑
ν=0

|Z(ων)|2− Z2(ω0)

=
N−1∑
ν=0

s(ων)− s(ω0) cos2(ϕ(ω0))

according to the generalized Parseval–Rayleigh theorem:
∑N−1

τ=0 | f (τ )|2 =
N
∑N−1

ν= 0 |F(ν)|2(Bracewell, p. 369). Moreover,

σ 2(z) = 1

N

N−1∑
τ=0

z2(hτ )− µ2(z) =
N−1∑
ν=0

s(ων)− s(ω0) cos2(ϕ(ω0))

= Cz(h0)− µ(Cz) cos2(ϕ(ω0)) (10)
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according to Property 1) ands($ ) is calculated from the discrete Fourier transform
of Cz(h). Therefore, the variance of the generated realizationσ 2(z) is always
smaller than the target varianceCz(h0).

Property 3). The experimental variogram value with lag distance equal to
half-field size calculated from equation (5) is

γz(hN/2) = 1

N/2

N/2∑
τ=0

(
z(hN/2+τ )− z(hτ )

)2 = 4
N/4∑
ν=1

|Z(ω2ν−1)|2

= 4
N/4∑
ν=1

s(ων) = C(h0)− C(hN/2) (11)

no matter what the phases are. Therefore, for different realizations, the variogram
values are the same at half-field size.

The above properties in regards to mean, variance, and variogram of the
generated realizations from spectral simulation can be seen from the following nu-
merical test examples. Also, the ergodic fluctuation of variograms from multiple re-
alizations is examined, compared with those from traditional sequential-Gaussian
simulation.

MEAN, VARIANCE, AND VARIOGRAM OF REALIZATIONS
GENERATED FROM SPECTRAL SIMULATION

For any property realization generated through spectral simulation, the mean
and variance of the property realization is calculated as:

µ(z) = 1

N

N−1∑
τ=0

z(hτ ) =
√
µ(Cz) cos(ϕ(ω0))

σ 2(z) = 1

N

N−1∑
τ=0

z2(hτ )− µ2(z) = Cz(h0)− µ(Cz) cos2(ϕ(ω0))

according to equations (9) and (10). The expected values of the mean and variance
of multiple realizations are:

E{µ(z)} =
√
µ(CZ)E{cos(ϕ(ω0))} = 0

E{σ 2(z)} = Cz(h0)− µ(Cz)E{cos2(ϕ(ω0))} = Cz(h0)− 1

2
µ(Cz)
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Although the expected mean value of realizations is 0, the expected variance value
is always less than the target varianceCz(h0).

In order to generate realizations with zero mean and varianceCz(h0) through
spectral simulation, the mean of covariance,µ(Cz), should be 0. Theoretically, the
mean of the covariance values, i.e.,µ(Cz) would be 0 if the generated realization
has a mean value of 0. However, in an actual implementation, the covariance is
calculated from a spherical or exponential variogram model using the formula
Cz(h) = Cz(h0)− γz(h). If the variogram model has a sill value ofCz(h0) as
most always occurs, thenCz(h) calculated from variogram models are always
greater than or equal to 0, so the mean valueµ(Cz) > 0. This can be seen in
Figure 2: given a spherical variogram model, all covariance values are greater than
or equal to 0, hence the mean of covariance values is greater than 0. Therefore,
the mean value of the simulated realization can be greater or less than 0 because
µ(z) = √µ(Cz) cos(ϕ(ω0)) with ϕ(ω0) being a randomly drawn angle. Moreover,
the variance is less thanCz(h0) becauseσ 2(z) = Cz(h0)− µ(Cz) cos2(ϕ(ω0)).

To generate realizations with zero mean value and variance equal toCz(h0),
we can correct the covariance before performing the Fourier transform to get the
density spectrum, as follows:

1. First calculate the covariance values using equationCz(h) = Cz(h0)−
γz(h).

2. Calculate the mean value of the covarianceµ(Cz).
3. Shift all covariance values by the current covariance mean value, i.e.,

C∗z (h) = Cz(h)− µ(Cz), so that the shifted covariance valuesC∗z (h) have
a zero mean. Therefore, the generated realization from spectral simulation
will have zero mean, sinceµ(z) = √µ(C∗z ) cos(ϕ(ω0)).

4. Rescale all covariance values by the ratio ofR= Cz(h0)/C∗z (h0) = Cz(h0)/
[Cz(h0)− µ(Cz)], i.e., C∗∗z (h) = C∗z (h)× R, so thatC∗∗z (h0) = Cz(h0)
while µ(C∗∗z ) = µ(C∗z )× R= 0. Hence the generated realization from
spectral simulation will have the correct variance becauseσ 2(z) = C∗z (h0)
−√µ(C∗z ) cos2(ϕ(ω0)) = Cz(h0).

After the above operations, the steps described in the previous section to
perform the spectral simulation will always generate realizations with exactly
zero mean and the correct variance.

As a numerical example, we generated a realization with a sequence of 32 data
values. Given an input spherical variogram model with a sill of 1.0 and a range of 6
cells, the mean value of the covariance isµ(Cz) = 1

32

∑31
τ=0 Cz(hτ ) =0.142 using

Cz(h) = Cz(h0)− γz(h). The rescaling ratio isR= 1.0
1.0−µ(Cz)

= 1.0
1.0−0.142 = 1.165.

Figure 3 shows the histogram of the generated realization of 32 data values
with no corrections for covariance and Figure 4 shows the histogram of the real-
ization with correction done on the covariance before calculating the target density
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Figure 3. Histogram of a simulated sequence of 32 data values, without correction on covariance.
Note that mean is not zero and standard deviation is not 1.0.

spectrum. Figure 3 shows the histogram of one specific realization withϕ(ω0) = 0:
the mean of the values in the generated realization is 0.38, which is equal to√
µ(CZ) cos(0)= √0.142= 0.38; the standard deviation equals 0.93, which is

equal to
√

Cz(0)− µ(Cz) cos2(0)= √1.0− 0.142= 0.93. Figure 4 shows that
the mean is zero and the standard deviation is 1.0 after correction made on covari-
ance values before calculating the density spectrum. Moreover, we notice that the
maximum value in Figure 4 is equal to the maximum value in Figure 3, shifted by√
µ(Cz) and rescaled by

√
R, i.e., (2.38−√0.142)×√1.165= 2.162. There-

fore, the generated data sequence from the corrected covariance before calculating
the target spectrum is equivalent to shifting and rescaling the generated realization
with no correction on the covariance, due to the linearity of the Fourier-transform
operator.

Figure 5 shows the variogram calculated from the generated sequence using
uncorrected (solid line) and a corrected (dashed line) covariance without assuming
periodicity of the data, i.e.,γ (h) = 1

2N(h)

∑N(h)
α=1 (z(uα)− z(uα + h))2 whereN(h)

is the number of data pairs which are separated by distanceh. With lag distanceh
increasing, fewer data pairs are found and there is more fluctuation in the calculated
variogram values. Note that the variogram from the corrected covariance shows a
higher sill, which is due to the rescaling of the covariance byR= 1.165. Figure 6
shows the variogram calculated from the generated sequence, assuming periodicity
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Figure 4. Histogram of a simulated sequence of 32 data values, with correction on covariance before
calculating target density spectrum. Note that mean is exactly 0.0 and standard deviation is exactly
1.0.

of the data, i.e.,z(uα) = z(uα+32), as the spectral simulation algorithm does. It
can be seen that the variogram calculated from the sequence without a covariance
correction (solid line) exactly honors the input variogram model before the distance
at 16 cells, whereas the variogram from the sequence with covariance correction
(dashed line) boosts the input variogram model by the rescaling ratio,R= 1.165.
Now the sill is no longer equal toC(0), but equals 1.165C(0). Actually, when
we shifted and rescaled the covariance, we implicitly did the same to the target
variogram model! Note also that, in Figure 6, the variogram values at distances
beyond 16 cells are simply mapping of those values at cell distances 1–15, as we
explained in the previous section.

The above example shows that the spectral simulation with covariance cor-
rection from a variogram model reproduces the mean and variance, but boosts
the variogram sill. On the other hand, with no covariance correction, the spectral
simulation honors the variogram model perfectly up to the half-field size, 16 cells
in the example, but the mean and variance from the realization deviates from the
target statistics. Therefore, in spectral simulation, either the mean and variance
of the data, or the input target variogram model, can be honored, but not both!
The inconsistency in this test example is significant because the variogram range
is relatively long compared with the size of the field (6 vs. 32). If the size of the
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Figure 5. Variogram calculated only from the 32 simulated sequence data: bold line is the input
variogram model with 1.0 sill and range 6 cells, fine line is from the data without covariance correction,
dashed line is from the data with covariance correction. Note that the dashed line is 1.165 times the
fine line.

field is much larger than the variogram range (e.g., the field size is 100 times the
variogram range), then the deviation of the statistics from their target will be min-
imal, as shown by Pardo–Iguzquiza and Chica–Olmo (1993). In 3D situations, the
mean of the covariance cube calculated from any variogram model with a reason-
ably not-too-long range is very close to 0 due to the contribution of lots of zero
covariance values beyond the variogram range. Then, both the mean and variance,
and the variogram model up to the half-field size, can be honored very well in 3D
realizations.

ERGODIC FLUCTUATION OF VARIOGRAMS: COMPARED WITH
SEQUENTIAL GAUSSIAN SIMULATION

Any simulation algorithm aims at generating realizations which reproduce
the target statistics, such as variogram models. “Ergodic fluctuation” refers to the
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Figure 6. Variogram calculated from the simulated sequence data, assuming periodicity: bold line is
the input variogram model with sill at 1.0 and range 6 cells, fine line is from the data without covariance
correction, dashed line is from the data with covariance correction. Note: 1). The dashed line is 1.165
times the fine line. 2). The variogram is symmetric with respect to 10 lag distance, if the variogram
values at distance beyond half-field size is mapped to the negative lag distance, refer to the discussion
in the Introduction Section.

discrepancy between the realization statistics and the input model statistics, such
as the difference between the variogram calculated from the realization and the
input variogram model.

The stationary random functionz(u) is said to be “ergodic” for any parame-
terµ if the corresponding realization statisticsµ(l ) tend towards the input model
statisticsµ as the size of the simulation field increases. Thus, ifz(u) is stationary
and ergodic and the simulation field is large enough, the statistics of any realiza-
tion are expected to be exactly the same as the input model statistics. Due to its
global algorithm of using the global density spectrum, spectral simulation usually
generate realization showing more ergodic property.

Ergodic Fluctuation of Varigorams With Short
Range Relative to Field Size

As an example, we generate a 3D model of 64× 64× 16 cells with the cell
spacing 1.0× 1.0× 1.0. The target variogram model is spherical, anisotropic with
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principal ranges 20, 10, and 5, and unit variance:

γ (|h|) = Sph

√( h1

20.0

)2

+
(

h2

10.0

)2

+
(

h3

5.0

)2


whereh1corresponds to the major horizontal direction of continuity, here N45E,
h2 is the horizontal direction perpendicular toh1, andh3 is the vertical direction.
Using the spectral-simulation algorithm, twenty 3D realizations were generated.
One realization volume and 20 variograms calculated from all realizations, with
the input model shown as bold, are in Figure 7. Note that in Figure 7(B), the vari-
ogram values intersect to the value of 1.0 at a distance of 8.0, which is explained
by Property (3) of the discrete Fourier transform. The calculated variograms dis-
play expected fluctuations around the input variogram model. For comparison of
the ergodic fluctuation, we also apply the traditional sequential-Gaussian sim-
ulation (sgsim) method to generate 20 similar realizations. One realization and
20 variograms calculated from all realizations are shown in Figure 8. Compared

Figure 7. One 3D realization volume with input variogram model (bold line) and 20 simulated var-
iograms (fine lines), using spectral simulation. (A) simulated volume; (B) simulated variogram and
variogram model in the vertical direction; (C) simulated variogram and variogram model in the N45E
direction; (D) simulated variogram and variogram model in the N45W direction.
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Figure 8. One 3D realization volume with input variogram model (bold line) and 20 simulated
variograms (fine lines), using sequential Gaussian simulation. (A) simulated volume; (B) simulated
variogram and variogram model in the vertical direction; (C) simulated variogram and variogram
model in the N45E direction; (D) simulated variogram and variogram model in the N45W direction.

with results from spectral simulation, the variograms from models generated us-
ing sequential-Gaussian simulation fluctuate more around the input model. The-
oretically, the kriging system at each cell considers correlation within the search
neighborhood. However, with the simulation proceeding sequentially, more con-
ditioning data are found within the search neighborhood of the current simulated
cell. To avoid solving a huge kriging system, only a specific number of condition-
ing data very close to the current cell, usually no more than 48, are used in the
kriging system. Therefore, in the generated realization, only variogram values at
very short lag distances are reproduced.

Ergodic Fluctuation of Varigorams With Long
Range Relative to Field Size

In the above example, the range of the variogram model is less than half the
field size of the 3D model in the X, Y, or Z directions. The spectral-simulation
algorithm shows better ergodic properties compared to the sgsim algorithm due to



P1: IZO

Mathematical Geology [mg] pp1234-matg-487848 May 17, 2004 10:47 Style file version June 25th, 2002

502 Yao

the global consideration of the density spectrum, the frequency representation of
variogram model.

In the following example, a model of 64× 64 cells was generated with a
relatively larger variogram range, 60 cells in X direction and 5 cells in Y direction.
Figure 9 shows one realization and 20 variograms calculated from 20 spectral-
simulation realizations. From this, we observe: 1) At half-field location (32 cells in
this case), the variogram values calculated from the spectral simulation along the X
or Y direction always intersect at the same value, no matter what the random phases
are. This is explained by Property (3) of the discrete Fourier transform. 2) Beyond
the half-field lag distance, the target variogram model is not honored at all. On the
contrary, the variograms are closely symmetric to the first half-field distance. The
explanation was given in the previous section: to ensure the generated realizations
are real-values, only the variogram values at half-field distance are considered.
This phenomenon is dramatic here because the variogram range is relatively long
compared with the field size (almost the same size as the simulation field, 60 vs. 64).

For Figure 10, we simply increased the simulated field size in the X direction
by two times, so that the simulated field size is more than twice of the variogram
range in the X direction. Then after spectral simulation, we cut the model back to
the original size of 64 cells in the X direction. The variogram calculated from the
new model honors the target very well. In fact, in order for the spectral simulation
to show a good ergodic property, the ideal case would be that the simulation field
size be at least twice the variogram range.

Figure 11 provides sgsim results for comparison. Also, we can see as the var-
iogram range increases, the generated realizations show more fluctuations around
the target variogram model. But unlike spectral simulation, this cannot be avoided
by simulating a larger field.

SUMMARY

Spectral simulation is faster than traditional sequential simulation in that
it calls for only Fourier transforms instead of solving a kriging system at each
simulated node. The density spectrum used in spectral simulation is obtained
through a discrete Fourier transform of the covariance values, which are calculated
from a given variogram model, usually with the mean value not zero. Therefore,
the mean and variance of the generated realizations will deviate from the target
statistics. Some correction (shift and rescale) on the covariance can be applied
to generate realizations with correct mean and variance; however, this correction
implicitly rescales the input variogram model, so the variogram calculated from
the generated realizations has a higher sill than the input variogram model. In
practice, the deviation effect will be negligible in 3D situations because the mean
of the covariance cube calculated from any variogram model with a reasonably
short range is near zero.
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Figure 9. Spectral simulation with a long variogram range: one
realization and 20 variograms calculated from 20 realizations in
NS and EW directions vs. the input variogram model (bold line).



P1: IZO

Mathematical Geology [mg] pp1234-matg-487848 May 17, 2004 10:47 Style file version June 25th, 2002

504 Yao

Figure 10. Spectral simulation with a long variogram
range: one realization and 20 variograms calculated from 20
realizations in NS and EW directions vs. the input variogram
model (bold line). The spectral simulation is performed on
an enlarged field (128× 64 cells). The model is then cut
back to the original size (64× 64 cells).
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Figure 11. Sequential Gaussian simulation with a long
variogram range: one realization and 20 variograms cal-
culated from 20 realizations in NS and EW directions vs.
the input variogram model (bold line).
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Due to the symmetric relation required in spectral simulation to generate
real-valued realizations, only the covariance values up to the half-field size were
used. Therefore, the spectral simulation can only reproduce the input variogram
model up to the half-field size. The ideal way to honor the spatial structure over
the whole field is to generate realizations of twice the size of the field of interest,
then cut it back to the original field size. Since traditional sequential simulation
can only reproduce the spatial structure within the search neighborhood, spectral
simulation has better ergodic property in regard to honoring the target variogram
model in multiple realizations.
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