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On the Equivalence of the Cokriging
and Kriging Systems1

A. Subramanyam2 and H. S. Pandalai3

Simple cokriging of components of ap-dimensional second-order stationary random process is consid-
ered. Necessary and sufficient conditions under which simple cokriging is equivalent to simple kriging
are given. Essentially this condition requires that it should be possible to express the cross-covariance
at any lagh using the cross-covariance at|h| = 0 and the auto-covariance at lagh. The mosaic model,
multicolocated kriging and the linear model of coregionalization are examined in this context. A data
analytic method to examine whether simple kriging of components of a multivariate random process
is equivalent to its cokriging is given
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INTRODUCTION

Several applications of geostatistics lead to models involving multivariate random
processes. Fitting of valid auto- and cross-covariances and solving of large cok-
riging systems are often required in such applications. Similar problems may
also arise in the univariate case when several functions of a random process
are of interest. Matheron (1979) introduced the notion of autokrigeability. A
component of a multivariate random process is said to be autokrigeable if its
cokriging coincides with its simple kriging. When all components of the ran-
dom process have been observed at all data locations (i.e. the isotopic case),
Matheron (1979) obtained conditions under which a linear combination of these
components is autokrigeable. These results are also given in Wackernaegel (1995).
Autokrigeability is also discussed in Chiles and Delfiner (1999) and Rivoirard
(2002).

In the absence of autokrigeability, to make the task of modelling covari-
ances (or equivalently the variograms) simpler, and that of solving cokriging
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systems less arduous, it is desirable to obtain simplifications wherever possible. The
common theme of simplifications in dealing with such problems has been to exam-
ine whether a linear transformation would lead to spatial orthogonality. Suro-Perez
and Journel (1991) suggested the use of principal components derived from vari-
ance covariance matrices at lagh=0 or at small values ofh. This method is justified
if these principal components are spatially orthogonal. Goovaerts (1993) gives con-
ditions under which principal components are spatially orthogonal. Another linear
transformation was suggested by Xie and Myers (1995) which examines whether
the family of variance-covariance matrices at allh are simultaneously diagonal-
izable. In the univariate case, Subramanyam and Pandalai (2001) give conditions
under which linear transforms of functions of a univariate random process are
spatially orthogonal. Another interesting procedure is the min/max autocorrela-
tion factors (MAF) introduced by Switzer and Green (1984), a procedure that
is akin to extracting canonical variables which has been used by Desbarats and
Dimitrakopoulos (2000) along with the linear model of coregionalization to achieve
simplifications in simulation.

In this paper simple cokriging of components of ap-dimensional second-
order stationary random process is considered. A necessary and sufficient condi-
tion for the simple cokriging of the components of a multivariate random process
to be equivalent to their simple kriging in the isotopic case is given. Although
this condition is available in Matheron (1979), Wackernaegel (1995), Chiles and
Delfiner (1999), and Rivoirard (2002), the derivation of equivalence conditions
presented here leads to a complete analysis of autokrigeable random variables. It
is shown here that cokriging of a component of a vector-valuedRF is equivalent
to its simple kriging in the isotopic case if and only if components of theRF
can be divided into groups such that components belonging to one group have
proportional auto- and cross-covariances while being spatially orthogonal to com-
ponents in any other group. Proof for this is not explicitly available in published
literature.

The mosaic model, multicolocated kriging, and the linear model of coregion-
alization are discussed in this context.

SIMPLE COKRIGING

Let (Y(x), x ∈ D} be a second-order stationary random function taking
values inRp i.e. Y(x) = (Y1(x),Y2(x), . . .Yp(x))>. AssumeE[Y(x)] = µ and
Cov (Yi (x),Yj (x + h)) = Ci j (h) ∀ x ∈ D. It is assumed thatµ is known and
hence is taken to be0. It may be noted here that Cov (Yj (x),Yi (x + h) =
Cov (Yi (x + h),Yj (x)) = Cov (Yi (h),Yj (0))= Cov (Yi (0),Yj (−h)), i.e.,

Cji (h) = Ci j (−h) (1)
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In particular, ifCji (h) is an even function,

Cji (h) = Ci j (h) ∀ h.

The processY(x) has been observed at locationsx1, x2 . . . , xN . It is of in-
terest to predict the value ofY(x0) which involves prediction of eachYi (x0), i =
1, 2, . . . p. To begin with, consider prediction of one of the variables, say the first.
The cokriging equations for predictingY1(x0) can be set up (after Matheron, 1965)
as follows.

Letλc
1,λ

c
2, · · ·λc

p beN-dimensional vectors such thatλc
i is the weight associ-

ated withYi (xα), α = 1, 2 . . . N for cokrigingY1(x0).Further, letA i j = [ai j (α, β)],
whereai j (α, β) = Cov (Yi (xα),Yj (xβ)) = Ci j (xβ − xα). Denote Cov (Y1(x0),Yj

(xβ)) by d1
j (β) = C1 j (xβ − x0) and let

d1
j =



d1
j (1)

dj (2)

...

d1
j (N)


The simple cokriging system is then

A11 A12 · · · A1p

A21 A22 · · · A2p

...
... · · ·

A p1 A p2 · · · A pp





λc
1

λc
2

...

λc
p

 =


d1
1

d1
2

...

d1
p

 (2)

The system of equations for simple kriging ofY1(x0) is given by

A11λ
k = d1

1 (3)

where

λk =


λk

1

λk
2

...

λk
N





P1: JLS

Mathematical Geology [mg] pp1234-matg-487849 May 18, 2004 22:23 Style file version June 25th, 2002

510 Subramanyam and Pandalai

is the vector of weights corresponding to the simple kriging ofY1(x0) with Y1(xα),
α = 1, 2, . . . N. System (3) has the solutionλk = A−1

11 d1
1

Simple cokriging ofY1(x0) is equivalent to simple kriging means that

λc
(1) = λk

(1)

λc
(2) = 0

λc
(3) = 0

...

λc
(N) = 0

must be a solution to system (2). This gives,

A11λ
c
1 = d1

1

A21λ
c
1 = d1

2

...

A p1λ
c
1 = d1

p

satisfies the first set of equationsA11λ
c
1 = d1

1. In order that it satisfies theλc
1 = λk

1
and remaining set of equations, there must exist matricesB2,B3 . . .Bp such that

A21 = B2A11 andd1
2 = B2d1

1

A31 = B3A11 andd1
3 = B3d1

1

...
...

A p1 = BpA11 andd1
p = Bpd1

1.

Since it is assumed that{Y(x), x ∈ D} is a second order stationary process, it can
be deduced thatB2,B3, . . . ,Bp areN×N diagonal matrices. To see this, consider
the equation

d1
2 = B2d1

1

which gives

Cov (Y1(x0),Y2(xα)) = b(2)
α1Cov (Y1(x0),Y1(x1))+ b(2)

α2Cov (Y1(x0)Y1(x2))

+ . . .+ b(2)
ααCov (Y1(x0)Y1(xα))+ . . .

+ b(2)
αNCov (Y1(x0)Y1(xN)
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i.e.

C12(xα − x0) =
N∑

i=1

b(2)
αi C11(xi − x0).

For second order stationarity of{Y(x)} the RHS must be a function only of (xα −
x0) and sob(2)

αi = 0 for i 6= α, giving

C12(xα − x0) = b(2)
ααC11(xα − x0) ∀ α = 1, 2, . . . , N (4)

i.e.B2 is a diagonal matrix. SimilarlyB3,B4, . . . ,Bp are all diagonal.
Takingx0 = xα in equation (4) we obtain

Cov (Y1(xα),Y2(xα)) = b(2)
ααCov (Y1(xα),Y1(xα)) ∀ α = 1, 2, . . . N

b(2)
αα =

Cov (Y1(xα)Y2(xα))

Cov (Y1(xα),Y1(xα))
= C12(0)

C11(0)
∀ α = 1, 2, . . . , N. (5)

Since the RHS of equation (5) is independent ofα, one hasb(2)
αα = b(2)

ββ = b(2), say.
ThusB2 is a scalar matrix andC12(h) = b(2)C11(h). Repeating this argument

for B3,B4, . . . ,Bp, it can be shown that these matrices are all scalar, and

C1 j (h) = b( j )C11(h) ∀ j = 2, 3, . . . , p. (6)

In addition, one hasC1 j (−h) = b( j )C11(−h) = b( j )C11(h) as the autocovariance
is an even function. This gives (using 6 and 1),

C1 j (−h) = C1 j (h) = Cj 1(h), (7)

showing that the cross-covariances are also even functions.
To summarize, the simple cokriging ofY1(x0) is equivalent to simple kriging

in the second order stationary case if and only if

C1 j (h) = b( j )
1 C(h)

11 ∀ j = 2, 3, . . . , p,

whereb( j )
1 = b( j ) in (6).

Generalizing this to the simple cokriging ofYi (x0), it can be seen that under
second order stationarity of{Y(x)} the simple cokriging system is equivalent to
the simple kriging system if and only if

Ci j (h) = b( j )
i Cii (h) ∀ i 6= j, i, j = 1, 2, . . . p (8)
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Condition (8) holds in the following two cases:

Case 1(Spatial Orthogonality of{Y(x))}. WhenCi j (h) = 0 ∀ h andi 6= j , condi-

tion (8) holds withb( j )
i = 0 ∀ i 6= j . It may be noted here that there is no condition

onCii (h).

Case 2(Proportional Covariance Structure). From (8) it can be seen that

Ci j (h) = b( j )
i Cii (h), and

Cji (h) = b(i )
j Cj j (h) ∀ i, j .

But sinceCi j (h) = Cji (h), one has

b( j )
i Cii (h) = b(i )

j Cj j (h), giving (if b(i )
j 6= 0),

Cj j (h) = b( j )
i

b(i )
j

Cii (h) ∀ i, j . (9)

Equation (9) implies that all covariances are proportional to a common covariance
structure, sayC11(h). Thus,

Cj j (h) = β( j )C11(h).

Often one may be interested in cokriging a linear combinationY1∗ (x0) =
p∑

k=1
akYk(x0) usingY1∗ (x),Yi (x) i = 2, 3, . . . , p.

From (6)Y1∗ is autokrigeable if and only if

p∑
k=1

akCb∗ j (h) = b( j )
p∑

k=1

p∑
k′=1

akak′Ckk′ (h) ∀ j = 2, 3, . . . , p.

This is the condition obtained by Matheron (1979).

EQUIVALENCE CONDITIONS

In this section it is shown that simple cokriging is equivalent to simple kriging
only underCase 1or Case 2or a mixture of the two. Denote byS the covariance
matrix of the vector

[(Y1(x1) Y2(x1) . . .Yp(x1)), (Y1(x2) Y2(x2) . . .Yp(x2)),

· · · (Y1(xN) Y2(xn) . . .Yp(xN))]>
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S =



S(0) S(x2− x1) S(x3− x1) . . . S(xN − x1)

S(x1− x2) S(0) S(x3− x2) . . . S(xN − x2)

S(x1− x3) S(x2− x3) S(0) . . . S(xN − x3)
...

S(x1− xN) S(x2− xN) . . . . . . S(0)


where thei j th element ofS(xβ − xα) is Cov (Yi (xα),Yj (xβ)) = Cov (Yi (0),Yj

(xβ − xα)) = Ci j (xβ − xα).
If condition (8) holds,

Ci j (xβ − xα) = b( j )
i Cii (xβ − xα)

= b( j )
i Cii (xα − xβ)

= Cji (xα − xβ)

= Cji (xβ − xα)

Hence each matrixS(xβ − xα) is symmetric and so isS.
Consider one of the off-diagonal blocksS(xβ − xα) ofS. Takingxα = xβ + h,

one has

S(h) = [Ci j (h)] = [bj
i Cii (h)

] = ChW.

where

Ch = Diag [Cii (h)], and

W = [bj
i ].

SinceW is independent ofh, it is identified by takingh = 0, as

W = C−1
0 S(0)

Thus,S(h) = ChC−1
0 S(0). SinceS(h) andS(0) are symmetric, andCh andC0 are

diagonal, it can be seen thatChC−1
0 S(0)= S(0)C−1

0 Ch = S(0)ChC−1
0 . Denoting

ChC−1
0 by ρ(h), the equation above can be rewritten as

ρ(h)S(0)= S(0)ρ(h) = S(h) (10)

If S(h) is a commuting family, then there existsA such thatY = AZ whereY’s
are autokrigeable (see for example, Subramanyam and Pandalai, 2001). Condition
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(10) implies thatS(h) is a commuting family and allows, in addition, to take
A = I .

Relation (10) can be interpreted as follows: Cokriging is equivalent to kriging
if it is possible to construct the cross covariance structureS(h) using the cross-
covariance structure ath = 0 and the autocovariance structure.

In Case 1this is easy becauseS(h) andS(0) are themselves diagonal, i.e. all
cross-covariances are zero. One can formally check that (10) holds by seeing that
S(h) = Ch andS(0)= C0 giving

S−1(0)S(h) = C−1
0 Ch = ρ(h).

If Case 2holds,Ci j (h) = βi j C11(h), say, and in particularCii (h) = βi i C11(h).
Hence

ρ(h) = Diag

[
βi i C11(h)

βi i C11(0)

]
= Diag

[
C11(h)

C11(0)

]
= C11(h)

C11(0)
[I ] = ρh [I ], say.

This gives,

ρ(h)S(0)= ρh [I ]]S(0)= ρhS(0).

UnderCase 2, sinceCi j (h) = βi j C11(h), clearlyβi j = Ci j (0)

C11(0)
. This gives

S(h) = [Ci j (h) ] =
[

Ci j (0)

C11(0)
C11(h)

]
= [ρhCi j (0)] = ρhS(0)

and thus verifies that relation (10) holds underCase 2.
To find all possible cases under which (10) holds, it may be noted thatρ(h)

andS(0) must commute for allh. If for someh all diagonal elements ofρ(h) are
distinct, thenS(0) has to be diagonal for it to commute withρ(h) which in turn
implies thatS(h) is diagonal. This can be seen as follows.

Sinceρ(h) andS(0) commute for allh, one has

ρi (h)Ci j (0)= ρ j (h)Ci j (0).

Thus, if for someh

ρi (h) 6= ρ j (h), Ci j (0)= 0 (11)
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i.e., Yi and Yj are orthogonal ath = 0. If there is no suchh, i.e., if one has
ρi (h) = ρ j (h) ∀ h, one has

Cii (h)

Cii (0)
= Cj j (h)

Cj j (0)
∀ h

i.e., the autocovariance functions are proportional. The processes{Yi (x), x ∈
D, i = 1, 2, . . . p} can then be divided intor groups, thej th group containing
kj elements in such a way that processes in the same group have autocovariance
functions proportional to a common covariance structure. Since by (11), processes
in different groups are locally orthogonal, the matrixS(0) is block diagonal with
the j th block being akj × kj matrix. Further, sinceS(h) = ρ(h)S(0) andρ(h) is
diagonal,S(h) is also block diagonal. Thus simple cokriging being equivalent to
simple kriging impliesS(h) is block diagonal andρi (h) = ρ j (h) if i and j are in
the same block.

On the other hand, ifS(h) is block diagonal because groups are orthogonal,
to cokrige a member of one group, only variables from the same group need be
used. But variables belonging to the same group have proportional covariances
and thus fall underCase 2. Hence simple cokriging of the variable is equivalent to
its simple kriging. In conclusion, simple cokriging is equivalent to simple kriging
if and only if S(h) is block diagonal andRFs belonging to the same block have
proportional covariance.

COKRIGING IN THE MOSAIC MODEL

Cokriging in the mosaic model is discussed in Matheron (1982a). Owing to
the importance of this model in geostatistics, a detailed discussion is given below.
Consider the process{Y(x), x ∈ D}. In the mosaic model of Matheron (1982a) it
is assumed thatD is divided into disjoint compartments called tiles and thatY(x)
takes the same value for allx within a tile whileY(x), Y(x + h) are independent
if x, x + h are in different tiles. Let the probability thatx andx + h belong to the
same tile beρ(h). Then the joint distribution function ofY(x),Y(x + h) is given
by

Ti j (h) = P(Y(x) ≥ i,Y(x + h) ≥ j ) = ρ(h)P(Y(x) ≥ i ∨ j )

+ (1− ρ(h))P(Y(x) ≥ i )P(Y(x) ≥ j ) (12)

where (i ∨ j ) denotes maximum ofi and j .
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Let f and g be any two functions and considerC f g(h) = Cov [ f (Y(x)),
g(Y(x + h))]. It can be shown that under the mosaic model,

C f g(h) = ρ(h)C f g(0). (13)

Also,

C(h) = Cov (Y(x),Y(x + h)) = ρ(h)C(0), (14)

whereC(0)= Var (Y(x)).
Then, from (13) and (14)

Cov [ f (Y(x)), g(Y(x + h))] = Cov (Y(x),Y(x + h))
C f g(0)

C(0)

i.e.

C f g(h) = C(h)
C f g(0)

C(0)
= C(h)α f g, say.

Thus all cross-covariances are proportional to the covariance structure of
{Y(x)}. Hence simple cokriging off1(Y(x), f2(Y(x)), . . . , fm(Y(x)), for any func-
tions f1, f2, . . . , fm reduces to simple kriging underCase 2 discussed in
section 2.

It is interesting to examine the converse i.e., if for every functionf1, f2, . . . ,

fm of Y(x) simple cokriging reduces to simple kriging, canY(x) be described by
the mosaic model? It is shown below that if for every functionf1, f2, . . . , fm of
Y(x) simple cokriging is equivalent to simple kriging, the bivariate distribution of
{Y(x)} is the same as (12).

To see this, using (8) one may write

C f1, f2(h) = α12C f1 f1(h), say (15)

Taking f2 to be the identity function one has

C f1 f2(h) = βC f1 f1(h)

and C f2 f1(h) = γC f2 f2(h) = γC(h)
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SinceC f1 f2(h) = C f2 f1(h) one has

C f1 f1(h) = γ

β
C(h) = β1C(h). (16)

This gives

C f1 f2(h) = α12β1C(h). (17)

Taking limit h→ 0 in (15) and (16), one has

α12 = C f1 f2(0)

C f1 f1(0)
and β1 = C f1 f1(0)

C(0)
.

Thus

C f1 f2(h) = C f1 f2(0)
C(h)

C(0)
= C f1, f2(0) · ρ

(h)
, say. (18)

Clearly,−1≤ ρ
(h)
≤ 1 andρ

(h)
≥ 0 if C(h) ≥ 0.

Taking f1 = IY(x)≥i and f2 = IY(x)≥ j ,

C f1 f2(h) = Cov (IY(x)≥i , IY(x+h)≥ j )

= P(Y(x) ≥ i,Y(x + h) ≥ j )− P(Y(x) ≥ i )P(Y(x + h) ≥ j )

= Th
i j − Ti Tj , say. (19)

Further,

C f1 f2(0) = P(Y(x) ≥ i,Y(x) ≥ j )− P(Y(x) ≥ i )P(Y(x) ≥ j )

= P(Y(x) ≥ i ∨ j )− P(Y(x) ≥ i )P(Y(x) ≥ j )

= T(i ∨ j )− Ti Tj .

Hence (19) becomes

C f1 f2(h) = Th
i j − Ti Tj = {T(i ∨ j )− Ti Tj }C(h)

C(0)
= (T(i ∨ j )− Ti Tj )ρ(h)

, say.

(20)
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Rearranging terms in (20) one has

Th
i j = T(i ∨ j )ρ(h) + (1− ρ(h) )T(i )T( j ),

which is the same as (12).
Therefore, if simple cokriging and simple kriging are equivalent for every

f1, f2, . . . , fm, the process{Y(x)} must have the bivariate distribution given by
(12). This of course does not imply the existence of tiles.

MULTICOLOCATED COKRIGING

In this section, the application of condition (10) to transforms of the orig-
inal data is examined. In particular, the example of multicolocated cokriging is
examined.

Let Y(x) = (Y1(x),Y2(x))> be a stationary process with mean0 observable
for x ∈ D. Denote byCi j (h), i = 1, 2, j = 1, 2 the covariance betweenYi (x)
and Yj (x + h). Let U(x) = (U1(x),U2(x))T , whereU1(x) andU2(x) are linear
combinations ofY1(x) andY2(x + h), chosen such that Cov (U1(x),U2(x)) = 0.
Let Cov (U(x),U(x + h)) be denoted bySu(h). By assumption,Su(0) is a diagonal
matrix. Using (10) for theU process, the condition for simple cokriging to be
equivalent to kriging is given by

Su(h) = ρu(h)Su(0) (21)

sinceρu(h) is diagonal,Su(h) is also diagonal i.e., if the off-diagonal elements, Cov
(U1(x + h),U2(x)) and Cov (U1(x),U2(x + h)) of Su(h) are zero, the condition
for simple cokriging to be equivalent to simple kriging is satisfied.

An important case is whenU1 = Y1− rY2 and U2 = Y2 wherer = C12(0)
C22(0)

which always satisfies Cov (U1(x),U2(x)) = 0 sinceU1 is the residue of the re-
gression ofY1 onY2. For this choice ofU1 andU2, the diagonal elements ofSu(h)
areC21(h)− rC22(h) andC12(h)− rC22(h) and arebothequal to 0 iff

C12(h) = rC22(h) (22)

Condition (22) is the same as Model 2a of Rivoirard (2001), the reverse Markov
model of Chiles and Delfiner (1999) and the MM2 model of Journel (1999) that
is used for multicollocated cokriging. As pointed out by Rivorard (2001), under
condition (22) whenY1(x0) is to be estimated andY2 is observed at more locations
thanY1, including atx0, one needs to use onlyY2(x0) and data from location where
bothY1 andY2 are observed resulting in the estimation procedure known as such
multicollocated cokriging.
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THE LINEAR MODEL OF COREGIONALIZATION

A multivariate p-dimensional stationary random processZ may often be
considered as a linear combination ofn unobservedp-dimensional stationary
random processesYu(x) called factor processes (Goovaerts, 1993). In this sec-
tion, conditions on the factor processesYu(x) under which simple cokriging of
Zi (x0), i = 1, 2, . . . , p reduces to kriging are examined. The linear model of
coregionalization (Matheron, 1982b; Wackernagel, 1988) can be written as

Z(x) = M T
1 Y1(x)+M T

2 Y2(x)+ · · · +M T
n Yn(x),

where

Yu(x) = (Yu
1 (x),Yu

2 (x) . . .Yu
p (x)

)T
, u = 1, 2, . . . ,n,

with Cov
(
Yu′

i (x),Yu
j (x)

) = 0 u 6= u′ or i 6= j,

Cov
(
Yu

i (x),Yu
i (x + h)

) = cu(h), u = 1, 2, . . . ,n, i = 1, 2, . . . , p

andMu, u = 1, 2, . . . ,n are p×p matrices. Also,cu(0) can be taken to be 1 for
all u.

If CZ (h) = Cov (Z(x),Z(x + h)), it can be seen from the above that

S(h) = CZ (h) =
n∑

u=1

cu(h)M T
u Mu =

n∑
u=1

cu(h)B(u). (23)

Sincecu(0)= 1,CZ(0)=∑n
u=1 Bu. It may be noted here that the quantitycu(h)Bu

can be interpreted as the contribution of theuth factor process to the cross-
covariance structure ofZ.

From (10), for simple cokriging to be equivalent to simple kriging, one has
the condition,

CZ (h) = ρρ(h)CZ (0) (24)

This gives

n∑
u=1

cu(h)Bu = ρ(h)CZ(0)= ρ(h)
n∑

u=1

Bu (25)
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Hereρρ(h) is diagonal, thei th element being

Cii (h)

Cii (0)
=

i∑
u=1

cu(h)bii (u)

h∑
u=1

cu(0)bii (u)

=

n∑
u=1

cu(h)bii (u)

n∑
u=1

bii (u)
. (26)

From (25), it can be seen that if no conditions are imposed onBu’s condition (10)
holds if and only if

Cii (h)

Cii (0)
= ρh, say ∀ i . (27)

This implies that

ρh =

n∑
u=1

cu(h)bii (u)

n∑
u=1

bii (u)
for i = 1, 2, . . . , p.

If c1(h), c2(h), . . . , cn(h) are linearly independent,

ρh =
n∑

u=1
cu(h)βu

where βu = bii (u)
n∑

u=1
bii (u)

∀ i

and
n∑

u=1
βu = 1.


(28)

In other words, the processZ has to be intrinsic with

CZ (h) = ρhCZ (0)

i.e. all auto and cross-covariances have to be proportional toρh.

In the case when
∑n

u=1 Bu is diagonal,Cz(h) = ρ(h)
∑n

u=1 Bu. Condition
(10) then holds for any diagonal matrixρ(h). HereCz(h) is diagonal, implying
that the processZ is itself spatially orthogonal. It is interesting to note here that∑n

u=1 Bu is diagonal if and only if eachBu is diagonal. To see this, one may equate
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the i, j th element of the matrices in the equation above, to obtain

n∑
u=1

cu(h)bi j (u) =


n∑

u=1
cu(h)bii (u)

n∑
u=1

bii (u)

 n∑
u=1

bi j (u).

Wheni 6= j,one has
∑n

u=1 bi j (u) = 0, which implies that eachbi j (u) = 0 asc1(h),
c2(h), . . . , cn(h) are linearly independent.

Further, ifMu = M ∀ u, it can be seen that

Bu = B

and

CZ (h) = B
n∑

u=1

cu(h) = Bρh, say,

where

ρh =
n∑

u=1

cu(h).

Here (10) holds without linear independence ofc1(h), c2(h), · · · , cn(h).
The observations made above are useful in exploratory data analysis. One

may first model the auto-covariance ofZ to identify spatial structures i.e. to
suitably identify ĉ1(h), ĉ2(h), . . . , ĉn(h) along with b̂i i (1), b̂i i (2), . . . , b̂i i (n) for

i = 1, 2, . . . , p. If it is found that b̂i i (u)
6n

u=1b̂i i (u)
= b̂j j (u)

6n
u=1b̂j j (u)

= β̂u for all i, j , one ob-

tainsρh =
∑n

u=1 ĉu(h)β̂u. The variance-covariance matrixĈZ (0) can be computed
from the data and one may check whetherĈZ (h) ' ρ̂hĈZ (0). By this process the
spatial structures are identified and it can be checked whether components ofZ
may be kriged individually.

It may be noted that in the method suggested above, the modeled auto-
covariances are used to check whetherρ̂(h)ĈZ(0) is an adequate model forCZ(h)
by comparinĝCZ(h) with ρ̂(h)ĈZ(0). This method provides an alternative to com-

paring Ĉi j (h)
Ĉi i (h)

directly.
A variation of the above may occur if it is found that some of the off-diagonal

elements ofĈZ (0) are negligible and̂CZ (0) is close to a block-diagonal matrix.
The procedure outlined above can be applied separately to variables belonging to
each block to check whether they may be kriged individually.
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CONCLUSIONS

In the case of ap-dimensional second-order stationary random process{Y(x)},
simple cokriging of its components is equivalent to their simple kriging if and only
if condition (10) holds. In other words, it should be possible to construct the cross-
covariance structureCY (h) using the cross-covariance structureCY (0) ath = 0
and the auto-covariance structures (specified by the elements of a diagonal matrix
ρ(h)). It is shown that

CY (h) = ρ(h)CY (0)= CY (0)ρρ(h) ∀ h

is a necessary and sufficient condition for simple cokriging to be equivalent to
simple kriging.

Since the diagonal matrixρ(h) and CY (0) must commute for allh, it is
clear that simple cokriging is equivalent to simple kriging if and only ifCY (h) is
block diagonal andRFs belonging to the same block have proportional covariance.
Two extreme cases are i) when there is only one block and all auto- and cross-
covariances are proportional to a common covariance structure, and ii) when the
number of blocks equalsp, i.e. whenCY (h) is diagonal.

The mosaic model, multicollocated kriging, and the linear model of core-
gionalization are discussed in the context of the above. It is shown that if for the
random process{Y(x)} simple cokriging of every function is equivalent to its krig-
ing, then the bivariate distributions of{Y(x)} are identical to that of the mosaic
model. This however does not necessarily imply the existence of tiles. In the case
of multicolocated kriging, condition (10) holds after suitable transformation of
data.

For the general case, a method for checking whether simple cokriging of
components of{Y(x)} are equivalent to their simple kriging is provided by an
analysis of the linear model of coregionalization. Estimation of the autocovari-
ance functions of{Y(x)} and the diagonal elements of matrices asB1,B2, . . . ,Bm

corresponding tom nested covariance structures allows determination of whether
ρ(h) andCY (0)=∑m

u=1 Bu commute for allh.
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