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On the Equivalence of the Cokriging
and Kriging Systems

A. Subramanyan? and H. S. Pandala?

Simple cokriging of components ofalimensional second-order stationary random process is consid-
ered. Necessary and sufficient conditions under which simple cokriging is equivalent to simple kriging
are given. Essentially this condition requires that it should be possible to express the cross-covariance
at any lagh using the cross-covariance fit = 0 and the auto-covariance at ldg The mosaic model,
multicolocated kriging and the linear model of coregionalization are examined in this context. A data
analytic method to examine whether simple kriging of components of a multivariate random process
is equivalent to its cokriging is given
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INTRODUCTION

Several applications of geostatistics lead to models involving multivariate random
processes. Fitting of valid auto- and cross-covariances and solving of large cok-
riging systems are often required in such applications. Similar problems may
also arise in the univariate case when several functions of a random process
are of interest. Matheron (1979) introduced the notion of autokrigeability. A
component of a multivariate random process is said to be autokrigeable if its
cokriging coincides with its simple kriging. When all components of the ran-
dom process have been observed at all data locations (i.e. the isotopic case),
Matheron (1979) obtained conditions under which a linear combination of these
components is autokrigeable. These results are also given in Wackernaegel (1995).
Autokrigeability is also discussed in Chiles and Delfiner (1999) and Rivoirard
(2002).

In the absence of autokrigeability, to make the task of modelling covari-
ances (or equivalently the variograms) simpler, and that of solving cokriging
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systems less arduous, itis desirable to obtain simplifications wherever possible. The
common theme of simplifications in dealing with such problems has been to exam-
ine whether a linear transformation would lead to spatial orthogonality. Suro-Perez
and Journel (1991) suggested the use of principal components derived from vari-
ance covariance matrices at tag- 0 or at small values df. This method is justified
ifthese principal components are spatially orthogonal. Goovaerts (1993) gives con-
ditions under which principal components are spatially orthogonal. Another linear
transformation was suggested by Xie and Myers (1995) which examines whether
the family of variance-covariance matrices attakire simultaneously diagonal-
izable. In the univariate case, Subramanyam and Pandalai (2001) give conditions
under which linear transforms of functions of a univariate random process are
spatially orthogonal. Another interesting procedure is the min/max autocorrela-
tion factors (MAF) introduced by Switzer and Green (1984), a procedure that
is akin to extracting canonical variables which has been used by Desbarats and
Dimitrakopoulos (2000) along with the linear model of coregionalization to achieve
simplifications in simulation.

In this paper simple cokriging of components opalimensional second-
order stationary random process is considered. A necessary and sufficient condi-
tion for the simple cokriging of the components of a multivariate random process
to be equivalent to their simple kriging in the isotopic case is given. Although
this condition is available in Matheron (1979), Wackernaegel (1995), Chiles and
Delfiner (1999), and Rivoirard (2002), the derivation of equivalence conditions
presented here leads to a complete analysis of autokrigeable random variables. It
is shown here that cokriging of a component of a vector-vaREds equivalent
to its simple kriging in the isotopic case if and only if components of Rie
can be divided into groups such that components belonging to one group have
proportional auto- and cross-covariances while being spatially orthogonal to com-
ponents in any other group. Proof for this is not explicitly available in published
literature.

The mosaic model, multicolocated kriging, and the linear model of coregion-
alization are discussed in this context.

SIMPLE COKRIGING

Let (Y(x), x € D} be a second-order stationary random function taking
values inRP i.e. Y(x) = (Y1(X), Y2(X), ... Yp(X))". AssumeE[Y(x)] = pu and
Cov (Yi(x), Yj(x + h)) = Cjj(h) Vx € D. It is assumed thaf: is known and
hence is taken to b®. It may be noted here that Cov(x), Yi(x+h) =
Cov (Yi(x + h), Yj(x)) = Cov (Y;(h), Y;(0)) = Cov (Y (0), Yj(—h)), i.e.,

Ciji (h) = Cij(—h) @)
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In particular, ifCj; (h) is an even function,
Cji(hy=Cij(h) Vh.

The proces¥ (x) has been observed at locations X, . . ., Xy. It is of in-
terest to predict the value &f(xg) which involves prediction of each (o), i =
1,2, ... p. To begin with, consider prediction of one of the variables, say the first.
The cokriging equations for predicting(xo) can be set up (after Matheron, 1965)
as follows.

LetAf, A3, - - - A}, beN-dimensional vectors such that is the weight associ-
atedwithY; (x,), « = 1, 2... N for cokrigingY1(Xo). Further, lefA;; = [&; («, B)],
where g (o, 8) = Cov (Y (Xa), Yj(Xg)) = Cij (Xg — X«). Denote Cov¥i(xo), Y;

(xg)) by djl(ﬁ) = C1j(Xg — Xo) and let

di(1)
. d;(2)
1
d;(N)
The simple cokriging system is then
A1 Az - Agp AL di
A1 Azz - Agp 2 d;
= 2
Apt Az - App A5 dy
The system of equations for simple kriging¥af(xo) is given by
AuN = dj ()
where
X
i3
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is the vector of weights corresponding to the simple krigin§i@ko) with Y1(X,),
a =1,2,...N. System (3) has the solutiox’ = Aj}d}

Simple cokriging ofY;(Xp) is equivalent to simple kriging means that

c k
A = A

(o3

c __
Ay =0

must be a solution to system (2). This gives,

ApS = di
Az = d}
ApA§ =dj

satisfies the first set of equatioAs; A\ = di. In order that it satisfies thaS = A‘{
and remaining set of equations, there must exist matBgeBs . . . B, such that

Ar1 = ByA11 andd% = Bzd%
Az = B3A11 andd% = B3d%

Ap = BpAqi anddy = Bydr.
Since it is assumed th@Y (x), x € D} is a second order stationary process, it can

be deduced th&,, Bs, ..., By areN x N diagonal matrices. To see this, consider
the equation

d} = B,d]
which gives

Cov (Y1(X0), Ya(%)) = b3 Cov (Y1(xo), Y1(X1)) + b9 Cov (Y1(X0) Y1(X2))
+... 4+ b@Cov (Y1(X0) Yi(X)) + . ..
+ bfﬁ. Cov (Y1(X0) Y1(Xn)
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ie.
s 2
Cralxe — o) = ) bPCra(x — x0).
i=1

For second order stationarity pf (x)} the RHS must be a function only of( —
Xp) and sobffi) = 0fori # «, giving

C1a(Xe — Xo) = b@Cra(%y —X%0) Ya=1,2,...,N (4)
i.e. By is a diagonal matrix. Similarl{3s, Bs, ..., By are all diagonal.

Takingxo = X, in equation (4) we obtain

Cov (Y1(%), Ya(%a)) = bACOV (Yi(%), Ya(e)) Yo =1,2,...N

@ — Cov (Y1(Xa) Yo(Xa)) _ C12(0)
“ 7 Cov (Y(%), Y1(%))  C11(0)

Va=12...,N. (5)

Since the RHS of equation (5) is independent phne has) = bff,zﬁ) =b?, say.
ThusB; is a scalar matrix an@1,(h) = b®Cy4(h). Repeating this argument
for Bs, By, ..., Bp, it can be shown that these matrices are all scalar, and

Cij(h) =bDCyy(h) Vj=23,...,p. (6)

In addition, one ha€1(—h) = bl)Cy3(—h) = b()Cyy(h) as the autocovariance
is an even function. This gives (using 6 and 1),

Cyj(=h) = Cyj(h) = Cja(h), (7
showing that the cross-covariances are also even functions.

To summarize, the simple cokriging Wf(Xo) is equivalent to simple kriging
in the second order stationary case if and only if

Cij(hy=b’c® vj=23...,p
whereb{ = b1 in (6).
Generalizing this to the simple cokriging %f(Xo), it can be seen that under
second order stationarity ¢¥ (x)} the simple cokriging system is equivalent to

the simple kriging system if and only if

Gij () =bVCi(n) Vi#j. i.j=12..p ®
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Condition (8) holds in the following two cases:

Case 1(Spatial Orthogonality o{Y(X))}. WhenCij(h) =0 V handi # j, condi-

tion (8) holds Witrbi(” =0 Vi # j.Itmaybe noted here that there is no condition
onC;j; (h).

Case 2(Proportional Covariance Structure). From (8) it can be seen that

Cij(h) = bc;; (h), and

Cji(h) =bCji(h) Vi, j.
But sinceC;; (h) = Cj; (h), one has

b’Cii (h) = b{’Cj; (). giving (if b + 0),
(i)
Cji(h) = @C“(h) Vi, j. 9)
j

Equation (9) implies that all covariances are proportional to a common covariance
structure, sayi1(h). Thus,

Cjj (h) = pICy(h).

Often one may be interested in cokriging a linear combinalgiixo) =

P
kZ acYk(Xo) usingYy:(x), Yi(x) i =2,3,..., p.
=1

From (6)Y:: is autokrigeable if and only if

p PP
> " aCpj(h) = b ZZ adCa(h) ¥Yj=23....p
k=1 =1

k=1

This is the condition obtained by Matheron (1979).

EQUIVALENCE CONDITIONS

In this section itis shown that simple cokriging is equivalent to simple kriging
only underCase lor Case 2or a mixture of the two. Denote hy the covariance
matrix of the vector

[(Yi(x2) Ya(x1) ... Yp(X1)), (Yi(x2) Ya(X2). .. Yp(x2)),
- (Ya(xn) Ya(Xn) - .- Yp(xn )]
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T S(0)  S(x2—X1) S(X3—X1) ... S(Xn — X1) ]
SX1—%2)  S0) S(X3—X2) ... S(Xn — X2)
S=| SXx1—x3) Se—x3)  S0) ...SXn — Xs)

_S(xl—xN)S(xz—xN) ... 90

where theijth element ofS(xs — X,) is Cov (Y (X.), Yj(Xg)) = Cov (Y;(0), Y;
(Xg — X)) = Cij (X — Xq).
If condition (8) holds,

Cij (X5 — %) = BVCii (x5 — X,)

= bCii (%, — %g)
= Cji (X — Xg)
= Cji (Xg — Xa)

Hence each matri$(xs — X,) is symmetric and so i§.
Consider one of the off-diagonal blocB&s — x,) of S. Takingx, = Xg + h,
one has

S(h) = [Ci; (M)] = [b Cii ()] = CaW,
where

Cy = Diag [Gji(h)], and
W = [b].

SinceW is independent di, it is identified by takindh = 0, as
W = C;'S(0)
Thus,S(h) = Ch05ls(0). SinceS(h) andS(0) are symmetric, an@, andCg are

diagonal, it can be seen th@hC,*S(0) = S(0)C,'Ch = S(0)ChC, . Denoting
CnCy L by p(h), the equation above can be rewritten as

p(M)3(0) = S(0)p(h) = S(h) (10)

If S(h) is a commuting family, then there exisdssuch thaty = AZ whereY’s
are autokrigeable (see for example, Subramanyam and Pandalai, 2001). Condition
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(10) implies thatS(h) is a commuting family and allows, in addition, to take
A=I.

Relation (10) can be interpreted as follows: Cokriging is equivalent to kriging
if it is possible to construct the cross covariance strucg{lg using the cross-
covariance structure &at= 0 and the autocovariance structure.

In Case 1this is easy becaus®h) andS(0) are themselves diagonal, i.e. all
cross-covariances are zero. One can formally check that (10) holds by seeing that
S(h) = Cy andS(0) = Cy giving

S H0)s(h) = Cy'Cn = p(h).

If Case holds,Cjj (h) = B C11(h), say, and in particula®;; (h) = gi; C11(h).
Hence

[1] = yl1]. say.

o(h) = Diag [ﬂiicn(h)]

|:C11(h):| _ Cu(h)
Bii C11(0)

Cu(0)] Cu(0)
This gives,
p(N)S(0) = p,[111S(0) = p, S(0).

Cij (0)

UnderCase 2 sinceC;;j (h) = gij Cia(h), clearly gij = 0
11

. This gives

Cij (0)
C11(0)

S(h) =[G ()] = [ cn(h)} — [,Cij (O] = £, S(O)

and thus verifies that relation (10) holds un@ase 2

To find all possible cases under which (10) holds, it may be notegthat
andS(0) must commute for ah. If for someh all diagonal elements gf(h) are
distinct, thenS(0) has to be diagonal for it to commute wigith) which in turn
implies thatS(h) is diagonal. This can be seen as follows.

Sincep(h) andS(0) commute for alh, one has

©; (N)Ci;j (0) = p; (h)Ci; (0).

Thus, if for someh

pi(h) # pj(h). Cij(0)=0 11)
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i.e., Y; andY; are orthogonal ah = O. If there is no sucth, i.e., if one has
pi(h) = pj(h) ¥ h, one has

Cii (h) _ Cjj(h)
Gi(0) Cjj(0)

i.e., the autocovariance functions are proportional. The procd¥69, x €
D,i =1,2,...p} can then be divided into groups, thejth group containing
kj elements in such a way that processes in the same group have autocovariance
functions proportional to a common covariance structure. Since by (11), processes
in different groups are locally orthogonal, the mat&0) is block diagonal with
the jth block being &; x k; matrix. Further, sinc&(h) = p(h)S(0) andp(h) is
diagonal,S(h) is also block diagonal. Thus simple cokriging being equivalent to
simple kriging impliesS(h) is block diagonal ang;(h) = p;(h) if i andj are in
the same block.

On the other hand, i(h) is block diagonal because groups are orthogonal,
to cokrige a member of one group, only variables from the same group need be
used. But variables belonging to the same group have proportional covariances
and thus fall unde€ase 2 Hence simple cokriging of the variable is equivalent to
its simple kriging. In conclusion, simple cokriging is equivalent to simple kriging
if and only if S(h) is block diagonal an®RFs belonging to the same block have
proportional covariance.

COKRIGING IN THE MOSAIC MODEL

Cokriging in the mosaic model is discussed in Matheron (1982a). Owing to
the importance of this model in geostatistics, a detailed discussion is given below.
Consider the proceg¥(x), x € D}. In the mosaic model of Matheron (1982a) it
is assumed thdD is divided into disjoint compartments called tiles and tH&t)
takes the same value for alwithin a tile while Y(x), Y(x + h) are independent
if X, X + h are in different tiles. Let the probability thatandx + h belong to the
same tile bep(h). Then the joint distribution function of (x), Y(x + h) is given

by

Tij(h) = P(Y(X) = 1. Y(x 4+ h) = j) = p(h)P(Y(x) =i Vv |)
+ 1= p(M)PY(x) = 1)P(Y(X) = j) (12)

where ( v j) denotes maximum afandj.
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Let f andg be any two functions and consid&'9(h) = Cov[f(Y(x)),
g(Y(x + h))]. It can be shown that under the mosaic model,

C'9(h) = p(h)C(0). (13)
Also,
C(h) = Cov (Y(x), Y(x + h)) = p(h)C(0), (14)

whereC(0) = Var (Y (x)).
Then, from (13) and (14)

C'9(0)

Cov[f(Y(x)), g(Y(X + h))] = Cov (Y(x), Y(X + h)) S0

C'9(0)
C(0)

c'9(h) = c(h) = C(h)a'9, say

Thus all cross-covariances are proportional to the covariance structure of
{Y(x)}. Hence simple cokriging of(Y (x), f2(Y(X)), ..., fm(Y (X)), forany func-
tions f1, fa, ..., fy reduces to simple kriging undeCase 2 discussed in
section 2.

It is interesting to examine the converse i.e., if for every functignf,, . . .,
fm of Y(X) simple cokriging reduces to simple kriging, cé(x) be described by
the mosaic model? It is shown below that if for every functian f,, ..., fy, of
Y (x) simple cokriging is equivalent to simple kriging, the bivariate distribution of
{Y(x)} is the same as (12).

To see this, using (8) one may write

Cf2(h) = o*C M (h), say (15)
Taking f, to be the identity function one has

Chif2(h) = pC"fi(h)
and C%Mf(h) =yC™%(h)=yC(h)
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SinceC fi2(h) = C'2f1(h) one has
chifith) = %C(h) — glc(h). (16)
This gives
Cfi2(h) = o¥2g1C(h). (17)

Taking limith — 0in (15) and (16), one has

Cli%(0) Cfih(0)
12 1_
= ¢ A =0
Thus
fifa — chtf C(h) f1, fa .
CHE(R) = OO g = C™ ), say (19

Clearly,—1 < Py = 1 andp(h) >0if C(h) > 0.
Taking fl = IY(x)zi and f2 = |y(x)2j s
C"(h) = Cov (lypzis lvixny=j)
=P(Y(X) =i, Y(x+h) = ])=P(Y(X) =1)P(Y(x+h) = j)
=T" - TT,. say (19)

Further,

Ch20) = P(Y() =i, Y(X) = j) = P(Y(x) = )P(Y(X) = j)
=PY(X) =iV ])=PIX =D)PY(X) = j)

=T>iVv]j)-TT,.
Hence (19) becomes

C(h)

fifa —_Th_T
CRE(h) = T~ Ty = (TG v ) =TT s

= (T( v ) =TT, say

(20)
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Rearranging terms in (20) one has
T||Jn =TV j)P(h) +(1- P(h))T(i)T(j),

which is the same as (12).

Therefore, if simple cokriging and simple kriging are equivalent for every
f1, fo, ..., fm, the procesgY(x)} must have the bivariate distribution given by
(12). This of course does not imply the existence of tiles.

MULTICOLOCATED COKRIGING

In this section, the application of condition (10) to transforms of the orig-
inal data is examined. In particular, the example of multicolocated cokriging is
examined.

Let Y(x) = (Y1(x), Y2(x))" be a stationary process with me@observable
for x € D. Denote byCij(h), i = 1,2, j =1, 2 the covariance betweeYj(x)
and Y;(x + h). Let U(x) = (U1(x), U2(x))", whereU;(x) and Ux(x) are linear
combinations ofy;(x) andY,(x + h), chosen such that CoW{(x), Ux(x)) = 0.

Let Cov (U(x), U(x + h)) be denoted b, (h). By assumption$,(0) is a diagonal
matrix. Using (10) for thdJ process, the condition for simple cokriging to be
equivalent to kriging is given by

Su(h) = py(N)Su(0) (21)

sincep, (h) is diagonal 3, (h) is also diagonal i.e., if the off-diagonal elements, Cov
(U1(x 4+ h), Ux(x)) and Cov U1(x), U2(x + h)) of Sy(h) are zero, the condition
for simple cokriging to be equivalent to simple kriging is satisfied.

An important case is whebl; = Y; —rY, and U, = Y, wherer = g%%
which always satisfies CowJg(x), U2(x)) = 0 sinceU; is the residue of the re-
gression ofy; onY,. For this choice otJ; andU,, the diagonal elements &f;(h)
areC;;(h) — rCy,(h) andCy,(h) — rCy,(h) and arebothequal to O iff

Ci2(h) =rCxz(h) (22)

Condition (22) is the same as Model 2a of Rivoirard (2001), the reverse Markov
model of Chiles and Delfiner (1999) and the MM2 model of Journel (1999) that
is used for multicollocated cokriging. As pointed out by Rivorard (2001), under
condition (22) wherY; (o) is to be estimated ant is observed at more locations
thanYi, including atxg, one needs to use on¥g(xg) and data from location where
bothY; andY; are observed resulting in the estimation procedure known as such
multicollocated cokriging.
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THE LINEAR MODEL OF COREGIONALIZATION

A multivariate p-dimensional stationary random proceésgnay often be
considered as a linear combination mfunobservedp-dimensional stationary
random processes”(x) called factor processes (Goovaerts, 1993). In this sec-
tion, conditions on the factor processé¥(x) under which simple cokriging of
Zi(Xp),i = 1,2, ..., p reduces to kriging are examined. The linear model of
coregionalization (Matheron, 1982b; Wackernagel, 1988) can be written as

Z(X) =M{YI(X) + MIY2(x) + - + M] Y (%),
where
YUx) = (Y, YE(X)... YSx)T, u=12....n,
with Cov (Y (x), Y/'(x)) =0 u #u ori # j,
Cov(Y'(x), Y (x+h))=c'th), u=12...,n, i=12...,p

andMy, u=1,2,...,narepx p matrices. Alsoc"(0) can be taken to be 1 for
all u.
If Cz(h) = Cov (Z(x), Z(x + h)), it can be seen from the above that

Sh) = Cz(h) = 3 c"(MIMy = Y _c*(n)B(u). (23)
u=1 u=1

Sincec!(0) = 1, Cz(0) = Y_i_; Bu. Itmay be noted here that the quantityh)B,
can be interpreted as the contribution of thi factor process to the cross-
covariance structure &.

From (10), for simple cokriging to be equivalent to simple kriging, one has
the condition,

Cz(h) = p(h)Cz(0) (24)

This gives

> cU(MBy = p(h)Cz(0) = p(h) Y B, (25)
u=1 u=1
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Herep(h) is diagonal, théth element being

Ciy OB 3 cmbiw)

Cii (0) Xh: (0o (U) Xn:1 bii (u)
=1 o=

(26)

From (25), it can be seen that if no conditions are imposel @condition (10)
holds if and only if

i (h .
(C:”—EO; = ph, Say Vi. 27)

This implies that

> (b (v

Ph = fori=212,...,p.

n
> bii(u)
u=1
If ct(h), c?(h), ..., c"(h) are linearly independent,

o= 2 Ay

where g, = 2@ v
P uglbii(u) (28)

n
and ) Bu=1
u=1
In other words, the proce&shas to be intrinsic with

Cz(h) = pnCz(0)

i.e. all auto and cross-covariances have to be proportiongl.to

In the case wher}_,_, B, is diagonal,C,(h) = p(h) }_._; Bu. Condition
(10) then holds for any diagonal matriXh). Here C,(h) is diagonal, implying
that the procesz is itself spatially orthogonal. It is interesting to note here that
> i1 Buis diagonal if and only if eacB,, is diagonal. To see this, one may equate
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thei, jth element of the matrices in the equation above, to obtain

. > bW
Dby ) = | S | Dby ().
u=t > bi(u) fu=t

u=1

Wheni # j,oneha$_||_; bij (u) = 0, whichimplies that ead; (u) = 0asct(h),
c?(h), ..., c"(h) are linearly independent.
Further, ifMy = M YV u, it can be seen that

BU - B
and
n
Cz(h)=B) c'(h) =Bpn, say,
u=1
where

pn = c'(h).
u=1

Here (10) holds without linear independencestth), c?(h), - - -, c"(h).

The observations made above are useful in exploratory data analysis. One
may first model the auto-covariance @fto identify spatial structures i.e. to
suitably identify&l(h), &2(h), ..., &"(h) along with b (1), bii (2), . . ., bii (n) for

P — biw  _ _ Bw i _
i=12,...,p Ifitis found that b @ = Tab W = B, for aII i, ], oneob

tainspn, = Zuzl &u(h)B,. The variance-covariance matsz (0) can be computed
from the data and one may check whetﬁgr(h) >~ i)héz (0). By this process the
spatial structures are identified and it can be checked whether componéhts of
may be kriged individually.

It may be noted that in the method suggested above, the modeled auto-
covariances are used to check Wheﬂi(del)CZ(O) is an adequate model f@rz (h)
by companng: 7 (h) with p(h)C 7 (0). This method provides an alternative to com-

paring =L~ C”(h) directly.

A var|at|on of the above may occur if it is found that some of the off-diagonal
elements of:z (0) are negligible anﬁ:z (0) is close to a block-diagonal matrix.
The procedure outlined above can be applied separately to variables belonging to

each block to check whether they may be kriged individually.
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CONCLUSIONS

In the case of @-dimensional second-order stationary random progéss},
simple cokriging of its components is equivalent to their simple kriging if and only
if condition (10) holds. In other words, it should be possible to construct the cross-
covariance structur€y (h) using the cross-covariance struct@¢ (0) ath = 0
and the auto-covariance structures (specified by the elements of a diagonal matrix
p(h)). Itis shown that

Cy(h) = p(M)Cy (0) = Cy 0)p(h) V¥ h

is a necessary and sufficient condition for simple cokriging to be equivalent to
simple kriging.

Since the diagonal matrip(h) and Cy (0) must commute for alh, it is
clear that simple cokriging is equivalent to simple kriging if and oni@+f (h) is
block diagonal an&Fs belonging to the same block have proportional covariance.
Two extreme cases are i) when there is only one block and all auto- and cross-
covariances are proportional to a common covariance structure, and ii) when the
number of blocks equalg, i.e. whenCy (h) is diagonal.

The mosaic model, multicollocated kriging, and the linear model of core-
gionalization are discussed in the context of the above. It is shown that if for the
random procesgy (x)} simple cokriging of every function is equivalent to its krig-
ing, then the bivariate distributions ¢¥ (x)} are identical to that of the mosaic
model. This however does not necessarily imply the existence of tiles. In the case
of multicolocated kriging, condition (10) holds after suitable transformation of
data.

For the general case, a method for checking whether simple cokriging of
components ofY(x)} are equivalent to their simple kriging is provided by an
analysis of the linear model of coregionalization. Estimation of the autocovari-
ance functions ofY (x)} and the diagonal elements of matrice8asB,, ..., Bn,
corresponding ton nested covariance structures allows determination of whether
p(h) andCy (0) = Y., B, commute for alh.
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