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ABSTRACT A new convenient combinatorial method is developed here to derive the invariant points in multisystem
closed nets – the absent phase substitution (APS) method. It substantially simplifies the derivation of the
closed nets in multisystems with many components and phases. For the multisystems whose total phase
number (NPS) £ twice the number of the absent phases (m) in an invariant assemblage, the method can
yield regular closed nets with or without globally absent phases; for other multisystems, the method can
yield the regular closed nets with globally absent phases. As examples, the APS method was used to
predict: (1) the regular closed nets of unary to quinary n + 4-phase multisystems, unary 6-phase
multisystem and ternary 8-phase multisystem; (2) the basic properties of the regular closed nets of the
quaternary and quinary multisystems with n + 4 and n + 5 phases. Two multisystems were chosen to
demonstrate how to select a realistic closed net from the numerous possible closed nets of a complex
multisystem, and how to derive a realistic partially closed-net, closed-net-diagram and the related
realistic straight-line-net-diagram. Comparisons of our APS method for the derivation of complicated
closed nets with other methods indicate that this method is much simpler and more efficient.

Key words: closed net; invariant point; multisystem; phase diagram; the absent phase substitution
method.

INTRODUCTION

The graphical representation (or geometrical analysis)
of multi-phase equilibria initiated by Shreinemakers
(1915–1925) can serve as a powerful theoretical tool in
many scientific fields, such as physics, chemistry,
chemical engineering, geology, etc. The method was
developed mainly for determining topology in pres-
sure–temperature phase diagrams of a given single
invariant system (Zen, 1966a,b). In the past half cen-
tury, attention has turned to systems consisting of two
or more invariant assemblages (or invariant systems),
which were called �multisystems� by Korzhinsky (1957)
and Korzhinskii (1959).

In a multisystem, the total number of the possible
phases exceeds the phase number of an invariant
assemblage (the maximum allowed by the Gibbs phase
rule). On a phase diagram of a multisystem, the uni-
variant curves intersect each other at the same invari-
ant point to form a bundle, and different bundles
constitute a complicated net through the connection of
univariant curves. If every univariant curve in a net
terminates at two invariant points (namely doubly
terminating), the net is a completely closed net (Zen,
1966a, p. 403). A closed net has such essential features:
there is at least one metastable invariant point in
the net (Zharikov, 1961), and the stable part of any

univariant curve lies between two adjacent stable
invariant points and includes the two points (Guo,
1980a, 1981b). A real phase diagram of a multisystem
always has some univariant curves terminating at only
one stable invariant point, so it is never entirely closed,
but partially or completely open.

Although closed nets are not real phase diagrams,
they include all the potential topology of real phase
diagrams. They serve as topological generating func-
tions, from which all the potential forms of real phase
diagrams can be derived (Guo, 1980c, 1985; Guo &
Wang, 1988; Cheng & Guo, 1989; Stout & Guo, 1994).

In past decades, many contributions have been made
to the related study of closed nets of multisystems, e.g.
Day (1972, 1976, 1978), Braun & Stout (1975), Barron
& Barron (1977), Burt (1978), Chesworth (1980), Guo
(1979, 1980a,b,c, 1981a,b, 1984, 1985), Cai (1981,
1982), Cheng (1983, 1986), Cheng & Guo (1989),
Korzhinskii (1959); Kujava et al. (1965), Kujava &
Eugster (1966), Zen (1966a, 1967, 1974), Guo & Jin
(1980), Mohr & Stout (1980), Wang (1980), Guo & Cai
(1982), Guo & Wang (1982), Roseboom & Zen (1982),
Vielzeuf & Boivin (1984), Stout (1985, 1990),
Usdansky (1987, 1989), Guo & Cheng (1989), Tan
(1990), Stout & Guo (1994), Hu (1998); Kletetschka &
Stout (1999), Hu et al. (2000), Guy & Pla (2002),
Zharikov (1961), Zen & Roseboom (1972), etc.
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Zen (1966a) proposed the n + 3-phase closed net
theory and derived closed-net-diagrams and straight-
line-net-diagrams of unary and binary n + 3-phase
multisystems using the so-called �representation poly-
hedron� approach. Zen & Roseboom (1972) extended
the same treatment to ternary n + 3-phase multisys-
tems. By making a new divariant field to extend
the system, Roseboom & Zen (1982) derived the
representation polyhedra of the unary multisystems
with five to seven phases. However, this technique
cannot be applied to multi-component systems. In view
of that, Roseboom & Zen (1982) proposed the ap-
proach of �overlapping stability fields�, and used it to
derive closed-net-diagrams and representation poly-
hedra of the binary multisystems of five or six phases.

Guo (1980a) initiated a study of the closed nets of
n + 4-phase multisystems (Roseboom & Zen, 1982).
Guo (1980a) put forward a fundamental theorem on
univariant curves, which was re-stated by Guo (1984):
�The stable portion, if any, of a univariant curve can
only be a segment between two adjacent stable
invariant points, in spite of the number of the invariant
points with which this univariant curve is associated�.
Here, all the univariant curves, either compositionally
degenerate or not, are uniquely defined by the phase
assemblages derived from the combinatorial rules.
Based on this theorem, Guo (1980a) proposed a
method to derive closed nets. According to this
method, a closed net can be obtained by eliminating all
supposed metastable invariant points on each univar-
iant curve, leaving two stable invariant points on each
curve. In addition, Guo & Wang (1982) put forward a
combination principle for closed nets. It was proved by
Cai (1982), and re-stated by Guo (1984) that any
closed net of n + k (k > 3)-phase multisystem must
be a combination of two or more distinct n + 3 order
submultisystem closed nets belonging to the given
n + k-phase multisystem, if it is not one of submulti-
system. This principle suggests a method for the con-
struction of closed nets: all the n + k(k > 3)-phase
closed nets can be derived from n + 3-phase closed
nets in theory. This is the so-called combination
method (Guo, 1980b, 1984). The methods above were
successfully used to derive the closed nets, closed-
net-diagrams, straight-line-net-diagrams, the basic
forms (or concrete configurations) of unary, binary
and ternary multisystems (Guo, 1980a,b,c, 1981a,
1984, 1985).

In general, none of the theories or methods in the
literature is satisfactory for studying the closed nets of
the complex multisystems of many components and
phases. For example, the approach of overlapping
stability fields can only apply to binary systems, but
not to other multisystems (Guo & Cai, 1982; Guo,
1984). The representation polyhedron approach is also
impractical for multisystems of many components and
phases because of the great difficulty in the plotting,
visualisation and theoretical analysis of the represen-
tation polyhedra. The methods of Guo (1980a), Guo &

Wang (1982) also have some limitations: (i) There is no
way to predict the metastable invariant points; (ii) For
a complex multisystem, it is very subtle and complex to
list and exclude the numerous univariant curves and
invariant points; (iii) Although the closed nets of the
n + k(k > 3)-phase multisystems can be derived with
the combination method in theory, it will be very
complicated to apply this method to the multisystems
of much more than n + 3 phases.

Because of the various problems in the existing
methods above, we developed a convenient combina-
torial method for direct derivation of closed nets, the
absent phase substitution (APS) method, which greatly
simplifies the derivation of the closed nets with many
components and phases. This report begins with a new
general nomenclature for various kinds of multisys-
tems, followed by a presentation of the main steps,
with examples, validation, applicable range and
advantages of the APS method, as well as application
of the APS method to the derivation of some compli-
cated closed nets and closed-net diagrams.

CLASSIFICATION OF MULTISYSTEMS

The Gibbs phase rule is expressed as

F ¼ C � P þ 2 � R; ð1Þ
where C, P and R are the numbers of inert independent
components, phases and the restrictions on the inten-
sive variables, respectively. In most cases, �2� refers to
temperature and pressure. In some cases, there are
additional intensive variables influencing the thermo-
dynamic properties of the system, such as the chemical
potentials of perfectly mobile components in an open
system, electric or magnetic field, and interfacial ten-
sion (potential) etc. For instance, the chemical poten-
tials of mobile components such as H2O, CO2, Na2O,
K2O, can be regarded as external thermodynamic
conditions. Under these conditions, the phase rule
should be extended as

F ¼ C � P þ Q � RðQ � 2Þ: ð2Þ
The so-called n + k(k > 2)-phase multisystems etc.

(where n is the component number) usually refer to
those where temperature and pressure are variables.

According to the Gibbs phase rule 1 or 2, the phase
number of an invariant assemblage in an n-component
system, NPI is not always n + 2 (the subscripts �P� and
�I� stand for �Phase� and �Invariant assemblage�,
respectively). For example, in the salt-water system at
constant temperature and pressure (R ¼ 2), the NPI

equals n; if only temperature or pressure is constant
(R ¼ 1), the NPI will be n + 1. That is to say, the
simplest multisystems are not always the n + 3-phase
systems, and an n + 3-phase system is not always a
multisystem. Apparently, the nomenclature of n + k-
phase multisystems cannot summarize the numerous
possible relations between the total phase number and
the component number of a multisystem.
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Considering this fact, we propose a new general and
systematic nomenclature for the various multisystems
on the basis of the following expression (Hu, 1998; Yin
et al., 2002):

NPS � NPI ¼ m > 0; ð3Þ
where NPS is the total number of the phases in an arbi-
trary multisystem (the subscript �S� stands for �System�).
It should be noted that, in many multisystems, all
invariant assemblages have one or more common phases
in equilibrium with the other phases in every invariant
assemblage. In order to facilitate the study of the phase
relations of these systems, these common phases should
be excluded from the system through a proper projec-
tion. Thus, they should not be included in the system
after projection, and so contribute nothing to NPS and
NPI (see Thompson, 1957; Albee, 1965; Harvie et al.,
1982, 1984). The same is below.

According to Eq. (3), if NPS)NPI¼m, the multisys-
tem can be defined as an m-level (or m-grade) multi-
system. For convenience, the closed nets of an m-level
multisystem are also called m-level closed nets. For the
n + k-phase multisystems, NPS¼n+k, NPI¼n+2, m¼
k)2. Because of the simplicity, 1-level multisystems can
be called simple, elementary or primary multisystems,
while the other multisystems, such as 2-, 3-, and 4-level
multisystem etc., can be simply called complex or high-
level multisystems.

NEW METHOD FOR THE DERIVATION OF
CLOSED NETS – ABSENT PHASE SUBSTITUTION
METHOD

The absent phase substitution method

For an m-level, NPS-phase multisystem, an invariant
assemblage has NPI(¼NPS ) m) coexisting phases and
m absent phases. According to Shreinemakers� nota-
tion (Zen, 1966a), each invariant assemblage or point
can be identified by enclosing its m absent phases
within the brackets �[ ]�, and each univariant assem-
blage or curve, by enclosing its (m + 1) absent phases
within the parentheses �( )�.

For the derivation of a closed net, all the invariant
points in the net need to be determined first, and then
all the univariant curves arranged between the known
invariant points. The arrangement of univariant curves
can be done by using the phase compositions and
Schreinemakers� rules or so-called �univariant sche-
me�(Zen, 1966b, p. 13), and many petrologists and
geochemists are familiar with the technique for this
step (Zen, 1966b; Barron & Barron, 1977; Linde &
Andrew, 1982; Usdansky, 1983). Thus, this study is
focused on the method for the determination of
invariant points, not for the net topology.

Take a unary 4-phase (1-level) multisystem. It has
four possible invariant points, [1], [2], [3] and [4], all of
which are in the unique closed net. For convenience,
�{1/2/3/4}� is used for the set of the four points and the

closed net. To obtain an invariant assemblage label,
one phase label is taken in the net label {1/2/3/4} and
placed in �[ ]�. In this procedure, all the phase labels in
{1/2/3/4} are legal candidates. That is, the four phase
labels are optional for this purpose. So the �/� here
means �optional�.

According to the combination principle (Guo &
Wang, 1982; Guo, 1984), to obtain the closed nets of a
high-level multisystem, it is possible in principle to
derive them from the combination of the closed nets of
its 1-level subsystem. Take a unary 5-phase (2-level)
multisystem as an example. For any of its 1-level
closed nets, there is a phase absent in the whole net
(Guo, 1980a), such as {1,2/3/4/5} and {2,1/3/4/5}. If
these two nets are used as the combining elements,
[1, 2] will be the common invariant point of the two
nets, and should at first be omitted from the two
nets (Guo & Wang, 1982). After eliminating [1, 2],
two partially closed nets are obtained: {1,3/4/5} and
{2,3/4/5}, which are two parts of a (completely) closed
net. Apparently, 1 and 2 occupy the same position in
the two partially closed net labels, so they are the
optional phases (candidates) of the same position. In
view of this fact, {1,3/4/5} and {2,3/4/5} can be
incorporated into {1/2,3/4/5}. This is a closed net label
of the unary 5-phase system. Through this label, one
can easily write out all the invariant points in the
corresponding closed net: [1, 3], [1, 4], [1, 5], [2, 3], [2, 4]
and [2, 5].

In this way, other closed net labels of the unary
5-phase system can be derived, too, but it will be more
complex to apply this method to high-level multisys-
tems. Through the analysis of the essential features of
closed nets and the closed net labels derived with the
method above, a more convenient method is found
that can do the same work. The procedures follow:
(i) Divide all the NPS phases into m groups, any group
having at least one phase. If a group has more than one
phase, the adjacent absent phases are separated by �/�
(slash) in an arbitrary sequence. However, different
grouping ways mean different closed nets (or different
sets of invariant assemblages or points).
(ii) Put the m groups of phases in the set symbol �{…}�
in an arbitrary sequence and separate different groups
with commas. The result is a closed net label. The
positions that the m groups of absent phases occupy
are called absent phase positions.

In a closed net label, if the phase number in group
j (namely on the absent phase position j, where j ¼ 1,2,
m) is NPj the net can be defined as (NP1-NP2-…-
NPj-…-NPm) type. Apparently, the types of closed nets
vary with the change in the match of these NPj�s.

To get an invariant assemblage or point, it is
necessary to choose one absent phase label in each
group, and place them into �[ ]�. Since each group has
more than one candidate phase, there are usually many
possible options to derive an invariant assemblage.
Finishing all the different options results in a set of
invariant assemblages or points, which determines a
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closed net. Following the steps above, one can easily
derive a closed net. This procedure in itself is an
operation of repeated substitution of an absent phase
label in the current invariant point label. Generally, for
a given type of closed net, all the possible members can
be obtained by starting with an arbitrary closed net
and then repeating the substitution of the absent
phases in a current known closed net. This approach is
called the �absent phase substitution� (APS) method.

It is necessary to note that any pair of absent phase
labels in the same group (on the same position) cannot
appear simultaneously in one invariant assemblage
label, but they can appear at the same position in
different invariant assemblage labels.

Examples

The key point of the APS method is essentially to find
all the combinations of the NPS phase labels in m
groups (or on m positions) for an m-level multisystem.
With the APS method, any (NP1-NP2-…-NPj-…-NPm)
type of closed nets can be very easily derived. Taking a
binary 7-phase (3-level) multisystem as an example.
Following the method above, there should be three
absent phase positions in the set symbol �{ }�. So we can
divide the seven phases into three groups, and separate
the different absent phases in any group with �/�, e. g.
group 1: 1/6; group 2: 2/3; group 3: 4/5/7.

Finally, let each group occupy a position in �{}�,
respectively. The resulting label of the closed net is �{1/
6,2/3,4/5/7}�, where the group positions and the absent
phases of any group in the net label can be arranged in
arbitrary sequence. However, if the three groups are
group 1: 1/2, group 2: 3/6, group 3: 4/5/7, the resulting
closed net will be {1/2,3/6,4/5/7}, which is different
from {1/6,2/3,4/5/7}.

At this time, it is easy to derive all the invariant
assemblages or points in a derived closed net. Taking
{1/6,2/3,4/5/7} as an example, if one phase label is
chosen from each group, and placed in �[ ]�, an
invariant assemblage or point such as �[1, 2, 4]� is
obtained. The remaining invariant assemblages or
points in the closed net can be obtained in the same
way, see Table 1. In this example, phase 1 and 6 (in
group 1) are at the same position, so they cannot
appear in one invariant assemblage at the same time,
but they can appear at the same position in the labels
of different invariant assemblages. Similar conclusions
apply to the phases in the other groups.

More examples of the APS method are listed in
Table 2, and the results are completely equivalent to
those of Guo (1980a, 1985), Roseboom & Zen (1982),
but our method is much simpler.

Analysis of the results

For a (NP1-NP2-…-NPj-…-NPm) type of closed net, the
number of invariant points, NIP and the number of
univariant curves, NUC can be calculated as follows:

NIP ¼ NP1 � NP2 � � � � � NPj � � � � � NPm

�
X

j

NPj ¼ NPS

 !
; ð4Þ

NUC ¼ NIP � N0
UC

2
; ð5Þ

where N0
UC is the number of the univariant curves

about an invariant point. Note that NPI and NIP have
different definitions.

In a closed net label, there may be a set of positions
occupied by the same number of absent phases, e.g. the
first and second positions in {1/6,2/3,4/5/7}. These
positions are in fact equivalent. If there are q different
sets of equivalent positions in the label of an arbitrary
closed net, the number of all the possible closed nets,
NNet can be predicted in the following way:

NNet ¼
CNP1

NPS
CNP2

NPS�NP1
CNP3

NPS�NP1�NP2
� � �CNPm

NPm

PNSet1

NSet1
PNSet2

NSet2
� � �PNSetq

NSetq

; ð6Þ

where Nsetk is the number of the kth set of equivalent
positions, Ci

j and Pi
j are the numbers of the combina-

tions and permutations of taking i elements from the
set of j elements, respectively. For instance, {1/6,2/3,4/
5/7} and {1/2,3/6,4/5/7} are both (2-2-3) type of closed
nets. Both of them have 2 · 2 · 3(¼ 12) invariant
points, and (12 · 4)/2(¼ 24) univariant curves. In one
of the two net labels, there is only one set of equivalent
positions, so the number of this type of closed nets is
ðC2

7C
2
5C

3
3Þ=P2

2 ¼ 105.
If there is only one absent phase in a group, that

phase is globally absent, or absent in the whole net. In
this case, the net is called non-typical (Guo, 1980a,
1984) or degraded closed net here. This kind of nets can
serve as the basic elements in the construction of
complex closed nets, so they are very important, too. If
no group has only one absent phase, the closed net is
typical (Guo, 1980a, 1984), or non-degraded here. Such

Table 1. The derivation of the invariant assemblages or points in
the binary 7-phase closed net {1/6,2/3,4/5/7}.

Option number The chosen absent phases The derived invariant

assemblage or point

From group 1 From group 2 From group 3

1/6 2/3 4/5/7

1 1 2 4 [1, 2, 4]

2 1 2 5 [1, 2, 5]

3 1 2 7 [1, 2, 7]

4 1 3 4 [1, 3, 4]

5 1 3 5 [1, 3, 5]

6 1 3 7 [1, 3, 7]

7 6 2 4 [2, 4, 6]

8 6 2 5 [2, 5, 6]

9 6 2 7 [2, 6, 7]

10 6 3 4 [3, 4, 6]

11 6 3 5 [6, 3, 5]

12 6 3 7 [3, 6, 7]

4 16 J . HU E T A L .

� 2004 Blackwell Publishing Ltd



nets have higher level and more complicated phase
relations.

Comparison with previously reported methods

In order to demonstrate the capability and the effi-
ciency of our method, it is compared with the most
representative methods reported previously (Guo,
1980a; Roseboom & Zen, 1982) using some specific
examples.

For instance, the derivation of the representation
polyhedra and closed nets of binary 6-phase multi-
system by Roseboom & Zen (1982) is much more
complex than ours. Similar derivation of ternary
7-phase multisystems will be more difficult. If the
method of Guo (1980a) is used to derive the closed nets
in Table 2, some metastable invariant points and uni-
variant curves must be known and excluded in advance
(see Table 3). Since Guo (1980a) did not give an
approach to this problem, the successful choice of
the metastable invariant points and univariant curves
usually has to rely on a formidable number of trials
and errors. Additionally, if a (NP1-NP2-…-NPj-…-NPm)
type of closed net (NP1 £ NP2 £ � � � £ NPj� � � £ NPm)1)
is derived with the combination method (Guo, 1980b;
Guo & Wang, 1982), it will need NP1 · NP2 · � � � ·
NPj � � � · NPm)1 combining elements and NP1 · NP2 ·
� � � · NPj � � � · NPm)1 ) 1 steps. This can be deter-
mined by analysing the closed net and its 1-level
combining elements. For the combination method, for
example, it will take i · j combining elements and
i · j ) 1 steps to derive the (i ) j ) k) type of closed
net (i £ j £ k). Comparatively speaking, our APS
method is much simpler and more intuitive than those
of Guo (1980a, 1985) and Guo & Wang (1982).

Validation of the method

Suppose net A is an arbitrary net of an m-level multi-
system of NPS phases derived (and labelled) with the
APS method, [i, j, k, …, o, p] is an arbitrary invariant
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Table 3. The derivation of the invariant assemblages or points in
some closed nets.

System NIP NUC NIP NUC N	
IP � NIP N	

UC � NUC

Unary

5-phase system

C2
5 ¼ 10 C3

5 ¼ 10 2 · 3 ¼ 6 6 · 3/2 ¼ 9 4 1

Unary

6-phase system

C3
6 ¼ 20 C4

6 ¼ 15 2 · 2 · 2 ¼ 8 8 · 3/2 ¼ 12 12 3

Binary

6-phase system

C2
6 ¼ 15 C3

6 ¼ 20 a2 · 4 ¼ 8 8 · 4/2 ¼ 16 7 4
b3 · 3 ¼ 9 9 · 4/2 ¼ 18 6 2

Ternary

7-phase system

C2
7 ¼ 21 C3

7 ¼ 35 c2 · 5 ¼ 10 10 · 5/2 ¼ 25 11 10
d3 · 4 ¼ 12 12 · 5/2 ¼ 30 9 5

N	
IP ;N

	
UC: The numbers of all the possible invariant points and univariant curves of the

multisystem calculated from the combinatorial rule; N	
IP � NIP;N

	
UC � NUC: The numbers

of the supposed metasable invariant points and univariant curves of the multisystem to be

determined and excluded, respectively.
aFor 8-point closed net.
bFor 9-point closed net.
cFor 10-point closed net.
dFor 12-point closed net.
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point in net A, and (i, j, k, …, o, p, q) is an arbitrary
univariant curve originating from that point, where �q�
can be any of the other NPS ) m(¼NPI) phase labels of
the system. According to the APS method, �q� must be
on a specified position in the label of net A. Without
loss of the generality, we can suppose �q� and �p� are on
the same position in the label of net A. Then [i, j, k, …,
o, q] must be another invariant point in net A.
According to the combinatorial rules, there are totally
m + 1 possible points on the curve (i, j, k, …, o, p, q).
The labels of these points can be determined by
selecting m labels from the m + 1 absent phase labels
of the curve. These point labels can be divided into two
groups: the first group consists of [i, j, k, …, o, p] and
[i, j, k, …, o, q], where only one of �p� and �q� is
included, and �p� and �q� are located at the same absent
phase position. So these two points belong to net A.
The second group consists of the other m ) 1 point
labels, where both �p� and �q� are included, and �p� and
�q� are located at different absent phase positions. So
the points in this group do not belong to net A, that is,
they are the metastable invariant points that are
excluded from net A by the APS method.

The result above means that, in an arbitrary net
derived with the APS method, an arbitrary univariant
curve originating from an arbitrary invariant point
terminates at another invariant point in the net, no
other point can stably exist on the curve. In brief, every
univariant curve in the net is doubly terminating,
which is in agreement with the fundamental theorem
on univariant curves of Guo (1980a, 1981b). Accord-
ing to the definition of a closed net in the introduction
or Zen (1966a, p. 403), the net must be completely
closed. In other words, any net label derived with the
APS method defines a closed net.

The reliability of APS method is also supported by
the combination principle (Guo & Wang, 1982; Guo,
1984), because all the closed nets derived with the APS
method can be derived from the combination of 1-level
closed nets, as stated earlier. In addition, the general
method of Guy & Pla (2002) may be a useful reference
for finding the direct thermodynamic and mathematic
foundation of the new method.

It needs to be stressed that the compositional
degeneracy in a multisystem does not limit the
validity of the APS method. In a compositionally
degenerate multisystem, two or more univariant
curves with different labels may represent the same
degenerate reaction (whose phase number is less than
the usual reaction). In these differently labelled uni-
variant curves, each curve has two stable invariant
points (end points) on it, and each of these points is
shared by other univariant curves. As a result, there
may be more than two stable invariant points existing
on a degenerate curve. In this study, the univariant
curves representing the degenerate reaction are trea-
ted as distinct ones, although they have the same
participating phases. So the fundamental theorem on
univariant curves of Guo (1980a, 1981b) is still cor-

rect, and the APS method is valid for both of the
compositionally degenerate and non-degenerate
multisystems.

Applicable range and advantages of the APS method

In a closed net label of an m-level multisystem, there
are m positions for putting the absent phases. If the
closed net is non-degraded (namely typical), there are
at least two absent phases on any of the m positions, so
the total number of the absent phases on the m posi-
tions cannot be less than 2m. This means that if one
wants to obtain non-degraded closed nets with the
APS method, it must satisfy

NPSP2m: ð7Þ
For example, in the closed net label of unary 6-phase

(3-level) multisystem, there are three absent phase
positions. Putting the six phases on the three positions
only yields one type of non-degraded closed net: (2-2-
2) type, such as {1/2,3/4,5/6},{1/3,2/4,5/6},{1/6,2/3,4/
5}, etc. Of course, when NPS P 2 m, the APS method
can also produce degraded closed nets, such as the (1-
1-4) and (1-2-3) types of closed nets of unary 6-phase
multisystem.

On the other hand, if NPS < 2m there is at least one
position at which there is only one absent phase. In
these cases, the APS method can only offer the
degraded closed nets. For example, in the closed net
label of unary 8-phase (5-level) multisystem, there are
five absent positions (Here, 8 < 2 · 5). Putting the
eight phases on the five positions will lead to at least
two positions with only one phase on each of them, e.g.
{1/2,3/4,5/6,7,8}.

If Eq. (3) is substituted into Eq. (7) to eliminate NPS

it will result in an equivalent equation of Eq. (7):

NPIPm: ð8Þ
So the upper level limit of the multisystem whose

non-degraded closed nets can be derived with the APS
method is

m ¼ mmax ¼ NPI: ð9Þ
If Eq. (9) is substituted into Eq. (3) for m, then it can

produce

NPS ¼ 2NPI ¼ 2mmax: ð10Þ
Eq. (10) means that if NPS6 2NPI the APS method

can give both degraded and non-degraded closed nets;
otherwise, the APS method can only give degraded
closed nets.

For any closed net derived with the APS method, the
absent phase labels in any group can be put in an
arbitrary sequence, that is, their positions are
exchangeable. Of course, the positions of two arbitrary
singly existing phase labels in the net label are
exchangeable, if any. Besides, the positions with the
same number of phase labels are equivalent to each
other in the net label, so the set of phase labels on
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arbitrary two equivalent positions can be exchanged as
a whole.

For the closed nets that cannot be derived with the
APS method, each of them can be expressed as a
combination of appropriate combining elements
(namely 1-level or higher-level closed nets derived with
the APS method). In these nets, however, two
exchangeable phase labels in one combining element
may be no longer exchangeable in another combining
element, that is, their positions are not exchangeable in
the whole closed net. This phenomenon remarkably
reduces the pair number of exchangeable phase labels,
and thus the phase labels that are exchangeable in the
whole closed net are notably less than those in
the elements, usually few or non-existent. Likewise, the
equivalent positions in the whole net label are usually
nonexistent or notably less than those in the relevant
elements.

The exchangeability of the phase labels and the
equivalence of the positions in the closed net labels
reflect the regularity of the connection relationship
between the invariant points. They are closely associ-
ated with the symmetry of the closed nets and their
representation polyhedra. For this reason, the closed
nets derived with the APS method are defined as
regular closed nets, and those that cannot be derived
with the APS method are irregular closed nets. For
example, all the n + 3-phase and n + 4-phase closed
nets are regular, see Table 2 or Guo (1980a), while the
irregular closed nets can only exist in 3-level or higher-
level multisystems, e.g. all the unary 7-phase closed
nets and one type of unary 6-phase closed nets are
irregular. Zen (1966a), Zen & Roseboom (1972),
Roseboom & Zen (1982) and Guo (1980b, 1981a, 1984,
1985) gave some representation polyhedra of regular
closed nets of unary to ternary multisystems. Rose-
boom & Zen (1982) and Guo (1984, 1985) gave some
representation polyhedra of the unary irregular closed
nets with six and seven phases.

In this study, the APS method is not only a method
for the derivation of closed nets, but also a standard
for the classification of closed nets. In the next paper of
this series, we will show that the irregular closed nets of
various multisystems can be obtained and notated
through the combination of appropriate regular closed
nets.

According to Eqs (9) and (10), with the increase in
NPI (and/or the components of the system), the ranges
of the levels and total phase numbers of the multi-
systems that have non-degraded regular closed nets
increase rapidly, as shown in Table 4.

APPLICATION

Because of the great difficulty in theory, few reports
about closed nets of multisystems with more than three
components can be found in the literature, e.g. Zen
(1974), Barron & Barron (1977). Unlike other meth-
ods, applying the APS method to a multi-component,
n + k(k > 3)-phase multisystem it does not lead to an
apparent increase in complexity. In this study, the APS
method is used to derive the closed nets of some more
complicated multisystems.

Derivation of the complete systems of closed nets of
complex multisystems

(1) Quaternary 8-phase (n + 4) multisystem. In this
example, NPS ¼ 8, m ¼ 2, NPS > 2m. In terms of the
APS method, there are two groups of absent phases in
every closed net label. The eight phases should be
divided into two groups, where the phase number in
each group should not be fewer than two. There are no
more than three ways to group the absent phases:
(i) two phases are placed in one group, and the other
six phases in the other; (ii) three phases in one group,
and the other five phases in the other; (iii) there are
four phases in each group. The regular closed nets
obtained in these ways belong to three types: (2-6)
type, (3-5) type and (4-4) type, where the (2-6) type has
C2

8ð¼ 28Þ nets; the (3-5) type, C3
8ð¼ 56Þ nets; and the

(4-4) type, C4
8=2ð¼ 35Þ nets, see Table 5. If the three

types of closed nets in Table 5 are derived with the
combination method, it will need two, three and four
combining elements and 1, 2 and 3 steps for one closed
net, respectively. It will be much more difficult to
derive the nets in Table 5 with the method of Guo
(1980a). If the derivation of the above nets is done with
the representation polyhedron approach of
Zen (1966a); Zen & Roseboom (1972), the task will be
very arduous.
(2) Quinary 9-phase (n + 4) multisystem. In this case,
NPS ¼ 9,m ¼ 2,NPS > 2m. The nine phases should be
divided into two groups, so the non-degraded regular
closed nets belong to three types: (2-7) type, (3-6) type
and (4-5) type. Here, only the complete system of the
(2-7) type of closed nets is listed (Table 6).
(3) Ternary 8-phase (n + 5) multisystem. This system
has three absent phase positions in its closed net labels.
If only one position is occupied by single phase, the
possible regular closed nets must belong to the (1-2-5)
type and (1-3-4) type. Table 7 shows the regular closed
nets where phase 1 is absent.

Table 4. The multisystems for which the absent phase substitution method can give non-degraded regular closed nets.

The NPI of multisystems 3 4 5 6 7 8 9 10 11 …
The m range of multisystems £3 £4 £5 £6 £7 £8 £9 £10 £11 …
The NPS range of multisystems £6 £8 £10 £12 £14 £16 £18 £20 £22 …
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Prediction of some basic properties of the closed nets of the
complex multisystems and their complete systems

For a complex multisystem, such as unary to quinary
systems of n + 4 or n + 5 phases, all its closed nets
and their related important information can be easily
derived with the APS method. For example, the
numbers of the invariant points and univariant curves
can be directly calculated by Eqs (4) and (5). The total
numbers of various regular closed nets can also be

calculated with the permutation and combination ap-
proach, see Tables 8 and 9.

Selection of the realistic closed nets from numerous closed
nets of a given complex multisystem and the derivation of
the related partially closed nets

For a complex multisystem, there are numerous poss-
ible closed nets, which represent all the possible phase
diagram topology of the system. With the constraints

Table 5. The regular closed nets of quaternary 8-phase system.

The (2-6) type of regular

closed nets

NIP ¼ 2 · 6 ¼ 12

NNet ¼ C2
8C6

6 ¼ 28

{1/2, 3/4/5/6/7/8} {1/3, 2/4/5/6/7/8} {1/4, 2/3/5/6/7/8} {1/5, 2/3/4/6/7/8} {1/6, 2/3/4/5/7/8} {1/7, 2/3/4/5/6/8} {1/8, 2/3/4/5/6/7} {2/3, 1/4/5/6/7/8} {2/4,

1/3/5/6/7/8} {2/5, 1/3/4/6/7/8} {2/6, 1/3/4/5/7/8} {2/7, 1/3/4/5/6/8} {2/8, 1/3/4/5/6/7} {3/4, 1/2/5/6/7/8} {3/5, 1/2/4/6/7/8} {3/6, 1/2/4/5/7/8} {3/7,

1/2/4/5/6/8} {3/8, 1/2/4/5/6/7} {4/5, 1/2/3/6/7/8} {4/6, 1/2/3/5/7/8} {4/7, 1/2/3/5/6/8} {4/8, 1/2/3/5/6/7} {5/6, 1/2/3/4/7/8} {5/7, 1/2/3/4/6/8} {5/8,

1/2/3/4/6/7} {6/7, 1/2/3/4/5/8} {6/8, 1/2/3/4/5/7} {7/8, 1/2/3/4/5/6}

The (3-5) type of regular

closed nets

NIP ¼ 3 · 5 ¼ 15

NNet ¼ C3
8C3

5 ¼ 56

{1/2/3, 4/5/6/7/8} {1/2/4, 3/5/6/7/8} {1/2/5, 3/4/6/7/8} {1/2/6, 3/4/5/7/8} {1/2/7, 3/4/5/6/8} {1/2/8, 3/4/5/6/7} {1/3/4, 2/5/6/7/8} {1/3/5, 2/4/6/7/8} {1/3/6,

2/4/5/7/8} {1/3/7, 2/4/5/6/8} {1/3/8, 2/4/5/6/7} {1/4/5, 2/3/6/7/8} {1/4/6, 2/3/5/7/8} {1/4/7, 2/3/5/6/8} {1/4/8, 2/3/5/6/7} {1/5/6, 2/3/4/7/8} {1/5/7,

2/3/4/6/8} {1/5/8, 2/3/4/6/7} {1/6/7, 2/3/4/5/8} {1/6/8, 2/3/4/5/7} {1/7/8, 2/3/4/5/6} {2/3/4, 1/5/6/7/8} {2/3/5, 1/4/6/7/8} {2/3/6, 1/4/6/7/8} {2/3/7,

1/4/5/6/8} {2/3/8, 1/4/5/6/7} {2/4/5, 1/3/6/7/8} {2/4/6, 1/3/5/7/8} {2/4/7, 1/3/5/6/8} {2/4/8, 1/3/5/6/7} {2/5/6, 1/3/4/7/8} {2/5/7, 1/3/4/6/8} {2/5/8,

1/3/4/6/7} {2/6/7, 1/3/4/5/8} {2/6/8, 1/3/4/5/7} {2/7/8, 1/3/4/5/6} {3/4/5, 1/2/6/7/8} {3/4/6, 1/2/5/7/8} {3/4/7, 1/2/5/6/8} {3/4/8, 1/2/5/6/7} {3/5/6,

1/2/4/7/8} {3/5/7, 1/2/4/6/8} {3/5/8, 1/2/4/6/7} {3/6/7, 1/2/4/5/8} {3/6/8, 1/2/4/5/7} {3/7/8, 1/2/4/5/6} {4/5/6, 1/2/3/7/8} {4/5/7, 1/2/3/6/8} {4/5/8,

1/2/3/6/7} {4/6/7, 1/2/3/5/8} {4/6/8, 1/2/3/5/7} {4/7/8, 1/2/3/5/6} {5/6/7, 1/2/3/4/8} {5/6/8, 1/2/3/4/7} {5/7/8, 1/2/3/4/6} {6/7/8, 1/2/3/4/5}

The (4-4) type of regular

closed nets

NIP ¼ 4 · 4 ¼ 16

NNet ¼ C4
8C4

4/P2
2 ¼ 35

{1/2/3/4, 5/6/7/8} {1/2/3/5, 4/6/7/8} {1/2/3/6, 4/5/7/8} {1/2/3/7, 4/5/6/8} {1/2/3/8,4/5/6/7} {1/2/4/5, 3/6/7/8} {1/2/4/6, 3/5/7/8} {1/2/4/7, 3/5/6/8}

{1/2/4/8, 3/5/6/7} {1/2/5/6, 3/4/7/8} {1/2/5/7, 3/4/6/8} {1/2/5/8, 3/4/6/7} {1/2/6/7, 3/4/5/8} {1/2/6/8, 3/4/5/7} {1/2/7/8, 3/4/5/6} {1/3/4/5, 2/6/7/8}

{1/3/4/6, 2/5/7/8} {1/3/4/7, 2/5/6/8} {1/3/4/8, 2/5/6/7} {1/3/5/6, 2/4/7/8} {1/3/5/7, 2/4/6/8} {1/3/5/8, 2/4/6/7} {1/3/6/7, 2/4/5/8} {1/3/6/8, 2/4/5/7}

{1/3/7/8, 2/4/5/6} {1/4/5/6, 2/3/7/8} {1/4/5/7, 2/3/6/8} {1/4/5/8, 2/3/6/7} {1/4/6/7, 2/3/5/8} {1/4/6/8, 2/3/5/7} {1/4/7/8, 2/3/5/6} {1/5/6/7, 2/3/4/8}

{1/5/6/8, 2/3/4/7} {1/5/7/8, 2/3/4/6} {1/6/7/8, 2/3/4/5}

Table 6. The (2-7) type of closed nets
of quinary 9-phase multisystem ( NIP ¼
2 · 7 ¼ 14, NNet ¼ C2

9C
7
7 ¼ 36).

{1/2, 3/4/5/6/7/8/9} {2/4, 1/3/5/6/7/8/9} {3/7, 1/2/4/5/6/8/9} {5/7, 1/2/3/4/6/8/9}

{1/3, 2/4/5/6/7/8/9} {2/5, 1/3/4/6/7/8/9} {3/8, 1/2/4/5/6/7/9} {5/8, 1/2/3/4/6/7/9}

{1/4, 2/3/5/6/7/8/9} {2/6, 1/3/4/5/7/8/9} {3/9, 1/2/4/5/6/7/8} {5/9, 1/2/3/4/6/7/8}

{1/5, 2/3/4/6/7/8/9} {2/7, 1/3/4/5/6/8/9} {4/5, 1/2/3/6/7/8/9} {6/7, 1/2/3/4/5/8/9}

{1/6, 2/3/4/5/7/8/9} {2/8, 1/3/4/5/6/7/9} {4/6, 1/2/3/5/7/8/9} {6/8, 1/2/3/4/5/7/9}

{1/7, 2/3/4/5/6/8/9} {2/9, 1/3/4/5/6/7/8} {4/7, 1/2/3/5/6/8/9} {6/9, 1/2/3/4/5/7/8}

{1/8, 2/3/4/5/6/7/9} {3/4, 1/2/5/6/7/8/9} {4/8, 1/2/3/5/6/7/9} {7/8, 1/2/3/4/5/6/9}

{1/9, 2/3/4/5/6/7/8} {3/5, 1/2/4/6/7/8/9} {4/9, 1/2/3/5/6/7/8} {7/9, 1/2/3/4/5/6/8}

{2/3, 1/4/5/6/7/8/9} {3/6, 1/2/4/5/7/8/9} {5/6, 1/2/3/4/7/8/9} {8/9, 1/2/3/4/5/6/7}

Table 7. The (1-2-5) and (1-3-4) types of closed nets of the ternary system of eight phases in which phase 1 is absent.

The (1-2-5) type of

closed nets

NIP ¼ 1 · 2 · 5 ¼ 10

NNet ¼ C1
1C2

7 C5
5 ¼ 21

{1, 2/3, 4/5/6/7/8} {1, 2/4, 3/5/6/7/8} {1, 2/5, 3/4/6/7/8} {1, 2/6, 3/4/5/7/8} {1, 2/7, 3/4/5/6/8} {1, 2/8, 3/4/5/6/7} {1, 3/4, 2/5/6/7/8} {1, 3/5, 2/4/6/7/8}

{1, 3/6, 2/4/5/7/8} {1, 3/7, 2/4/5/6/8} {1, 3/8, 2/4/5/6/7} {1, 4/5, 2/3/6/7/8} {1, 4/6, 2/3/5/7/8} {1, 4/7, 2/3/5/6/8} {1, 4/8, 2/3/5/6/7} {1, 5/6, 2/3/4/7/8} {1, 5/7,

2/3/4/6/8} {1, 5/8, 2/3/4/6/7} {1, 6/7, 2/3/4/5/8} {1, 6/8, 2/3/4/5/7} {1, 7/8, 2/3/4/5/6}

The (1-3-4) type of

closed nets

NIP ¼ 1 · 3 · 4 ¼ 12

NNet ¼ C1
1C3

7 C4
4 ¼ 35

{1, 2/3/4, 5/6/7/8} {1, 2/3/5, 4/6/7/8} {1, 2/3/6, 4/5/7/8} {1, 2/3/7, 4/5/6/8} {1, 2/3/8, 4/5/6/7} {1, 2/4/5, 3/6/7/8} {1, 2/4/6, 3/5/7/8} {1, 2/4/7, 3/5/6/8} {1, 2/4/8,

3/5/6/7} {1, 2/5/6, 3/4/7/8} {1, 2/5/7, 3/4/6/8} {1, 2/5/8, 3/4/6/7} {1, 2/6/7, 3/4/5/8} {1, 2/6/8, 3/4/5/7} {1, 2/7/8, 3/4/5/6} {1, 3/4/5, 2/6/7/8} {1, 3/4/6, 2/5/7/8}

{1, 3/4/7, 2/5/6/8} {1, 3/4/8, 2/5/6/7} {1, 3/5/6, 2/4/7/8} {1, 3/5/7, 2/4/6/8} {1, 3/5/8, 2/4/6/7} {1, 3/6/7, 2/4/5/8} {1, 3/6/8, 2/4/5/7} {1, 3/7/8, 2/4/5/6}

{1, 4/5/6, 2/3/7/8} {1, 4/5/7, 2/3/6/8} {1, 4/5/8, 2/3/6/7} {1, 4/6/7, 2/3/5/8} {1, 4/6/8, 2/3/5/7} {1, 4/7/8, 2/3/5/6} {1, 5/6/7, 2/3/4/8} {1, 5/6/8, 2/3/4/7}

{1, 5/7/8, 2/3/4/6} {1, 6/7/8, 2/3/4/5}

Table 8. Some basic properties of the
regular closed nets of unary to quinary
system of n + 4 phases.

System Type of

closed nets

Total number of

closed nets, NNet

Number of the

curves in a closed net, NUC

Example

Unary system

of five phases

(2-3) C2
5C3

3 ¼ 10 (2 · 3) · 3/2 ¼ 9 {1/2, 3/4/5}

Binary system

of six phases

(2-4) C2
6C4

4 ¼ 15 (2 · 4) · 4/2 ¼ 16 {1/2, 3/4/5/6}

(3-3) C3
6C3

3/P2
2 ¼ 10 (2 · 4) · 4/2 ¼ 16 {1/2, 3/4/5/6}

Ternary system

of seven phases

(2-5) C2
7C5

5 ¼ 21 (2 · 5) · 5/2 ¼ 25 {1/2, 3/4/5/6/7}

(3-4) C3
7C4

4 ¼ 35 (3 · 4) · 5/2 ¼ 30 {1/2/3, 4/5/6/7}

Quaternary system

of eight phases

(2-6) C2
8C6

6 ¼ 28 (2 · 6) · 6/2 ¼ 36 {1/2, 3/4/5/6/7/8}

(3-5) C3
8C5

5 ¼ 56 (3 · 5) · 6/2 ¼ 45 {1/2/3, 4/5/6/7/8}

(4-4) C4
8C4

4/P2
2 ¼ 35 (4 · 4) · 6/2 ¼ 48 {1/2/3/4, 5/6/7/8}

Quinary system of

nine phases

(2-7) C2
9C7

7 ¼ 36 (2 · 7) · 7/2 ¼ 49 {1/2, 3/4/5/6/7/8/9}

(3-6) C3
9C6

6 ¼ 84 (3 · 6) · 7/2 ¼ 63 {1/2/3, 4/5/6/7/8/9}

(4-5) C4
9 C5

5 ¼ 126 (4 · 5) · 7/2 ¼ 70 {1/2/3/4, 5/6/7/8/9}
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imposed by the conditions concerned, however, only a
very limited number of closed nets are suitable for
depicting the phase relations of the given multisystem.
Therefore, it is important to find out how to select the
proper or realistic closed nets according to specific
conditions.

To demonstrate the technique for the selection, we
take the FeO–Fe2O3–SiO2 system as an example. This
system has seven phases: quartz (SiO2, Qtz), ferrosilite
(FeSiO3, Fs), laihunite (Fe2Fe(SiO4)2, Lai), fayalite
(Fe2SiO4, Fa), hematite (Fe2O3, Hem), magnetite
(Fe3O4, Mag) and wüstite (FeO, Wus). For this 2-level
system, there are two types of non-degraded regular
closed nets, (2-5) type and (3-4) type. The former has
C2

7ð¼ 21Þ possible closed nets, and the latter has
C3

7ð¼ 35Þ nets, totalling 56 nets, which depict all the
possible phase relations in the system. Which of the 56
closed nets are the most realistic by the consideration
of normal geological conditions?

It is well known that the molar volume change of a
solid-phase reaction, DrVm,s usually varies little with
the change of pressure or temperature, so the variation
of DrVm,s will be negligible if the variations of pressure
and temperature are not very great. Under such an
approximation, the estimated equilibrium pressure of
the reaction Lai ¼ Mag + 2Qtz at 25 �C is very neg-
ative. That is, the reaction is impossible at 25 �C. This
means that Lai + Mag + Qtz is a metastable uni-
variant assemblage, so Lai, Mag and Qtz cannot sim-
ultaneously appear in any stable univariant or
divariant assemblage. Therefore, at least one of them
should be absent in any invariant assemblage in a
physically possible net. This requirement can be satis-
fied by using laihunite, magnetite and quartz to con-
stitute an independent group in the net label and using
the other phases to form another group. Under this
constraint, {Lai/Mag/Qtz, Hem/Wus/Fa/Fs} is the
unique realistic net. The invariant points in the net are:
[Lai, Hem]; [Lai, Wus]; [Lai, Fa]; [Lai, Fs]; [Mag,
Hem]; [Mag, Wus]; [Mag, Fa]; [Mag, Fs]; [Qtz, Hem];
[Qtz, Wus]; [Qtz, Fa]; [Qtz, Fs]. Although this
net excludes the metastable Lai + Mag + Qtz
assemblage, it incorporates some other metastable
assemblages, e.g. Hem + Wus, Hem + Fa, and

Hem + Fs, see Table 10. The reason for this fact is as
follows.

According to the arguments of Guo & Wang (1988),
although the equilibrium between hematite and wüstite
and the divariant assemblages including both of them
are possible at extremely high pressures, they are im-
possible under normal geological conditions, so at least
one of hematite and wüstite is absent in each invariant
assemblage. The same is true for hematite and fayalite,
and hematite and ferrosilite (Guo & Wang, 1988).

If the metastability of Hem + Wus, Hem + Fa,
and Hem + Fs is used to constrain the (2-5) type of
closed nets of the system, it will yield three possible
nets: {Hem/Wus, Lai/Mag/Qtz/Fa/Fs}, {Hem/Fa, Lai/
Mag/Qtz/Wus/Fs} and {Hem/Fs, Lai/Mag/Qtz/Fa/
Wus}, respectively. In the first net, the invariant points
are: [Hem, Lai]; [Hem, Mag]; [Hem, Qtz]; [Hem, Fa];
[Hem, Fs]; [Wus, Lai]; [Wus, Mag]; [Wus, Qtz]; [Wus,
Fa]; [Wus, Fs]. It is obvious that all the assemblages
including both hematite and wüstite are ruled out, and
thus Guo & Wang (1988) regarded this net as the most
realistic closed net of the system. In fact, the other two
nets are also realistic. Of course, all three nets contain
the metastable assemblage Lai + Mag + Qtz, and
two of the three metastable assemblages Hem + Wus,
Hem + Fa, and Hem + Fs, as can be seen in
Table 10.

Guo & Wang (1988) suggested that the metastable
assemblages in the selected possible closed nets be
excluded from the final physically realistic phase dia-
gram in a later step. This will leave a difficulty to the
theoretical analysis and to the computation and plot-
ting of the physically realistic net diagram. So it is
better to exclude all four metastable assemblages
(Hem + Wus, Hem + Fa, Hem + Fs and Lai +
Mag + Qtz) from each closed net before the con-
struction of the related straight-line-net. In this way,
the same partially closed net {Hem, Lai/Mag/Qtz} can
be obtained, although the initial possible closed nets
are different from each other. In {Hem, Lai/Mag/Qtz},
there are only three invariant points: [Hem, Lai],
[Hem, Mag] and [Hem, Qtz], where [Hem, Lai] and
[Hem, Mag] degenerate into the same point. This is in
agreement with the straight-line-net-diagram of Guo

Table 9. Some basic properties of the
regular closed nets of unary to quinary
system of n + 5 phases.

System Type of

closed nets

Total number of

closed nets, NNet

Number of the

curves in a closed net, NUC

Example

Unary system

of six phases

(2-2-2) C2
6C2

4C2
2/P3

3 ¼ 15 (2 · 2 · 2) · 3/2 ¼ 12 {1/2, 3/4, 5/6}

Binary system of

seven phases

(2-2-3) C2
7C2

5C3
3/P2

2 ¼ 105 (2 · 2 · 3) · 4/2 ¼ 24 {1/2, 3/4, 5/6/7}

Ternary system of

eight phases

(2-2-4) C2
8C2

6C4
4/P2

2 ¼ 210 (2 · 2 · 4) · 5/2 ¼ 40 {1/2, 3/4, 5/6/7/8}

(2-3-3) C2
8C3

6C3
3/P2

2 ¼ 280 (2 · 3 · 3) · 5/2 ¼ 45 {1/2, 3/4/5, 6/7/8}

Quaternary system of

nine phases

(2-2-5) C2
9C2

7C5
5/P2

2 ¼ 378 (2 · 2 · 5) · 6/2 ¼ 60 {1/2, 3/4, 5/6/7/8/9}

(3-3-3) C3
9C3

6C3
3/P3

3 ¼ 280 (3 · 3 · 3) · 6/2 ¼ 81 {1/2/3, 4/5/6, 7/8/9}

(2-3-4) C2
9C3

7C4
4 ¼ 1260 (2 · 3 · 4) · 6/2 ¼ 72 {1/2, 3/4/5, 6/7/8/9}

Quinary system of

10 phases

(2-2-6) C2
10C2

8C6
6 /P2

2 ¼ 630 (2 · 2 · 6) · 7/2 ¼ 84 {1/2, 3/4, 5/6/7/8/9/10}

(2-3-5) C2
10C3

8C5
5 ¼ 2520 (2 · 3 · 5) · 7/2 ¼ 105 {1/2, 3/4/5, 6/7/8/9/10}

(2-4-4) C2
10 C4

8C4
4/P2

2 ¼ 1575 (2 · 4 · 4) · 7/2 ¼ 112 {1/2, 3/4/5/6, 7/8/9/10}

(3-3-4) C3
10C3

7C4
4/P2

2 ¼ 2100 (3 · 3 · 4) · 7/2 ¼ 126 {1/2/3, 4/5/6, 7/8/9/10}
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& Wang (1988), but the procedures are much
simpler.

There is a simple way to exclude all the assemblages
Hem + Wus, Hem + Fa and Hem + Fs in a closed
net, which can be realized by treating hematite as an
absent phase. As a result, {Hem, Wus/Fa/Fs/Lai/Mag/
Qtz} become the unique realistic closed net. It is a
degraded closed net of the ternary 7-phase multisys-
tem. It is not only the simplest, but also the most
realistic because of the least number of metastable
assemblages. It still contains the metastable univariant
assemblage Lai + Mag + Qtz, leading to the unsta-
bility of the three invariant assemblages including it, as
is shown in Table 10.

Derivation of closed-net-diagrams and straight-line-net-
diagrams

The invariant points in a regular closed net can be
generated by the APS method. In order to obtain a
closed-net-diagram, it is necessary to arrange all
invariant points and univariant curves in a proper way,
which can be realized with the Shreinemakers� rules
(Zen, 1966b) or so-called �univariant scheme� about an
invariant point (Zen, 1966a, p. 13). A univariant
scheme means an arrangement of a bundle of univar-
iant curves on the two sides of a given univariant
curve. It is derived from Shreinemakers� rules, so it is
equivalent to Shreinemakers� rules in arranging uni-
variant curves, see (Zen, 1966a). Here we use univari-
ant schemes to construct the bundles in the closed net.

As mentioned in the Introduction, there is at least
one metastable invariant point in a closed net. If all the
metastable invariant points are eliminated, it will yield
a partially closed (or partially open) net, which is
physically real or possible. If all the remaining

univariant curves are supposed to be straight-lines, the
partially closed net will become a straight-line net.

Taking a binary system of six phases as illustration.
The six phases (from No. 1 to 6) are: forsterite, Fo, 1;
enstatite, En, 2; quartz, Qtz, 3; anthophyllite, Ath, 4;
talc, Tlc, 5; and water, W, 6. Here MgO is a mobile
component whose activity serves as an intensive vari-
able of the system, and thus it is no longer regarded as
a component. In this way, the system is simplified into
a compositionally degenerate binary system (SiO2-
H2O), and the phase labels 1–6 are set according to the
sequence of relative positions of the six phases on the
binary chemography (from end-member SiO2 to H2O).

To get a realistic closed net, let’s focus on the
following degenerate reactions:

Fo ¼ MgO þ En ðMg2SiO4 ¼ MgO þ MgSiO3Þ;
ð11Þ

En ¼ MgO þ Qtz ðMgSiO3 ¼ MgO þ SiO2Þ;
ð12Þ

Fo ¼ 2MgO þ Qtz ðMg2SiO4 ¼ 2MgO þ SiO2Þ:
ð13Þ

It is known that, with the decrease of the activity of
MgO at given temperature and pressure, reaction (11)
occurs first, and then reaction (12). Here, reaction (13)
is realized through reactions (11) and (12), which can
be expressed as: (13) ¼ (11) + (12). As a result, no
direct reaction equilibrium occurs between forsterite
and quartz, that is to say, the assemblage Fo + Qtz is
metastable. So Fo + Qtz should be excluded from
further consideration. Under this constraint, there is
only one realistic closed net: {Fo/Qtz,En/Ath/Tlc/W},
or {1/3,2/4/5/6}. The net-diagram of {1/3,2/4/5/6} is

Table 10. The metastable assemblages in the
possible closed nets of the ternary 7-phase
system Qtz–Fs–Lai–Fa–Hem–Mag–Wus.

Closed net Invariant

assemblage

Metastable assemblage to

be excluded

The most realistic

partially closed net

{Lai/Mag/Qtz,

Hem/Wus/Fa/Fs}

[Lai, Wus], [Mag, Wus],

[Qtz, Wus]

Hem + Fa, Hem + Fs {Hem, Lai/Mag/Qtz}

[Lai, Fa], [Mag, Fa],

[Qtz, Fa]

Hem + Wus, Hem + Fs

[Lai, Fs], [Mag, Fs],

[Qtz, Fs]

Hem + Wus, Hem + Fa

{Hem/Wus, Lai/

Mag/Qtz/Fa/Fs}

[Wus, Lai], [Wus, Mag],

[Wus, Qtz]

Hem + Fa, Hem + Fs {Hem, Lai/Mag/Qtz}

[Wus, Fa] Hem + Fs

[Wus, Fs] Hem + Fa

[Hem, Fa], [Hem, Fs] Lai + Mag + Qtz

{Hem/Fa, Lai/

Mag/Qtz/Wus/Fs}

[Fa, Lai], [Fa, Mag],

[Fa, Qtz]

Hem + Wus, Hem + Fs {Hem, Lai/Mag/Qtz}

[Fa, Wus] Hem + Fs

[Fa, Fs] Hem + Wus

[Hem, Wus], [Hem, Fs] Lai + Mag + Qtz

{Hem/Fs, Lai/

Mag/Qtz/Wus/Fa}

[Fs, Lai], [Fs, Mag],

[Fs, Qtz]

Hem + Wus, Hem + Fa {Hem, Lai/Mag/Qtz}

[Fs, Wus] Hem + Fa

[Fs, Fa] Hem + Wus

[Hem, Wus], [Hem, Fa] Lai + Mag + Qtz

{Hem, Wus/Fa/Fs/

Lai/Mag/Qtz}

[Hem, Wus], [Hem, Fa], [Hem, Fs] Lai + Mag + Qtz {Hem, Lai/Mag/Qtz}
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shown in Fig. 1, which is constructed with univariant
schemes. It is equivalent to Fig. 9(h) of Guo (1984)
derived from the combination of two degraded closed
nets of binary 5-phase system.

In Fig. 1, because of the absence of the fluid phase
W, the univariant curves intersecting at points [1, 6]
and [3, 6] are all solid-phase reaction curves, so they
should be very close to straight lines. This means that
the curve linking [1, 6] and [1, 4] and the curve linking
[3, 6] and [3, 4] should not bend down, so the invariant
points [1, 4] and [3, 4] cannot be stable at the bottom of the net. Accordingly, the univariant curve between

[1, 4] and [3, 4] is metastable, too. After excluding these
two metastable invariant points and the curve between
them, the closed net becomes a partially closed net, see
Fig. 2.

However, it is still possible that some of the
remaining invariant points in the net are metastable or
nonexistent. This problem can be solved by calcula-
tion. We calculated the P-loga(MgO) diagrams of the
system at 1000 and 650 �C (Hu, 1998; Yin et al., 2002).
The former degenerates into a binary 5-phase diagram
where water remains metastable in the whole diagram,
and the latter is given in Fig. 3.

It is found that the invariant point [3, 6] disappeared
from Fig. 3, because the related curves cannot intersect
at a point. It is easy to see that the topological con-
figurations of Figs 2 and 3 are completely consistent
with each other.

CONCLUSIONS

According to the definition of closed nets, we devel-
oped a new combinatorial method, the APS method,
for the direct derivation of closed nets. Using this
method, a few very simple operations are sufficient for
the derivation of the closed nets of a given multisys-
tem. Although the increase in the number of phases or
components will greatly increase the complexity of

Fig. 1. The binary 6-phase closed-net-diagram {1/3,2/4/5/6}.

Fig. 2. A straight-line-net-diagram of binary 6-phase multisys-
tem derived from Fig. 1.

– – – – –

Fig. 3. The P-loga(MgO) diagram of the Fo–En–Qtz–Ath–Tlc–W
system at 650 �C. The thermodynamic data were taken from
Berman (1988), the HSMRK equation of state developed by
Kerrick & Jacobs (1981) was used in the calculation, and the
discrimination of stabilities of the invariant points and uni-
variant curves were made with the sign function matrix (SFM)
method of Hu et al. (2000). In the diagram, two or more uni-
variant curves are incorporated into one because of the
degeneracy of the corresponding reactions.

A NE W M E T H O D F O R D E R I V I N G M U L T I S Y S TE M C L O S E D N E T S 42 3

� 2004 Blackwell Publishing Ltd



phase relations, the simplicity of the APS method
almost remains the same. This is a great advantage
over the previously reported methods. In its applica-
tion, we found that there are two very different types of
closed nets, the regular and irregular closed nets. For
the multisystems whose total phase number (NPS) is
not smaller than twice the absent phase number (m) of
an invariant assemblage, the method can give both
degraded and non-degraded regular closed nets; for the
multisystems whose NPS < 2m, the method can give
degraded regular closed nets. These degraded regular
closed nets can serve as the basic elements that are
necessary in deriving the irregular closed nets with the
improved combination method in our next study.

As working examples, the APS method is applied to
the derivation of the degraded or non-degraded regular
closed nets of the unary to quinary systems with n + 4
and n + 5-phases. At the same time, the general
properties of closed nets of n + 4 and n + 5 phase
multisystems are also predicted. In addition, for a
complex multisystems, it is also illustrated how to
select the realistic closed nets from the numerous
closed nets under specific conditions, and how to get
the partially closed nets, closed-net-diagrams and
straight-line-net-diagrams of interest.
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