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S U M M A R Y
Determination of the transfer function is the main objective in magnetotelluric (MT) and
geomagnetic data processing. In this paper we describe a new algorithm for finding a transfer
function through determination of the impulse response in the time domain. The proposed
method was developed for the long time-series with which we are usually dealing in short-
period recording. It allows the determination of the transfer function for a broad range of
frequencies, the only limitation being the duration of recording. In contrast to other methods
for determination of the time-domain transfer function we selected an approximation of impulse
response in which the number of unknowns to be determined is proportional to the frequency
range of interest on a logarithmic scale. This is a natural way to deal with functions such as
the MT impedance tensor or geomagnetic vector. Our approximation makes it easy to find the
predicted electric field, which is very useful for assessing the quality of the recorded data.

Key words: electromagnetic methods, geomagnetism, magnetotellurics, numerical tech-
niques.

1 I N T RO D U C T I O N

Electromagnetic induction experiments are used to determine the electrical resistivity structure of the Earth. If the vertical component of the
external magnetic field producing the induction effect is zero (the incident wave is a plane wave), then in the Cartesian coordinate system there
are the following linear relations in the time domain between the electromagnetic field components for a fixed point at the Earth’s surface:

z̃(t) =
∫ ∞

−∞
ã(τ )x̃(t − τ )dτ +

∫ ∞

−∞
b̃(τ )ỹ(t − τ ) dτ

= ã(t) ∗ x̃(t) + b̃(t) ∗ ỹ(t),
(1)

where x̃(t), ỹ(t) are the horizontal magnetic field components Hx, Hy and z̃(t) is the vertical magnetic component Hz in the case of geomagnetic
sounding or one of the horizontal electric components Ex, Ey for magnetotelluric sounding. In the frequency domain, after using the Fourier
transform, we get, respectively,

Z̃ (ω) = Ã(ω)X̃ (ω) + B̃(ω)Ỹ (ω) .

In the above equation the capital letters stand for the complex spectra, the Fourier transforms of the respective functions of eq. (1). Functions
ã(t) and b̃(t) in the time domain are called impulse responses, and their transforms in the frequency domain are the transfer functions. Weidelt
& Kaikkonen (1994) proved that for 2-D structures all the B-polarization impedances (TM mode) are of minimum phase and impulse responses
are causal. For complex 3-D structures causality does not necessarily hold in general. Experience shows, however, that for most real data the
causality is fulfilled. Methods for determining the time-domain transfer function allow (in contrast to frequency-domain methods) us to take
this condition into account in a simple way. We assume that the impulse responses from eq. (1) satisfy the causality condition, i.e. they are
zero for t < 0. We also consider a case when the above assumption fails and non-causal impulse responses are needed.

The first step of electromagnetic investigation is to use eqns (1) or (2) to determine the impedance tensor and geomagnetic vector from
the electromagnetic field components recorded at the Earth’s surface. Most theoretical studies and computational methods derived from them
are limited to the frequency domain, with total negligence of the time domain. This stems from the fact that spectral methods are widely
used in engineering (not only in geophysics) and there is an ample literature on this subject. There are, however, several problems relating
to the processing of frequency-domain data resulting from the fact that the time-domain recordings are the starting point. The need to adopt
numerous subjective assumptions, such as the selection of the window, section length or the data whitening method, is the reason why the
results obtained are not always satisfying. Although spectral methods have been improved so that they are able to better cope with various
types of noise, determination of the time-domain transfer function may provide a useful alternative or complement which may offer significant
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advantages when noise is localized in time. Probably a hybrid method, a combination of time- and frequency-domain data processing, should
be the best way to estimate the transfer function. Larsen’s approach to estimation of the frequency-domain transfer function (Larsen et al.
1996) is an example of method in which outlier detection is also done in the time domain.

There are a few papers dealing with the determination of impulse response in the time domain from eq. (1). Following the paper by
Kunetz (1972), time-domain methods have been developed by Wiela

↪
dek & Ernst (1977), McMechan & Barrodale (1985), Yee et al. (1988),

Spagnolini (1994), Santarato & Spagnolini (1995) and Wiela
↪
dek & Nowożyński (2001). In these papers the impulse responses have been

approximated by low-order trigonometric polynomials or their quotients. Such approximations are sufficiently accurate when the observation
sequences contain hundreds or thousands of samples. In the case of short-period MT recordings with millisecond sampling intervals, when
we have at our disposal a large number of data (millions of samples) and the maximum periods recorded are comparable to the duration of
recording, the use of such methods may be problematic. The reason is that the degree of the approximation polynomials used determines the
range of frequencies which can be present in the data. Increasing the degree of the polynomials may cause the problem to become nearly
singular with respect to a large number of the unknowns to be determined. If we use a rational approximation in the form of a polynomial
quotient it may cause the polynomial zeros in the denominator to be placed too close to the unit circle on the complex plane. To avoid such
a situation, we must divide the data into several frequency ranges by filtration and changing the sampling interval and carry out independent
calculations in every range. This may give rise to misfit of the results on the boundaries of the bands. In the present paper we describe a
time-domain method for determination of the impulse response which is free of the previously mentioned drawbacks. We choose an impulse
response approximation which is defined so that for each frequency decade there are five to ten unknowns to be determined.

Reliable estimation of the transfer function depends not only on the method of approximation but also on the quality of the data. Two
options can be used to improve data quality. We can either carefully select the data, i.e. examine the recordings and choose the fragments
that we think are not very disturbed, or make the process automatic. An example of the latter is the time-domain directional noise cancelling
(DNC) technique proposed by Santarato & Spagnolini (1995). The noise reduction techniques use some characteristic of the noise that makes
it distinct from the signal and is to a lesser degree related to the choice of impulse response approximation. The transfer function calculation
method described in this paper uses a very simple iteration technique, making it possible to eliminate short-duration noise, notably spikes.
One may also consider the use of more complex techniques, such as DNC.

2 D E S C R I P T I O N O F T H E P RO B L E M F O R D I S C R E T E VA L U E S

A function f (t) is said to be band limited if its complex spectrum F(ω) = 0 for |ω| ≥ �, where � > 0, is fixed. Band-limited functions play
an important role in data acquisition, because the sampling theorem states that band-limited function f (t) can be uniquely reconstructed from
its discrete values fi = f (t 0 + i
t) (for any fixed t0), provided that the sampling interval 
t ≤ π/�. Let ϕ be a band-limited function whose
complex spectrum � = 0 for |ω| ≥ �0 and amplitude spectrum |�(ω)| > 0 for |ω| < �0. Functions x(t) = ϕ(t) ∗ x̃(t), y(t) = ϕ(t) ∗ ỹ(t) and
z(t) = ϕ(t) ∗ z̃(t) are also band limited. We define function a(t) so that its complex spectrum is equal to ã(t) for |ω| ≤ �0 and zero for |ω| ≥
� (� is fixed and � > �0). The complex spectrum of a(t) may be arbitrary in the interval (�0, �). In a similar manner we define function
b(t). Then it follows from eq. (1) that the following equation also holds:

z(t) = a(t) ∗ x(t) + b(t) ∗ y(t). (3)

Making use of the convolution properties and applying the sampling theorem for the sampling interval 
t = π/� to eq. (3), we obtain the
equivalent formula for discrete values

zk = 
t
∞∑

i=−∞
ai xk−i + 
t

∞∑
i=−∞

bi yk−i , (4)

where

xi = x(t0 + i
t), yi = y(t0 + i
t), zi = z(t0 + i
t),

ai = a(i
t), bi = b(i
t).

Expressing A(ω) and B(ω) as Fourier series in the interval [−�, �] we have

A(ω) =





t
∞∑

j=−∞
a j e

−i jω
t for |ω| ≤ �

0 for |ω| > 0

B(ω) =





t
∞∑

j=−∞
b j e

−i jω
t for |ω| ≤ �

0 for |ω| > 0.

(5)

Eq. (4) will be used to determine impulse responses a(t) and b(t) and then, from the Fourier series (5), transfer functions A(ω) and B(ω).
From the definition of functions x(t), y(t) and z(t) it follows that eq. (4) is satisfied for a sampling interval π/�0 provided that A(ω) and B(ω)
are zero for |ω| ≥ �0. The purpose of choosing a shorter sampling interval (oversampling) is to improve the approximation of the transfer
function by a finite Fourier series. At the Nyquist frequency, the finite Fourier series, corresponding to the finite impulse response necessary
for a time-domain approach, is continuous and takes a real value, while the transfer function may be complex. Therefore, at a certain point
near the Nyquist frequency the approximation of the imaginary part of the transfer function will be contaminated by a large error. Choosing
a shorter sampling interval π/� we limit ourselves (eq. 4) to the approximation of transfer function in the interval [−�0, �0], neglecting the
frequencies |ω| > �0 for which the approximation error may be large.
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If we assume that the linear system (1) is causal then, upon passing to the band-limited function, system (4) will cease being causal
because any function cannot be simultaneously time and band limited. We can only consider a discrete equivalent of the causality condition
assuming that aj = a( j
t) = 0 and bj = b( j
t) = 0 for j < 0. This does not mean, however, that a(t) = 0 and b(t) = 0 for t < 0. We
may wonder if the discrete impulse response with negative coefficients equal to zero may well approximate a causal system. Egbert (1992)
examined this problem: taking as an example a 1-D model limited to a half-space he demonstrated that the discrete values of the impedance
transform in the time domain are non-zero for negative indices. However, he did not account for the situation when the sampling interval 
t
is lower than π/�0 required in the sampling theorem. If we assume that 
t = π/�, we have at our disposal an additional interval (�0, �)
in which we can arbitrarily choose the transfer function, e.g. so as to have it at least continuous. In Egbert’s example the impedance passes to
zero at the Nyquist frequency π/
t in a jump-like manner, and this may be the reason why the values for negative coefficients are comparable
with those for positive coefficients.

It follows from our attempts at impedance approximations for 1-D models that (provided that the adopted sampling interval is at least
a few times less than that defined by the Nyquist frequency) we obtain, under the assumption that the negative coefficients are zero, the
approximations whose errors for geophysical applications may be considered small. Nevertheless, negative impulse response coefficients are
needed to achieve a good transfer function approximation of a causal system for frequencies close to the Nyquist frequency and, as postulated
by Egbert, they should be determined. There is a large disproportion between the number of negative and positive coefficients, though. In
Fig. 1 we show a transfer function approximation for a 1-D model (which, as we know, is causal), in which three negative coefficients and a
few thousand positive ones were used. A good approximation was obtained for periods longer than three sampling intervals. In the remainder
of this paper, we will consider a discrete linear system (4) corresponding to the causal system (1) in which, along with positive coefficients,
we will take into account a small number of negative ones. In our method for the determination of the impulse response we will implement the
above limitation with regard to the negative coefficients. However, the method itself can in a simple way be generalized to include non-causal
linear systems without introducing limitations on the negative coefficients.

The sampling theorem is used in measuring instruments which, instead of the function g(t) in which we are interested, record discrete
values of the function f (t) = ϕ(t) ∗ g(t). The frequency response �(ω) of the instrument takes into account, among other things, filters
(analogue or digital) used for zeroing the frequencies in excess of �0 and the properties of the sensors applied.
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Figure 1. Apparent resistivity ρ a and impedance phase ϕ calculated from synthetic data for two one-dimensional models: (a) one-layer model with 50 � m,
6 km, 1 � m, and (b) half-space with 10 � m. The solid line represents the adopted model, the dashed line the calculated one.
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If the electromagnetic field is recorded by an instrument that has identical frequency responses for all the components, eq. (4) will also
be satisfied for the measured quantities x(t), y(t) and z(t).

3 A P P RO X I M AT E S O L U T I O N

As a result of electromagnetic field measurements, we obtain finite sequences {xi}n−1
i=0 , {yi}n−1

i=0 , {zi}n−1
i=0 (in a certain time interval defined by

the duration of recording) of discrete values of functions x(t), y(t) and z(t) satisfying eq. (4), where 
t is the sampling interval of the measuring
instrument, t0 is the start time of recording and n
t is the duration of the recording. We assume that the impulse response approximation will
be made with m = m 1 + m 2 non-zero coefficients, where m1 and m2 denote the numbers of negative and non-negative coefficients respectively.
We also assume that the values of the recorded fields are known with an accuracy up to a constant s, which must be an unknown quantity.
Under such assumptions, eq. (4) takes the form

zk + εk = 
t
m2−1∑

i=−m1

ai xk−i + 
t
m2−1∑

i=−m1

bi yk−i + s where k = m2 − 1, . . . , n − m1 − 1. (6)

In the above equation, εk is the sum of approximation errors, instrumental errors, industrial noise and departure from the assumption that the
vertical component of the magnetic field evoking the electromagnetic induction is zero (the incident wave is a plane wave). Linear equations
such as eq. (6) usually also take into account a term related to linear or even higher-order trends that may appear in the course of recording.
Moreover, taking account of the trend may reduce the error εk if the approximation applied is not sufficient for periods greater than the duration
of recorded interval. However, we think that much better results will be obtained if instead of determining the trends we use long-period
filtration of data, since by taking into account trends we are able to accomplish only an approximate elimination of the long periods from
eq. (6). When the data are cleaned of trends, the mean values of sequences {xi}, {yi} and {zi} are zero and the constant s in eq. (6) could be
neglected. However, such a procedure is not formally equivalent to the determination of s from the condition of a minimum of the error ε. Since
the presence of s does not substantially increase the cost of the method (one additional unknown), we will retain this quantity. The method
we describe can also be used for data with errors of short-lived large amplitudes, which will automatically be eliminated through rejection of
the equations corresponding to them. Depending on which fragments of the recording are to be neglected, the mean value may vary, so it is
better to retain s as an unknown. The impulse response length m should be selected so as to be comparable with the longest periods occurring
in the data and not to exceed, say, n/3, since in order to determine the impulse response it remains to solve n − m + 1 equations. To simplify
notation (and for this reason alone) we will take into account one time-series of data.

4 A L G O R I T H M F O R D E T E R M I N AT I O N O F T H E I M P U L S E R E S P O N S E

For convenience, in the following we will refer to a band-limited function through its dependence on time or through a sequence of its discrete
values. Moreover, whenever discussing relations for a pair of functions a(t) and x(t), we will tacitly assume that similar relations hold for b(t)
and y(t).

An attempt at determining all coefficients {ai} and {bi} from eq. (6) is useless because there are too many of them. To reduce the number
of unknowns, we will express impulse responses a(t) and b(t) as linear combinations of l − lp band-limited base functions ψ j(t) and functions
χ j (t) = h(t − j
t):

a(t) =
l−1∑
j=l p

α jψ j (t) +
m3−1∑
j=−m1

γ jχ j (t), b(t) =
l−1∑
j=l p

β jψ j (t) +
m3−1∑
j=−m1

δ jχ j (t), (7)

where

h(t) = 1

π t
sin

(
π


t
t

)
= 1


t
sinc

(
π


t
t

)
.

For non-causal systems we should take into account unknowns α j and β j with negative indices and the base functions ψ j (t) = ψ− j (−t)
corresponding to them. Unknowns γ j and δ j were introduced in order to improve the approximation close to the Nyquist frequency. Index lp

is the smallest number for which the base functions ψ j(t) for j ≥ lp and functions χ j(t) for j ≥ 0 form a linearly independent system. Upon
passing to discrete values and substituting the so defined a(t) and b(t) into eq. (6) we obtain a linear problem from which, using for example
the least-squares method, we can determine the unknowns α j , β j , γ j , δ j and s. The success of the method relies upon the correct choice of
function ψ j(t): for a small l, it should ensure a good approximation of impulse responses and make it possible to calculate at a small cost the
convolutions ψ j(t) ∗ x(t) and ψ j(t) ∗ y(t) needed for forming the columns of the least-squares problem matrix.

Let {kj} be an increasing sequence of natural numbers (k 0 = 0, k 1 = 1) and the band-limited functions hj(t) be defined as follows:

h0(t) = h(t),

h j (t) = 1

4
h(t) + 1

2
h(t − k j
t) + 1

4
h(t − 2k j
t).

(8)
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Figure 2. Amplitudes and phases of the Fourier transform of functions {ψ j} whose linear combinations form the transfer function, for q = √
2.

The base functions ψ j(t) will be defined by the relations

ψ j (t) = h0(t) ∗ · · · ∗ h j (t) − h0(t) ∗ · · · ∗ h j+1(t), j = 0, . . . , l − 2;

ψl−1(t) = h0(t) ∗ · · · ∗ hl−1(t).
(9)

The sequence {kj} is formed from the geometrical sequence {qj} (q > 1, j > 0)

k j =
⌊

qi j −1 + 1

2

⌋
, (10)

after removing the repeating values, which can occur when q < 2.
The above definition of base function ψ j(t) can be explained as follows. Function h1(t) is a simple low-pass filter. Convolutions

h0(t) ∗ · · · ∗ hj(t) are low-pass filters whose bandwidth decreases in a geometrical progression, as a result of the definition of sequence {kj}.
Hence, base functions {ψ j(t)}, being the differences of such convolutions, act as filters possessing the dominant maxima in the frequencies
forming a geometrical progression, i.e. in the frequencies that are evenly distributed on a logarithmic scale. Examples of amplitudes and
phases of the Fourier transform of base function ψ j(t) calculated from eq. (15) for q = √

2 are presented in Fig. 2. An additional advantage
of such a choice of base function ψ j(t) is the good conditioning of the least-squares problem matrix. This requires that the spectra of the
functions x(t) and y(t) are not close to zero for frequencies corresponding to maxima of the amplitudes of Fourier transforms of ψ j(t). This
is because when i = j and f (t) is arbitrary, the convolutions f (t) ∗ ψ i(t) and f (t) ∗ ψ j(t) contain other dominant frequencies and are linearly
independent.
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The discrete values of convolutions ψ j(t) ∗ x(t) and ψ j(t) ∗ y(t) that form the least-squares problem matrix are determined on the basis
of eq. (8) as the difference of consecutively multiplied filtered sequences {xi} and {yi} through filters of three non-zero elements. To be more
exact, the column of the matrix corresponding to an unknown α j is determined from the formula

ψ j (t) ∗ x(t) = u j (t) − u j+1(t), j = 0, . . . , l − 2;

ψl−1(t) ∗ x(t) = ul−1(t),
(11)

where u0(t) = h0(t) ∗x(t) = x(t), u j+1(t) = uj(t) ∗h j+1(t) for 0 ≤ j < l − 1. We start the calculation of discrete values u j,i = uj(t 0 + i
t)
of function uj(t) from the n-element sequence {xi}. The difference between the most distant non-zero elements hj(i
t) is 2kj, so the discrete-
values sequence {uj,i} has 2kj elements fewer than the sequence {uj−1,i}. Thus, the sequence {ul−1,i} has n − m1 − 2

∑l−1
j=0 k j elements and

consequently the impulse response length m = m1 +m2 = m1 +2
∑l−1

j=0 k j . In a similar manner we will define the function wj(t) for unknown
β j. Hence, taking into account eq. (8) we have the following relations:

u0,i = xi , w0,i = yi , i = 0, . . . , n − m1 − 1,

u j+1,i = 1

4
u j,i + 1

2
u j,i−k j+1 + 1

4
u j,i−2k j+1 ,

w j+1,i = 1

4
w j,i + 1

2
w j,i−k j+1 + 1

4
w j,i−2k j+1 i = 2(k0 + · · · + k j+1), . . . , n − m1 − 1, j = 0, . . . , l − 2.

(12)

Let vectors u j , w j , α, β, x j , y j , γ, δ, z and e be defined by the equations

u j = [u j,m2−1, . . . , u j,n−m1−1]T,

w j = [w j,m2−1, . . . , w j,n−m1−1]T,

α = [αl p , . . . , αl−1]T,

β = [βl p , . . . , βl−1]T,

x j = [xm2−1− j , . . . , xn−m1−1− j ]T,

y j = [ym2−1− j , . . . , yn−m1−1− j ]T,

γ = [γ−m1 , . . . , γm3−1]T,

δ = [δ−m1 , . . . , δm3−1]T,

z = [zm2−1, . . . , zn−m1−1]T,

e = [1, . . . , 1]T,

form matrices

Aα = [ul p − ul p+1, . . . , ul−2 − ul−1, ul−1],

Aβ = [wl p − wl p+1, . . . , wl−2 − wl−1, wl−1],

Aγ = [x−m1 , . . . , xm3−1],

Aδ = [y−m1 , . . . , ym3−1],

then the least-squares problem, min ‖ε‖2
2, defined by eq. (6) can be written as follows

min
s,α,β,γ,δ

‖[e Aα Aβ Aγ Aδ]




s
α

β

γ

δ


 − z‖2

2 = min
s,α,β,γ,δ

‖A




s
α

β

γ

δ


 − z‖2

2 . (13)

The above problem can be solved using the orthogonal matrix triangularization (QR decomposition), which reduces the matrix to a simpler
form. Householder orthogonalization is one of the methods for QR decomposition.

While using Householder’s orthogonalization, the cost of the decomposition is ∼(M − N/3)N2 arithmetic operations, the number of
equations being M = n − m + 1, and the number of unknowns N = 2l + 1 + m 1 + m 3. Matrix A of the least-squares problem (13) has
MN elements and, when the recordings are very lengthy, the matrix may be too large for the computer’s operational memory. In such a case,
it is enough to divide matrix A into matrices with a smaller number of rows and make a decomposition in stages. This is equivalent to the
division of recordings into partly overlapping sections so that the number of observational equations without division of the recording is equal
to the sum of equations for all the sections obtained from the division. In so doing, we can reduce the memory required by a factor equal to
the number of parts into which the matrix A has been divided. Next steps in the QR decomposition of matrix A are made according to the
following scheme. Assume that we have determined a triangular matrix Rj from the first j parts of matrix A. Matrix Rj+1 is determined from
the QR decomposition of matrix [ AT

j+1, RT
j ]T.

The minimization problem (13) was written for a single data record. If we have more records, which may happen when records have
gaps or were performed over different periods of time, we can make a generalization in an analogous manner to the above-mentioned case
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of dividing the matrix A of eq. (13) into parts. The only difference is that the unknown s should be eliminated beforehand, since it may be
different for different recordings (sections). Elimination of unknown s is made as follows: matrix A is multiplied by an orthogonal matrix H

(Householder’s) selected so that the first column of matrix A (corresponding to s) be transformed into a unit vector. Upon rejecting the first
row and first column of matrix HA, we obtain matrix Ã of the least-squares problem without the unknown s.

From matrix R, we determine the unknowns α, β, γ and δ we are interested in. Errors of unknowns can be calculated in a standard way
under the assumption that errors ε are uncorrelated and of the same accuracy. However, such an assumption is usually not fulfilled even in
approximation: in the best although not very realistic situation of having the observation errors ε x (t), ε y(t) and εz(t) of the measured functions
x(t), y(t) and z(t) uncorrelated and equally accurate, the minimized error

ε(t) = a(t) ∗ εx (t) + b(t) ∗ εy(t) − εz(t) (14)

does not fulfil this property. That is why the calculated error estimate is to be treated as a crude indication only.
The determination of impulse responses is not the ultimate aim in the electromagnetic data processing. Of importance for us are the

impedances and the geomagnetic transfer functions. The impulse responses, unlike the transfer function, are not uniquely defined in the sense
that different functions in the time domain may have identical Fourier transforms over a finite interval in the frequency domain. Nevertheless,
the impulse responses, in addition to serving for the determination of transfer functions, are very useful otherwise, namely for an easy
determination of prediction, i.e. the function a(t) ∗ x(t) + b(t) ∗ y(t). This is the simplest and most convenient method for assessing the quality
of the recorded data and may be applied for their further selection.

The Fourier transforms Hj(ω) of function hj(t) and � j(ω) of function ψ j(t) determined from equations (8) and (9) are as follows

Hj (ω) = 1

2
(1 + cos k jω
t)e−ik j ω
t , j = 0, 1, . . . ,

� j (ω) = (1 − Hj+1(ω))
j∏

i=0

Hi (ω), j = 0, . . . , l − 2,

�l−1(ω) =
l−1∏
i=0

Hi (ω). (15)

Hence, the transfer function A(ω) is expressed by the formula

A(ω) =
l−1∑
j=l p

α j� j (ω) +
m3−1∑
j=−m1

γ j e
−i jω
t . (16)

B(ω) has a similar form.
Another property of the method should also be noted. In the least-squares problem (13) we took into account the observation equations

corresponding to the whole sequence {zi}. This is not necessary, and we can neglect part of the equations corresponding to those zi which we
know have been recorded with large errors (as a result of temporary noise or so) or not even recorded at all. However, we still must have at our
disposal the complete sequences {xi} and {yi}. From the practical point of view, this property of the method is very useful. While the magnetic
components are less vulnerable to local noise and it is easy to keep the continuity of recording, the situation with electrical components is
different. The signal-to-noise ratio for electrical components is often small, mainly because of local noise, and it is technically more difficult
to obtain the continuous recording. Therefore, the fact that we can neglect some selected fragments of the electric field recordings in the
computations is a great advantage.

We can even use the following procedure of automatic data selection. We determine the impulse response from the available data. On
the basis of prediction we establish, depending on the number and quality of data, a certain number (say 10–30 per cent) of the worst-fitting
electric field samples. We remove the corresponding observation equations and again determine impulse responses, this time more accurate
ones. It is the level and type of noise that decides whether or not this procedure is reasonable. This procedure is essentially the same as that
used in the frequency-domain robust processing where outliers are down-weighted or removed (Egbert 1997).

5 E X A M P L E S O F C O M P U TAT I O N S

The method described here has been tested on synthetic magnetotelluric data. We used one section containing 100 000 samples with a sample
rate of 10 Hz. We used 2000 periods making up a geometrical sequence in the 0.3–4000 s range, with amplitudes and phases randomly generated
with a uniform distribution (the amplitudes were additionally multiplied by T). As transfer functions, we used impedances corresponding to
two one-dimensional models: a half-space of 10 � m resistivity and a one-layer model with a first, 6 km thick layer of 50 � m resistivity
underlain by a 1 � m substratum. The results of calculations, apparent resistivities ρ a and phases ϕ, are shown in Fig. 1. We adopted q = 1.41,
m 1 = 3, m 3 = 4 and l = 26. The solid line represents the adopted model, the dashed line the calculated one.

In Fig. 3 we present the results of calculations for real data with the automatic data selection. The magnetotelluric recordings made at
Belsk in the summer and autumn of 2001 and at the beginning of 2002 have been used. The solid line stands for the apparent resistivity and
phase for a large number of observations (about 106 samples) from the summer and autumn of 2001 (10-s sampling interval). The dashed line
was used for the results of calculations for the 2002 data (1.6 × 105 samples, 1 min sampling interval). The dashed line that strongly departs
from the solid line represents the resistivity curve and phase calculated for all the data. In the 2002 electric data there are short-duration
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Figure 3. Apparent resistivity ρ a and impedance phase ϕ calculated for the Belsk observatory. The solid line shows results obtained from data recorded in
the summer 2001, and dashed lines present the results of 2002 data processing. The dashed line that strongly departs from the solid line is calculated from all
data, and the other dashed line is calculated with automatic data selection.

large-amplitude noise signals that have not been eliminated, and which strongly affect the calculated impedance. After making three steps of
selection and removing 20 per cent of the worst-fitting data, we obtained results similar to the 2001 results.

In Fig. 4 we show examples of the electric component prediction for the Belsk data for segments with (a) low and (b) high noise levels.
Data disturbed by box-car shift noise (4b) have been identified and eliminated in consecutive iterations of impulse response calculations.

6 D I S C U S S I O N

If the length of impulse response is fixed, the number of unknowns l to be determined depends upon coefficient q. If q decreases, the number
of unknowns grows, and the approximation improves. However, in the case of real data, for which at many frequencies the signal-to-noise
ratio may be small, the growing number of unknowns worsens the conditioning of the problem, and causes the determined transfer functions
to be strongly oscillating. The tests performed suggest that for the real data q = 2 is sufficient. The maximum impulse response length is
determined by both the duration of recording and the longest periods recorded. Unnecessary extension of the impulse response may also lead
to incorrect results. To find an algorithm for proper selection of l and q on the basis of data is not an easy task. Therefore, it is necessary to
make calculations for various values of l and q and then select the best solution on the basis of the determined impedances, predictions and
possibly also the assessment of accuracy.

Close to the Nyquist frequency, it is only the unknowns δ and γ that are responsible for approximation. The choice of parameter q is
not important, since even if q tends to 1, the maxima of function � j may be placed arbitrarily close to each other only provided that j is large
enough, i.e. provided that frequencies are small enough. The tests show that it is enough to adopt m 1 = m 3 = 3 to ensure a good approximation
to a frequency of π/(1.5
t). In order to get closer to the Nyquist frequency, it would be necessary to increase the number of unknowns δ j

and γ j, and hence to worsen the conditioning of the problem.
The problems related to transfer function approximation close to the Nyquist frequency affects all the methods for determination of time-

domain impulse response. In the frequency domain the transfer function in the Nyquist frequency always takes the real values (�A(π/
t) =
0) and that is why it cannot be a good approximation of impedance, which is usually a complex number.

7 C O N C L U S I O N S

In the method presented here, the impulse responses are the linear combinations of appropriately defined base functions. Coefficients in these
combinations are the unknowns to be determined by solving the linear least-squares problem. Numerical tests show that this approach makes
it possible to reproduce exactly the transfer function for a broad range of frequencies. The major shortcomings of the proposed method are:
(1) a worse approximation in the vicinity of the Nyquist frequency, a (2) simplified method of determining the errors of the solution, (3) less
control over noise localized in frequency domain and (4) the need for a subjective choice of parameter q and the number of unknowns. We
can consider the use of a regularization method to avoid the last disadvantage.

The main properties and advantages of the method are as follows:

(1) When there is a gap in the telluric component time-series, the algorithm skips this fragment of data.
(2) We have the possibility of making calculations in two steps. We start with all the data available, and then we reject, on the basis of

prediction, those data that are contaminated with large errors.
(3) We can easily detect and remove from signals the noise that is localized in time.
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Figure 4. Examples of predictions (denoted pEx) for the Belsk data: (a) data with little noise, (b) data with box-car shift noise.

(4) We do not have to use a somewhat subjective procedure analogous to power spectra smoothing in the frequency domain.
(5) There are applications for the time-domain prediction beyond the improvement of MT impedances or geomagnetic transfer functions.

For example, prediction can be used for removing natural source signals for SP studies or for finding non-inductive (external) part in vertical
magnetic component Hz.

Treatment of gaps and multistep reweighted calculations are also possible for spectral approaches, but they are easier to implement in the time
domain.
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