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Tae-Kyung Hong∗
Research School of Earth Sciences, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia.
E-mail: tkhong@es.ucsc.edu

Accepted 2004 March 1. Received 2004 February 23; in original form 2003 October 29

S U M M A R Y
The variation of scattering attenuation ratios of P and S waves (Q−1

P /Q−1
S ) is investigated in

elastic media by using numerical simulations and theoretical expressions based on the first-
order Born approximation. Numerical results from stochastic random media (von Karman,
exponential, Gaussian) with mild velocity perturbation (10 per cent in this study) are repre-
sented well by theoretical attenuation curves with a minimum scattering angle of 60–90◦. The
level of scattering attenuation ratios is dependent on the velocity ratio (γ = α0/β 0) and the type
of medium. The change of perturbation in the density introduces a relatively small variation in
attenuation ratio. Attenuation ratios are proportional to normalized frequency (fa, frequency-
by-correlation length) at the intermediate-frequency range (0.1 km s−1 < f a < 10 km s−1)
and determined constant at the high-frequency ( f a > 10 km s−1) and low-frequency ( f a <

1 km s−1) regimes. The von Karman-type models look appropriate for the representation of
small-scale variation in the Earth. The scattering attenuation ratios can be implemented for the
investigation of small-scale heterogeneities in the Earth.

Key words: attenuation, elastic waves, numerical modelling, scattering, wavelet-based method,
wavelets.

1 I N T RO D U C T I O N

Seismic attenuation is a well-known feature associated with wave propagation in the Earth, and much work based on field data has been done
to resolve the strength of apparent attenuation in various areas (e.g. Hatzidimitriou 1995; Tselentis 1998; Yoshimoto et al. 1998; Adams &
Abercrombie 1998; Chung & Sato 2001).

Total attenuation rates are determined as the sum of scattering (Q−1
s ) and intrinsic attenuations (Q−1

i ). It was reported, however, that
scattering attenuation is generally the dominant factor in seismic attenuation in the crust (e.g. Hatzidimitriou 1994; Del Pezzo et al. 1995).
Also, even when the intrinsic attenuation is comparable to the scattering attenuation, the intrinsic attenuation appears to vary with the scattering
attenuation (e.g. Mayeda et al. 1992). Thus, investigation of scattering attenuation will allow us to understand seismic attenuation patterns in
the crust.

Stochastic random heterogeneities have been implemented widely for the investigation of heterogeneities in the Earth (e.g. Hedlin &
Shearer 2002). However, it is not resolved clearly which type of stochastic random model is appropriate for the representation of small-scale
variation in global structure. The type of medium may be varied with the physical and chemical environment. Thus, it is required to determine
the type of medium considering the signature found in seismic responses. There have been several trials to characterize media in terms of
stochastic heterogeneities using amplitude and phase fluctuation (e.g. Line et al. 1998). However, the amplitude and phase fluctuations are
highly dependent on the propagation path, and the measured results display a different pattern following the appearance of the media (Hong
et al. 2003). An alternative way to characterize media in terms of stochastic random heterogeneities could be to use scattering attenuation ratios
of P and S waves (Q−1

P /Q−1
S ) which involve information from both P and S waves. For this purpose, it is necessary to resolve the properties

of scattering attenuation ratios in the stochastic random model.
Although the ultimate goal is to understand scattering in 3-D, we are able to use 2-D waves and structures since 3-D scattering effects

are so close to 2-D (Frenje & Juhlin 2000); also the 2-D simulations have a greater advantage in analysis, such as saving computational
resources in numerical modelling and easy assessment of scattering energy during wave-type coupling. In fact, the theoretical expressions for
attenuation in 3-D (Sato & Fehler 1998) require 3-D integrations, resulting in multiple 2-D integrations, over propagation angles to describe
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the dependence of coupled phases (i.e. SP, PS) on the scattering angle due to the geometrical complexity of heterogeneities. The corresponding
expressions are much simpler in 2-D and can be readily compared with numerical results. Although the absolute magnitude of energy losses
due to scattering may be different between 2-D and 3-D cases, the scattering attenuation ratios are expected to be consistent between both
cases.

A theoretical expression for scattering attenuation for comparison with experimental results can be formulated by considering the single
scattering approximation (first-order Born approximation, Sato 1982; Wu 1982). This scattering attenuation formulation, however, requires a
correction for the forward scattering effect which increases apparent attenuation by the introduction of a traveltime anomaly in time responses.
The apparent attenuation can be corrected by excluding the contribution of the forward scattered energy from the entire scattered energy. The
cone inside a specific angle is regarded as the region influenced by the forward scattering waves. Here, the specific angle is measured from
the direction of incidence and is called the minimum (or cut-off) scattering angle.

It is, therefore, important to determine the minimum scattering angle correctly for the implementation of theoretical expressions in
seismic quantitative studies. Various studies have been done to resolve the minimum scattering angles in acoustic (e.g. Jannaud et al. 1991;
Roth & Korn 1993; Frenje & Juhlin 2000) and elastic media (e.g. Frankel & Clayton 1986; Fang & Müller 1996). Many previous studies on
elastic waves, however, implemented the theoretical expressions for scalar (or acoustic) waves, so the minimum scattering angle of elastic
waves could not be resolved properly. Recently, Hong & Kennett (2003a) formulated the theoretical 2-D scattering attenuation variation for P
waves, and showed that theoretical curves with a minimum scattering angle of 60–90◦ well represent the results from mildly perturbed media
(10 per cent velocity perturbation). However, the companion for 2-D S waves has not been formulated yet, and its minimum scattering angle
remains unknown.

In order to correctly assess from time responses the energy loss due to scattering, a numerical modelling technique with high accuracy is
obviously desired. In fact, it has been reported that artificial attenuation can be incorporated during numerical modelling due to limitation in
spatial differentiations of the accuracy of the wavefield in perturbed media (Hong & Kennett 2003a). In this study we implement a wavelet-based
method (Hong & Kennett 2002a,b, 2003b) which retains high accuracy and stability even in highly heterogeneous media.

We validate the theoretical expressions for scattering attenuation for S waves by comparison with numerical results in four different
types of stochastic random models: von Karman with Hurst number ν = 0.05 and 0.25, exponential and Gaussian random media. Also the
corresponding minimum scattering angle is resolved. Then the scattering attenuation ratios of P and S waves are investigated in terms of
frequency by implementing the validated theoretical expressions for attenuation. The estimated attenuation ratios from the stochastic random
media are interpreted in terms of the scattering properties of elastic waves by considering field observations.

2 T H E O R E T I C A L F O R M U L AT I O N O F S C AT T E R I N G AT T E N UAT I O N

The 2-D theoretical scattering attenuation of P waves, based on the first-order Born approximation, can be formulated as a function of a
normalized wavenumber kαa (Hong & Kennett 2003a):

Q−1
P

ε2
= k2

α

8π

∫ 2π−θ P P
min

θ P P
min

[
C P

r (θ )
]2 P

(
2kα sin

θ

2

)
dθ

+ k2
αγ

2

8π

∫ 2π−θ P S
min

θ P S
min

[
C P

t (θ )
]2 P

(
kα

√
1 + γ 2 − 2γ cos θ

)
dθ, (1)

where γ is the ratio of P and S wave velocities in the background media (= α0/β 0), kα is the wavenumber of the incident P waves, a is the
correlation length of stochastic random heterogeneities, θ is the angle between the propagation directions of incident and scattered waves and
P is the power spectral density function of stochastic random media. The coefficients CP

r (θ ) and CP
t (θ ) are
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and CP
1 and CP

2 are

C P
1 = (K + 2)

(
1 − 2

γ 2

)
, C P

2 = K + 2. (3)

Here, K is a constant for the strength of the density perturbation. The minimum scattering angles for coupled scattered waves (θPS
min) can be

determined in those terms for in-phase scattered waves (θPP
min):

θ P S
min = θ P P

min + (ψP − ψS), ψP = π − θ P P
min

2
, ψS = sin−1

(
sin ψP

γ

)
, (4)
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and Ak
i j (i , j = 1, 2, k = P , S) is given by

AP
11(θ ) = sin2 θ, AP

12(θ ) = sin θ cos θ, AP
21(θ ) = − sin θ cos θ, AP

22(θ ) = cos2 θ,

AS
11(θ ) = cos2 θ, AS

12(θ ) = − sin θ cos θ, AS
21(θ ) = sin θ cos θ, AS

22(θ ) = sin2 θ.
(5)

Following the derivation procedure of the theoretical scattering attenuation expression for P waves in Hong & Kennett (2003a), the
theoretical expression for S waves can be derived as

Q−1
S
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= k2

β

8πγ 4
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where kβ is the wavenumber of S waves, and the minimum scattering angles (θSS
min, θ SP

min) for in-phase scattered waves (SS) and wave type-coupled
phase (SP) are given by

θ S P
min = θ SS

min − (φP − φS), φS = π − θ SS
min

2
, φP = sin−1(γ sin φS). (7)

Here, the coefficients CS
r and CS
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where C S
1 = −2 and C S

2 = K + 2. Details of the derivation are given in Appendix A.
Note that the theoretical expressions for attenuation (eqs 1 and 6) were derived with consideration of the empirical relationship of physical

parameters in the Earth (e.g. Shiomi et al. 1997; Sato & Fehler 1998), in which the perturbations of wave velocities and density are linearly
correlated. Thus the perturbations of wave velocities and density can be represented simply in terms of a spatial perturbation function ξ (x, z):

ξ (x, z) = δα

α0
= δβ

β0
= 1

K

δρ

ρ0
, (9)

where ρ 0 is the density of the background medium and K is the constant in eq. (3) which controls the strength of density perturbation.
Since in-phase forward scattered waves are mainly responsible for the apparent attenuation by traveltime anomaly, it is useful to consider

the minimum scattering angles in terms of the in-phase scattering angles, i.e. θPP
min for P-wave and θ SS

min for S-wave scattering problems. The
scattered waves in wave-type coupled phases (PS and SP) also play a role in the traveltime anomaly in a physical experiment since random
heterogeneities are not present in discrete form as assumed in the theory. Thus, the influence of the coupled phases should be considered,
and their scattering angle (θPS

min, θSP
min) can be expressed simply in terms of the scattering angles for in-phase waves (θPP

min, θSS
min) using Snell’s

law. It is noteworthy that the scattering angles of in-phase waves are held constant for changes in the velocity ratios (γ ) of media, while
those for coupled phases vary with γ . The consideration of the minimum scattering angles for coupled phases may not be sufficient in highly
perturbed media due to the multiscattering effect. However, in the context of weak perturbation on which the single scattering theory is based,
the consideration of scattering angles in terms of the in-phase angles is adequate for analysis.

3 C O M PA R I S O N O F T H E O R E T I C A L R AT E S W I T H R E S U LT S F RO M
N U M E R I C A L M O D E L L I N G

The theoretical expression for attenuation of P waves was formulated and compared with results from numerical modelling in representative
stochastic random media (Hong & Kennett 2003a). The attenuation rates from numerical modelling in random media with 10 per cent
velocity perturbation are well represented by theoretical curves with a minimum scattering angle (θPP

min) of 60–90◦. Before we proceed to the
investigation of scattering attenuation ratios (Q−1

P /Q−1
S ) with the aid of the theoretical expressions, we determine the representative theoretical

curve for shear waves.
Stochastic random models are constructed through 2-D Fourier transforms of the power spectral density function (PSDF, P(k)) with

random phase �(kx, kz) varying between −π and π . The random phase is assigned to the 2-D wavenumber gridpoints (kx, kz). Here the PSDF
is the spectrum of the autocorrelation function (ACF, N(r)). We refer to Roth & Korn (1993) and Hong & Kennett (2003a) for details of the
construction of random media.

We consider von Karman, exponential and Gaussian random media. The von Karman ACF and PSDF in 2-D media are (Sato & Fehler
1998)

N (r ) = 1

2ν−1�(ν)

(
r

a

)ν

Kν

(
r

a

)
, P(k) = 4πνa2

(1 + k2a2)ν+1
, (10)
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where r is the spatial lag, a is the correlation distance, ν is the Hurst number, � is the gamma function, k is a wavenumber and K ν is the
modified Bessel function of order ν. The exponential ACF and PSDF are

N (r ) = e−r/a, P(k) = 2πa2

(1 + k2a2)3/2
. (11)

Note that the exponential ACF is identical to the von Karman ACF with ν = 0.5. The final model, Gaussian random media, is given by

N (r ) = e−r2/a2
, P(k) = πa2e−k2a2/4. (12)

Fig. 1 displays the textures of stochastic random media with a correlation distance of 214.5 m. In von Karman type models, high-frequency
texture is reduced and transition in velocity perturbation becomes smooth with an increase in the Hurst number (ν). On the other hand, the
texture of Gaussian media comprises low-frequency structures with a smooth transition.

We perform numerical modelling using a wavelet-based method (Hong & Kennett 2002a,b, 2003b) which generates accurate and stable
results even in highly perturbed media (Hong & Kennett 2003a). Three different scales of heterogeneities with autocorrelation distance a =
214.5, 538.7 and 1353.2 m are considered for each stochastic random model (von Karman random media with Hurst number ν = 0.05 and
0.25, exponential and Gaussian random media). Here each random model is realized in four different appearances using different random
seeds, and the results from the four differently realized models are compared with each other to show the consistency in the numerical results.

The size of the medium is 19.3 by 77 km, and the spatial domain is represented by 128 by 512 gridpoints. Random heterogeneities
with 10 per cent velocity perturbation and 8 per cent density perturbation (i.e. K = 0.8 in eq. 9) are added to a homogeneous medium with
a P-wave velocity (α0) of 6.738 km s−1, an S-wave velocity (β 0) of 3.85 km s−1 and a density (ρ 0) of 2.9 g cm−3. The top (�T) and the
bottom (�B) boundaries are treated by absorbing boundary conditions, and the right (�R) and the left (�L) boundaries have periodic boundary
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Figure 1. Normalized velocity perturbation in stochastic random media (von Karman with ν = 0.05 and 0.25, exponential, Gaussian) with a correlation
distance of 214.5 m. The strength of perturbation is represented by a black and white scale. The white represents a positive velocity anomaly and the black a
negative velocity anomaly. As the Hurst number increases, the perturbation changes smoothly in von Karman type media; textures in a von Karman medium
with small Hurst numbers display relatively high-frequency variations, while those with large Hurst numbers show low-frequency variations. The Gaussian
medium displays extremely smooth variations for the perturbation.
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conditions to suppress artificially reflected waves. Physically, the implementation of the periodic boundary conditions represents a case where
unlimited plane waves are incident in unbounded random media. One hundred and twenty-eight receivers with a uniform interval of 150 m
are deployed in a row at a distance of 55.9 km from the plane wave source. The locations of the receivers and the source in the domain are
chosen at 10.5 km below the top boundary and above the bottom boundary so that the primary wavefields are not contaminated by spurious
waves from absorbing boundaries. The Ricker wavelet with dominant frequency ( f d) of 4.5 Hz is used for the source–time function, and so
the corresponding normalized wavenumbers for the dominant frequency (kd

βa) are 1.58, 3.96 and 9.94.
Scattering attenuation rates are measured using spectral amplitudes of time responses (Aki & Richards 1980):

Q−1(ω) = 2β0

ωr
ln

(
A0(ω)

Ar(ω)

)
, (13)

where β 0 is the velocity of the incident wave, r is the spatial lag, ω is the angular frequency and A0(ω) and Ar(ω) are spectral amplitudes
of waves at the origin and at the receiver. The spectral amplitude of transmitted primary waves (Ar(ω)) is computed by stacking all spectral
amplitudes of time responses. Here, the time responses are tapered adaptively for wave trains before and after the primary-wave portion
to exclude scattered waves before the stacking procedure in the Fourier domain. Considering the dominant frequency of incident waves,
the spectral amplitudes at a frequency range of 2–10 Hz are implemented for the measurement of scattering attenuation in this study. It is
noteworthy that Shapiro & Kneib (1993) indicated that attenuation rates can be determined differently according to the analysis procedure.
For instance, they showed that the attenuation rates can be varied by a factor of 2 by exchanging the sequence of the stacking procedure
and the logarithm of the amplitude ratio, and this phenomenon is obvious mathematically. The stacking process implemented in this study is
considered with the idea that the mean stacked response stands for all time records and incorporates all the effect present in the time records.
This idea has been implemented for quantitative analysis in scattering studies (e.g. Roth & Korn 1993).

Fig. 2 shows time responses in an exponential medium with a = 214.5 m for incidence of plane shear waves. Scattered P and S waves
develop from the plane shear waves by interference of the random heterogeneities in the medium. The P scattered phases have faster wave
speeds than S waves, and are thus recorded before the primary waves in the time response. Strong S coda waves follow the primary waves,
and a multiscattering effect enables a long temporal duration of the coda.

The results from four differently realized models are compared with theoretical attenuation curves of eq. (6) in Fig. 3. The attenuation
rates in random media (von Karman, exponential, Gaussian) with a = 214.5 m are measured consistently despite the change in appearance
of the media. The consistency looks weakened with increase of the correlation length of the media since multiple scattering becomes strong
(e.g. Frankel & Clayton 1986) and also the log scale in the vertical axis (Q−1

S /ε2) magnifies small differences. As a result, the numerical results
from all stochastic random models are well fitted to the range between the theoretical curves with minimum scattering angles (θSS

min) of 60◦ and
90◦. The presented minimum scattering angles accord with those of P waves in a previous study (Hong & Kennett 2003a). It is worth noting
a recent report that normalized scattering attenuation rates (Q−1/ε2) reduce with perturbation strength (ε) due to the development of coherent
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Figure 2. Time responses of S-wave propagation in a von Karman random medium with ν = 0.5 and a = 214.5 m. One hundred and twenty-eight receivers
are deployed at a distance of 55.9 km from the source position of the plane shear wave. The incident S waves are polarized in the direction of the x-axis and
propagate vertically. Major primary waves are observed in the x component, and scattered P phases propagate faster before the primary S waves. A strong S
coda develops after the primary waves in both x and z components.
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Figure 3. Comparisons of theoretical and numerically estimated scattering attenuation rates of shear waves (Q−1
S ) as a function of normalized wavenumber

kβa in von Karman random media with Hurst number (a) ν = 0.05, (b) 0.25 and (c) 0.5 (corresponding to the exponential random media) and (d) in a Gaussian
random medium. The scattering attenuation rates are well represented by the theoretical curves for a 60–90◦ minimum scattering angle.

scattered waves which degrade the random nature of the scattering (Hong et al. 2003). Thus, the minimum scattering angle can be determined
as small at low perturbation strengths. We present the scattering attenuation ratios based on the minimum scattering angle obtained from this
study in the following section, but the approach can easily be extended for different perturbation cases.

4 S C AT T E R I N G AT T E N UAT I O N R AT I O O F E L A S T I C WAV E S

4.1 General pattern

In order to give a detailed description of the variation of scattering attenuation ratios, we use the theoretical expressions for scattering
attenuation for P and S waves in eqs (1) and (6) with the minimum scattering angles resolved in the previous section. This approach will
allow investigation of scattering attenuation in various cases without implementation of massive numerical modelling. Note that field data are
often analysed in terms of frequency ( f ) since this analysis does not require comprehension of the detailed seismic properties of the medium.
Thus, we focus on the variation of scattering attenuation ratio with frequency, and this will allow direct comparison with field observations.
The scattering attenuation rates depend on the velocity ratio (γ ) of the medium, and we implement a representative velocity ratio of 1.75
considering plausible crustal velocities of α0 = 6.738 km s−1 and β 0 = 3.85 km s−1 (Kennett et al. 1995).

Using a simple relationship f = kββ 0/(2π ) = kαα0/(2π ), the theoretical scattering attenuation expressions in eqs (1) and (6) can be
rewritten easily as a function of normalized frequency ( fa). Note that the variable ka in the theoretical expressions has a one-to-one match to
the variable fa for a given velocity set. Thus, the expression with fa is expected to preserve the properties of the theoretical expressions for
ka. The implementation of a different velocity set with the same velocity ratio (γ ) causes just a relative shift of fa values. For instance, the
pattern of theoretical attenuation ratios for a velocity set of α0 = 6.738 km s−1 and β 0 = 3.85 km s−1 is held for a set of α0 = 4.0 km s−1 and
β 0 = 2.286 km s−1. The dimension of the normalized frequency corresponds to velocity.

In Fig. 4, S waves display more attenuation than P waves at low fa (<1 km s−1) in all random models. On the other hand, the P-wave
attenuation becomes comparable or dominant at large fa (>1 km s−1). Also, the P-wave attenuation is strengthened in the high-frequency
regime with increase in the Hurst number in von Karman media. The relative variation between P- and S-wave attenuation at high frequencies
( f a > 1 km s−1) agrees with regional observations (e.g. Castro et al. 1997) which display a constant difference between the levels of
attenuation.

Scattering attenuation ratios of P and S waves (Fig. 5) are proportional to fa in a range of 0.1 < f a < 10 km s−1, and are determined as
constant for both of the end regimes (i.e. f a � 10 km s−1, f a 	 0.1 km s−1). The amplitudes of the constant ratios in the low-frequency
limit ( f a 	 0.1 km s−1) depend only on the size of the minimum scattering angle, and are 0.34 for θ min = 60◦ and 0.29 for 90◦. On the other
hand, the ratios at the high-frequency limit ( f a � 10 km s−1) are dependent on both the minimum scattering angle and the type of medium.
In particular, the level of the attenuation ratios in von Karman media in the high-frequency regime are proportional to the Hurst number (see
also Table 1). On the other hand, the attenuation ratios in Gaussian media display a drastic variation at f a > 1 km s−1. The drastic variation
in the high-frequency regime is related to the texture of Gaussian media. Since Gaussian media lack a frequency structures in the texture (see
Fig. 1), high-frequency waves are scarcely affected by the random heterogeneities in the media. Thus, the consideration of attenuation ratio
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Figure 5. Scattering attenuation ratios of P and S waves as a function of normalized frequency ( fa) in von Karman type random media with Hurst number
ν = 0.05, 0.25, 0.5 and in a Gaussian random medium, when α0 = 6.738 km s−1 and β 0 = 3.85 km s−1 (γ = 1.75).

in the high-frequency regime is physically meaningless. Therefore, in the sense of characterization of media in terms of stochastic random
heterogeneities, von Karman type models which can cover a broad frequency range look to be more reasonable for the representation of media
in the Earth than Gaussian models.

The pattern of variation of attenuation ratios in Fig. 5 agrees well with the reported field observations, which vary from 0.4 to 2.9 (Fig. 6).
Anderson et al. (1965) reported a constant attenuation ratio of 0.44 by analysing low-frequency ( f < 0.02 Hz) seismic waves. Later, Taylor
et al. (1986) reported that the ratios increase from 0.5 to 2 with frequency in North America in the frequency range of 0.05 to 3 Hz, and other
studies with similar variation patterns have followed in various regions (e.g. Butler et al. 1987). In high-frequency ranges ( f > 10 Hz), the
attenuation ratios in the crust and the upper mantle have been reported in various studies to be 1.12 to 2.94 (e.g. Modiano & Hatzfeld 1982;
Carpenter & Sanford 1985; Yoshimoto et al. 1993; Castro et al. 1997).

Taking account of the inclusion of the intrinsic attenuation and different elastic properties (e.g. velocity ratio γ ) in the field results,
the theoretical scattering attenuation ratios of stochastic media look very reasonable for the description of the heterogeneous nature of the
Earth. In fact, most of the field results can be fit to the theoretical curves for von Karman media through implementation of appropriate
Hurst numbers and correlation lengths. Occasionally, the theoretical attenuation ratios have less conformity with some field observations
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Table 1. Maximum attenuation ratios (RQ =
Q−1

P /Q−1
S ) for fa in von Karman type media with a

different Hurst number (ν) when α0 = 6.74 km s−1

and β 0 = 3.85 km s−1 (γ = 1.75). The ratios are
measured at f a = 100 km s−1.

ν θ min RQ|(fa=100)

0.05 60◦ 0.95
90◦ 0.85

0.25 60◦ 1.17
90◦ 1.05

0.5 60◦ 1.53
90◦ 1.38

0.65 60◦ 1.79
90◦ 1.63

0.8 60◦ 2.10
90◦ 1.94

1.0 60◦ 2.59
90◦ 2.43
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Figure 6. Apparent attenuation ratios of P and S waves observed in various areas (see also, Fig. 5.3 in Sato & Fehler 1998). The variation of the attenuation
ratios with frequency is close to the pattern in theoretical attenuation ratios in Fig. 5.

(e.g. Yoshimoto et al. 1993, 1998) where the intrinsic attenuation is dominant and independent of the scattering attenuation. For instance, the
intrinsic attenuation in the Kanto area (see, Yoshimoto et al. 1993) is about twice the scattering attenuation and varies independently with
frequency from the scattering attenuation variation (Fehler et al. 1992).

4.2 Effect of density perturbation and velocity ratio

The Earth is composed of various materials, and consequently has varying influences on the scattering of seismic waves. We examine the
effect of other factors on the scattering attenuation ratios of P and S waves. As shown in the theoretical expressions in eqs (1) and (6), the
other parameters which can change the level of attenuation ratios are the density perturbation (K) and the velocity ratio (γ ).

First, we consider three additional different levels of density perturbation: K = 0, 0.4 and 1.0, where K is the constant controlling the
density perturbation in eq. (9). The K = 0 density perturbation represents a case when there is no density perturbation, and K = 1.0 is for a
case when the density perturbation is as high as the velocity perturbation.

The form of variation of the attenuation ratio is held despite the change in the level of density perturbation (see, Fig. 7). The relative
variation of attenuation ratios at the low-frequency limit is very weak compared with that in the high-frequency regime, and the influence
of density perturbation is negligible at the low-frequency limit. The attenuation ratios for θ min = 60◦ are rarely changed for the variation
of density perturbation, while those for θ min = 90◦ decrease slightly with K. This implies that the density perturbation does not produce a
noticeable relative variation in P- and S-wave attenuation rates at small scattering angles (≤ 60◦). However, in the large-angle regime (>60◦),
S-wave scattering is expected to increase significantly with the density perturbation strength compared with P-wave scattering, since the S
waves are polarized perpendicularly to the incidence direction and the energy concentrates around the polarization direction.
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Figure 7. Scattering attenuation ratios as a function of fa for various density perturbations and the representative variation in a von Karman medium with ν =
0.5. The attenuation ratios for fa are not much affected by the density perturbation, but the density perturbation slightly strengthens the shear wave scattering
in the high-frequency regime (fa > 1).

The density perturbation amplifies scattering in the direction of polarization, thus the relative variation of attenuation ratios is prominent at
a large minimum scattering angle. The overall influence of the density perturbation on attenuation ratios, however, is rather trivial considering
the difference in the levels of attenuation ratios between different types of media. As a result, velocity perturbation appears to play a dominant
role in the determination of scattering attenuation ratios.

We now investigate the effect of the velocity ratio on the scattering attenuation ratios. Considering the velocity structure of the Earth
allowing shear wave scattering, we implement seven additional velocity ratios (γ = 1.55, 1.6, 2.0, 2,5, 3.0, 4.0 and 8.0). Note that the extreme
velocity ratios for elastic materials can be given by

√
2 (when λ = 0) and ∞ (when β = 0). For comparison, we set the P-wave velocity

constant (6.738 km s−1), and adapt S-wave velocity following the velocity ratios.
The overall variation pattern of attenuation ratios is held despite the change in velocity ratio. However, the level of attenuation ratios varies

with the velocity ratio. Attenuation ratios are inversely proportional to velocity ratio in the low-frequency regime ( f a 	 0.1). The attenuation
ratios display a complex dependence on the velocity ratio in the high-frequency regime: the level of the attenuation ratio is proportional to the
velocity ratio when f a > 2.5, but decreases with velocity ratio when f a < 2.5 (Fig. 8). The level of the attenuation ratio is also dependent
on the type of medium in the high-frequency regime. In particular, the level increases with the Hurst number of von Karman media.

5 D I S C U S S I O N A N D C O N C L U S I O N S

The nature of scattering attenuation ratios (Q−1
P /Q−1

S ) of elastic waves in stochastic random media has been investigated by using theoretical
expressions for attenuation based on the first-order Born approximation. The theoretical expressions were compared with results from numerical
modelling. The numerical results are well fitted to the theoretical curves with a minimum scattering angle of 60–90◦ for media with a mild
perturbation strength (10 per cent velocity perturbation). The scattering attenuation ratios for normalized frequency ( fa) are highly dependent
on the type of medium and the velocity ratio (γ ). The discernible difference in the level of attenuation ratios with frequency allows prompt use
of field observation for the characterization of media. The scattering attenuation ratios are rarely affected by density perturbation but mainly
by velocity perturbation, velocity ratio and the type of medium.

Considering the reported field observations, von Karman models look suitable for the representation of small-scale heterogeneities in
the Earth; von Karman models can satisfy a wide level of variation in attenuation ratios through implementation of an appropriate Hurst
number and correlation length. In particular, Hurst numbers larger than 0.5 (e.g. Saito et al. 2003) need to be implemented for the description
of heterogeneities at some regions. On the other hand, the Gaussian model represents the extreme case of low-frequency textured media, so
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Figure 8. Scattering attenuation ratios as a function of fa for various velocity ratios (γ = 1.55, 1.6, 1.75, 2.0, 2.5, 3.0, 4.0 and 8.0), and a representative
variation in a von Karman medium with ν = 0.5 and θ min = 60◦. The level of the attenuation ratios are highly dependent on the velocity ratio, and in general
increase with decrease of the velocity ratio.

it does not support investigation through attenuation ratios in the high-frequency regime. The Gaussian models look inappropriate for the
description of heterogeneities with a large correlation length, especially in problems with high-frequency incident waves. It is expected that
the scattering attenuation ratios can be implemented for the characterization of media in the Earth through comparison between theoretical
variation and field observation. The determined stochastic model could ultimately be extended to aid understanding of the seismic signature
in the Earth.

It is noteworthy that the theoretical expressions of the current work are developed in the context of the Born approximation which may
fail in the high-frequency regime (Weaver 1990). The theoretical expressions for attenuation, however, were examined with numerical results
in a range up to ka = 15 in this study and a previous work (Hong & Kennett 2003a), and the attenuation ratios retain validity up to such range.
Moreover, since the attenuation ratios in the high-frequency regime ( f a > 3) are determined constant, it is also possible to use the attenuation
ratios in the high-frequency regime as long as the media are statistically randomly heterogeneous.

In general, the intrinsic attenuation in the Earth is related to the physical and chemical nature of the various media, for instance rock
type (Assefa et al. 1999), material state (Del Pezzo et al. 1995), temperature (Roth et al. 2000), thermoelasticity (Aki 1980; Frankel et al.
1990), variation of material composition with depth (e.g. Tselentis 1993; Menke et al. 1995; Der 1998; Flanagan & Wiens 1998) and tectonic
activity (Frankel et al. 1990; Sarker & Abers 1998). Naturally, this physical and chemical variation can cause perturbation in the media and
an increase in scattering in the seismic wavefield. The variation of theoretical scattering attenuation ratios presented in this study is very close
to the apparent attenuation ratios of field observation in many areas. This feature supports the idea that scattering attenuation ratios can be
implemented as a reference parameter for the characterization of media in the Earth. Further, it is expected that we can resolve small-scale
heterogeneities in the crust using scattering attenuation ratios.

However, some properties, for example frequency dependence (Hatzidimitriou 1994; Akinci & Eyidoǧan 2000), of intrinsic attenuation
are different from those of scattering attenuation. Also, it has been reported that attenuation rates may vary with the propagation distance in
a zone with an anisotropic distribution of heterogeneities (e.g. Campillo & Plantet 1991; Tselentis 1993; Menke et al. 1995). Thus, in the
next stage of work it is necessary to develop theoretical expressions for attenuation and numerical models combining scattering and intrinsic
attenuation in order to understand high-frequency seismic attenuation in the crust. Also, variation in seismic attenuation during propagation
through layered media should help in understanding the the attenuation of seismic waves in the Earth.
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A P P E N D I X A : D E R I VAT I O N O F S - WAV E S C AT T E R I N G AT T E N UAT I O N R AT E S

Following the procedure for the derivation of P-wave scattering attenuation in Hong & Kennett (2003a), we formulate the scattering attenuation
rates of S waves (Q−1

S ) as a function of normalized wavenumber (kβa) in 2-D random heterogeneous media.
We first consider that the wavefield (uj, j = x , z) is composed of primary waves (u0

j , j = x , z) and scattered waves (us
j , j = x , z). Then

the primary waves in 2-D elastic media satisfy the relationships
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λ0 and µ0 are Lamé coefficients and ρ 0 is the density of the background medium.
When the vertically incident (z-axis direction) and horizontally polarized (x-axis direction) plane S waves (Fig. A1) are considered as

the primary waves, they are given by

u0
x = ei(kβ z−ωt), u0

z = 0, (A3)

where ω is the angular frequency. The scattered waves can be represented using body forces f s
j ( j = x , z or 1, 2) for the scattering effects

from the perturbation of physical parameters. Thus, the body forces f s
j can be computed by using (A1) and (A3), and they are written in terms

of the primary waves and the fractional fluctuation of physical parameters as

f s
x = −

(
k2

β (δρβ2
0 − δµ) + ikβ

∂

∂z
(δµ)

)
u0

x , f s
z = −ikβ

∂

∂x
(δµ)u0

x . (A4)

Using the empirical relationship (9) between physical parameters, eq. (A4) can be rewritten in terms of the fractional fluctuation term
ξ (x, z) as

Primary Incident Waves

*
Receiver

S θ

dS

x

z

Heterogeneity

x

x

r

Figure A1. The scattering of the primary incident waves at the scatterer dS, a part of the whole heterogeneous area S. θ is the scattering angle from the
incident direction of primary waves along the z-axis. x, x′ are the location vectors for the receiver and a scatterer. r links the scatterer to the receiver.
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f s
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where CS
1 and CS

2 are constants given by

C S
1 = −2, C S

2 = K + 2. (A6)

Hereafter we use symbols without the subscript 0 representing the background medium for simplicity in mathematical expressions.
Displacement fields, generated by body forces ( f s

k , k = x , z or 1, 2) which are induced by perturbation of physical properties, can be
expressed using the Green’s function G jk(x, x′) by

us
j (x) =

2∑
k=1

∫
S

f s
k (x′)G jk(x, x′) dS(x′), j = 1, 2, (A7)

where S is the inhomogeneity area. The far-field Green’s functions of 2-D elastic waves are given by (Hong & Kennett 2003a)(
G

P

12

G
P

22

)
= i

4α2ρ

√
2

πkα|x| exp

[
i

(
kα|x| − kαn · x′ − π

4

)](
sin θ cos θ

cos2 θ

)
, (A8)

and(
G

S

12

G
S

22

)
= i

4β2ρ

√
2

πkβ |x| exp

[
i

(
kβ |x| − kβn · x′ − π

4

)](− sin θ cos θ

sin2 θ

)
. (A9)

We now obtain the far-field scattered wavefields as

uS P
j =

√
kα

γ 28π |x| exp

[
− i

(
ωt − kα|x| + π

4

)]
·
(

− ikβC S
1 AP

j1(θ )
∫

S

ξeikα (γ z−n·x′) dS(x′)

+ C S
2 AP

j1(θ )
∫

S

∂ξ

∂z
eikα (γ z−n·x′) dS(x′) + C S

2 AP
j2(θ )

∫
S

∂ξ

∂x
eikα (γ z−n·x′) dS(x′)

)
, (A10)

and

uSS
j =

√
kβ

8π |x| exp

[
− i

(
ωt − kβ |x| + π

4

)]
·
(

− ikβC S
1 AS

j1(θ )
∫

S

ξeikβ (z−n·x′) dS(x′)

+ C S
2 AS

j1(θ )
∫

S

∂ξ

∂z
eikβ (z−n·x′) dS(x′) + C S

2 AS
j2(θ )

∫
S

∂ξ

∂x
eikβ (z−n·x′) dS(x′)

)
, (A11)

where Ak
i j (i , j = 1, 2, k = P , S) is given in (5). Using the partial integration for the partial differentials of ξ in (A10) and (A11) and considering

the scattered P and S waves in a single component (radial or tangential) by rotation of the coordinate axes (e.g. Sato & Fehler 1998), we obtain

uS P
r = sin θuS P

x + cos θuS P
z

= i

√
k3

α

γ 28π |x|C S
r (θ ) exp

[
− i

(
ωt − kα|x| + π

4

)] ∫
S

ξeikα (γ z−n·x′) dS(x′),

uSS
t = cos θuSS

x − sin θuSS
z

= i

√
k3

β

8π |x|C S
t (θ ) exp

[
− i

(
ωt − kβ |x| + π

4

)] ∫
S

ξeikβ (z−n·x′) dS(x′),

(A12)

where CS
r (θ ) and C S

t (θ ) are given in (8).
Average scattered energy, which can be measured by the ensemble averages of the displacement terms, is calculated in order to assess the

average scattered energy, and is given in a simple form as function of the power spectral density function P(k) for stochastic random media:〈∣∣uS P
r

∣∣2
〉

= k3
αS

γ 28π |x|
[
C S

r (θ )
]2 P

(
kα

√
1 + γ 2 − 2γ cos θ

)
,

〈∣∣uSS
t

∣∣2
〉

= k3
βS

8π |x|
[
C S

t (θ )
]2 P

(
2kβ sin

θ

2

)
. (A13)

Since Q−1
S corresponds to the energy loss per unit area divided by wavenumber, we can express Q−1

S in terms of the standard deviation (ε) of
velocity fluctuation in the 2-D media by

Q−1
S

ε2
= 1

Skβ

∫
θ

(
α

β

〈∣∣uS P
r

∣∣2
〉
+

〈∣∣uSS
t

∣∣2
〉)

dA, (A14)
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Figure A2. Diagram for determining the minimum scattering angle for S waves using Snell’s law. A specific situation is considered for the determination of
θSP

min in terms of θSS
min; the S wave is incident with angle φS on the surface of heterogeneity for the perpendicular axis to the surface and the SS scattered waves

is reflected on the surface with angle θSS
min for the incident direction (z-axis direction in this study). The SP scattered wave is reflected on the surface with angle

φP for the perpendicular axis and θSP
min for the incident direction.

where A is the arc length through which scattered waves propagate and therefore dA is given by r dθ (Frankel & Clayton 1986). Note that
scaling α/β is applied to 〈|uSP

r |2〉 considering the wave type conversion (Sato & Fehler 1998).
The traveltime correction is considered by neglecting the contribution of forward scattering inside the minimum scattering angle (Sato

& Fehler 1998). Since the scattered angles of SP and SS waves from a heterogeneity are different, we introduce θ SP
min for the P-wave type

scattering and θ SS
min for the S-wave type scattering. Therefore we can represent the theoretical Q−1

S with the traveltime correction as

Q−1
S

ε2
= r

Skβ

(
γ

∫ 2π−θ S P
min

θ S P
min

〈∣∣uS P
r

∣∣2
〉

dθ +
∫ 2π−θ SS

min

θ SS
min

〈∣∣uSS
t

∣∣2
〉

dθ

)
. (A15)

When |x| is large enough, we can assume |x| ≈ r . Also, θSP
min can be represented in terms of θSS

min by using Snell’s law. When we consider the SS
scattered waves which are reflected with the minimum scattering angle θ SS

min from the boundary of heterogeneity, the corresponding reflection
angle of SP scattered waves can be calculated using the single scattering idea as (see, Fig. A2)

θ S P
min = θ SS

min − �φ, (A16)

where �φ = φ P − φ S and φ j ( j = P , S) is

φS = π − θ SS
min

2
, φP = sin−1 (γ sin φS) . (A17)

Thus, the theoretical scattering variation is given by

Q−1
S

ε2
= k2

β

8πγ 4

∫ 2π−θ S P
min

θ S P
min

[
C S

r (θ )
]2 P

(
kβ

γ

√
1 + γ 2 − 2γ cos θ

)
dθ

+ k2
β

8π

∫ 2π−θ SS
min

θ SS
min

[
C S

t (θ )
]2 P

(
2kβ sin

θ

2

)
dθ.

(A18)
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