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Refinement Indicators for Optimal Selection
of Geostatistical Realizations Using the Gradual
Deformation Method?

Thomas Schaaf Guy Chavent? and Mokhles Mezghant

In the analysis of petroleum reservoirs, one of the most challenging problems is to use inverse theory
in the search for an optimal parameterization of the reservoir. Generally, scientists approach this
problem by computing a sensitivity matrix and then perform a singular value decomposition in order
to determine the number of degrees of freedom i.e. the number of independent parameters necessary
to specify the configuration of the system. Here we propose a complementary approach: it uses the
conceptof refinementindicators to select those degrees which have the greatest sensitivity to an objective
function quantifying the mismatch between measured and simulated data. We apply this approach to
the problem of data integration for petrophysical reservoir charaterization where geoscientists are
currently working with multimillion cell geological models. Data integration may be performed by
gradually deforming (by a linear combination) a set of these multimillion grid geostatistical realizations
during the optimization process. The inversion parameters are then reduced to the number of coefficients
of this linear combination. However, there is an infinity of geostatistical realizations to choose from
which may not be efficient regarding operational constraints. Following our new approach, we are able
through a single objective function evaluation to compute refinement indicators that indicate which
realizations might improve the iterative geological model in a significant way. This computation is
extremely fast as it implies a single gradient computation through the adjoint state approach and dot
products. Using only the most sensitive realizations from a given set, we are able to resolve quicker
the optimization problem case. We applied this methodology to the integration of interference test data
into 3D geostatistical models.

KEY WORDS: optimization, optimal parameterization, refinement indicators, adjoint state.

INTRODUCTION

The main challenge of reservoir characterization is to obtain the most predic-
tive reservoir model from available observations, either static (e.g. log/core
measurements) or dynamic (well test, production data, etc.). Such a model helps
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to efficiently quantify uncertainties and to run risk analysis. To this end, engineers
have to complete structural and petrophysical characterizations as both reservoir
properties and geometry may have a large influence on the fluid flow pattern. In
this study, we do not focus on the structural characterization (e.g. Oldenziel, Van
Dithuijzen, and Van Kruijsdijk, 2002; Roggero and Hu, 1998) but rather on the
petrophysical characterization of the reservoir. Development of data integration
within a stochastic framework for a more efficient uncertainty management has
led to a large use of geostatistical tools. Powerful geostatistical simulation algo-
rithms are currently able to generate multimillion-cell geological models. Here-
after, the main challenge is the proper integration of available data (dynamic as
well as static data) into the reservoir model without losing the spatial variability
and with a reasonable computation time. Concerning the first point, some inno-
vative approaches have been proposed (Mezghani and Roggero, 2001; Schaaf,
Mezghani, and Chavent, 2002; Wen and others, 2000) to have an efficient data
integration without losing the spatial variability of the initial geological model.
The computational time constraint is linked to an optimal parameterization search
i.e. finding the right number of parameters explaining the data in the quickest
way. In this work, the parameterization used for the geological model is based
on a linear combination of geostatistical realizations. Rather than picking out
randomly those realizations, we propose to compute for a large set of realiza-
tions refinement indicators (a single dot product associated to each realization)
whose absolute values quantify the sensitivity of each realization with respect
to the objective function of the inverse problem. Thus, selecting for the linear
combination only the most useful degrees of freed@ngeostatistical realiza-
tions, we are able to speed up the optimization process. Choosing a priori the
most promising geostatistical realizations for the iterative optimization process,
we get closer to an optimal parameterization in petroleum engineering inverse
problems.

PARAMETERIZATION WITH THE GRADUAL
DEFORMATION METHOD

The development of history matching within a stochastic framework called for
the development of new parameterization techniques able to preserve some initial
geostatistical constraints (linked to the prior geological knowledge) throughout
the dynamic data integration process.

De Marsily and others (1984) developed the pilot point method involving
a gradient based search. More recently was developed the gradual deformation
method for performing history matching on stochastic reservoir models (Hu and
Blanc, 1998; Roggero and Hu, 1998). It consists in iteratively updating (through
an optimization process) a combination of independent realizations of a random
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function (representing a petrophysical property for instance) until both static and
dynamic data are matched.

Let us consider a stationary Gaussian random fundip¢) with zero mean
and unit variance. The gradual deformation methodology consists in writing a new
realizationz of the random functiorZ as a linear combination dfl independent
realizationsz; of Z:

N N
z=Y pzwith ) pZ=1 1)
i=1 i=1

The normality constrainEiNzl p? = 1 is automatically satisfied when spherical
coordinates = {61, ..., 6_1} are used. Hereafter, the new realizatioms a
function of (N—1) independent gradual deformation parameteys. .., 6y_1}
which are the inversion parameters for the optimization process. Considering for
instance the gradual deformationdf= 2 realizationg; andz,, we have a single
gradual deformation paramet@r.

2
2(61) = Y pizi = cosfs) z1 + Sin@y) 22 (2
= ———r ———
=p1 =p2

This algorithm leads to an efficient parameterization of the geological model
thanks to at least three advantages: (1) preservation of the spatial variability;
(2) reduction of a high-dimensional optimization problem to a low-dimensional
one; (3) smooth variations in the objective function. Currently, there are sev-
eral extensions of this algorithm: local and structural deformations (Le Ravalec,
Noetinger, and Hu, 2000), deformation of hon-Gaussian simulations (Hu, 2000),
and deformation of sequential simulation models (Hu, Blanc, and Noetinger,
2001).

INDICATORS FOR THE REFINEMENT OF PARAMETERIZATION

Because of operational time constraints, the optimization process based on
the updating of gradual deformation parametgiis generally completed with
gradient techniques. The mismatch betweenntebservationsDyys and the
simulated dataDsimy (@) is quantified with an objective functiod defined in a
weighted least square sense:

nd . .
J(G) - % Z Wi (Dtj)bs - Déimul(g))2 (3)
=1
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This leads to a hybrid approach which involves a random search (random
picking of theN geostatistical realizations) crossed with gradients techniques. A
history matched model is more or less rapidly achieved (based on the realizations
that are picked out) what may not be compatible with the operational constraints.

Thus, rather than picking out randomly tih\e realizations, we propose to
select within a set oN* randomly generated realizationsl{ > N) the most
sensitive (at first order) geostatistical realizations with respect to the objective
function J. This approach is based on the concept of refinement indicators and is
extremely fast as it is based on discrete adjoint states and dot products. Moreover,
it requires a single objective functioh evaluation (and thus a single fluid flow
simulation) contrary to other approaches (Subbey, Christie, and Sambridge, 2003;
Wang and Kovscek, 2002).

The concept of refinement indicators was first introduced by Chavent and
Bissel (1998). They addressed the problem of determining a set of degrees of
freedom allowing to honor correctly the data while avoiding the pitfall of over-
parameterization (i.e. a multiscale adaptative parameterization). Given a class of
imbedded parameterization for the problem under concern, a refinement indica-
tor can be associated to each degree of freedom of the next finer parameterization
level. A given indicator indicates the effect (at first order) on the optimal data misfit
of adding the associated degree of freedom to the current set of parameters. Thus
one is able to select only those degrees of freedom giving the strongest decrease
of the optimal data misfit. This approach was applied to a problem of hydraulic
transmissivities estimation (Ben Ameur, Chavent, and 8a#002).

We have extended the concept of refinement indicators to the gradual deforma-
tion parameterization. In this approach, a (usually small) nuribefrrealizations
z € R"Mis picked out randomly, whenmemdenotes the number of geostatistical
cells (hmis a usually large number), and the optimization algorithm is initialized
with the gradual deformation parameteérs= 0. This amounts to initialize the
weightstop; = 1,0, =... = pny = 0.

The use of refinement indicators reduces fridnto 1 or even 0 the number
of randomly picked initial geostatistical realizations:

Case 1: Existence of an a Priori Geostatistical Modet;

Thanks to previous reservoir studies for instance, one may already have a
reservoir model which corresponds to an a priori geostatistical realizatiofie
choose théN-1 associated realizations, . . . , zy used in the gradual deformation
among a large collection dfi*-1 (N > N) realizationszs, . .., zy+. The idea
there is to draw randomly the realizations . .., zy+ using a large number of
seeds (associated to the random number generator of the geostatistical simulation
algorithm), and to retain only for the gradual deformation Ml ones which
correspond to the strongest refinement indicatprsvhich we define now.
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Letp = (p1, ..., pn#), and consider the constrained optimization problem:

Find p* € RN*which minimizes the function(d) withz = Zi'\'jl PiZi
under the constraints 4)
@pi=b,i=2...N*, () XN, p?=1

wherebi, i = 2,..., N* are given numbers such thEisz b? < 1. Any local
solution p* of (4) satisfies the associated Lagrange necessary condition: there
existsA* = (A3, ..., Ay« (multipliers for the constrainta)) and u* (multiplier

for the constraintlf)) such that:
aL

a0 A ) =0 ®)
0

wherelL is the Lagrangian, defined by :

{ L(p, A, ) =13 <Zi’\£1/)i Zi) + 3N (o — b)) wi + (Zile P2 — 1) ~e)
Vp = (pl, ey pN#), VA= ()»2, ey )\N#), V,bL

Equation (5) gives immediately the Lagrange multipliers:

N#

aJ
M=—(—(@)2z) i=2...,N withz = *z 7
i <az( )7Z|>an ] ’ k] ;pl | ()

The gradiendJ/d J(z*) € R"™ corresponds to the derivative of the objective func-
tion J with respect to each geostatistical cell of the realizaiorOf course, the
solutionp* of (4), — as well as the associated realizatztdrand Lagrange multi-
pliers A*, u*—depend on the right-hand sithe= (b, . .., by#) of the constraint
(a), so we can denote them by, z§, Af, and uf. The minimum value of the
objective function associated to a right-hand dide then:

¥ =13(%) (8)

It is then a known result of constrained optimization, whose proof is recalled in
the Appendix, that the Lagrange multipligf coincides with the derivative of the
optimal misfitJ;* with respect to théth right-hand siddy; of the constraints:

NN
= —\F 9
5 = N ()
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In order to apply this result to our problem, we remark that for the choice
b, =bs =...=by+ =0, the admissible set of problem (4) contains only two
isolated pointp = (+1,0,...,0) € RN" which are hence local solutions of 4!
So we can apply the above analysis with= (1,0, ..., 0) andz* = z;. If we
denote byl (z®) the optimal misfit when thigh right-hand sidé; is changed from
b = 0tob; = sb;, we see that at first order:

IZ®) — I(Z) = —arshy (10)

So theith Lagrange multiplie; gives us the sensitivity of the optimal data misfit
when unlocking theéth degree of freedom i.e. using thh realizationz; in the
gradual deformation process. We shall call these Lagrange multiptEnement
indicators

In order to select, among the* candidate realizations, thd-1 to be ap-
pended ta; in order to perform the gradual deformation, we computeNfie- 1
refinement indicators,, ..., An# by Equation 7. This is extremely fast, as each
Ai is obtained by a single dot product, once the gradiehtdz(z*) € R"™ has
been computed. Refinement indicators are then ranked according to their absolute
value, and we select the-1 geostatistical realizations corresponding to khé
refinement indicators of largest absolute value.

Case 2: No a Priori Geostatistical Model

Suppose that we are performing petrophysical characterization through a
random functionY (x) of lognormal distribution with meam and variancer2.
The functionY(x) is linked to a functiorlJ (x) of normal distribution with mean
m’ and variance > through the relation:

Y(x) = V™ (11)

The gradual deformation process is currently performed using a standard normal
variable,Z(x), with zero mean and unit variance. Equation (11) then gives:

Y(x) = eM+oz09) (12)

Instead of evaluating the gradiend /9z for a given realizatiorz; (case 1),
we evaluate) J/dz for the null random functiorZz = 0. This gradient gives the
sensitivity of the objective function for a deterministic permeability field of value
e,

In order to choose thal realizations to be used in the gradual deformation,
we draw randomly as in casl a large numbe* of geostatistical mapg, and
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compute thenitialization indicators

3J :
Ai=<_(zEO),zi> , i=1,...,N*
0z R

By definition of the gradient, we have:

J©Bpiz)— JO)~ Aispi,i =1,...,N*
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(13)

(14)

Hence realizationg with a large|A;| are likely to produce a strong decrease
of the objective function for dp; of proper sign. So we rank th#&;’s according
to their absolute value, and choose to perform the gradual deformation with the
N geostatistical realizations corresponding to the initialization indicatpmsith

largest absolute value.

COMPUTATION OF THE GRADIENT 8J/9Z

Before computing refinement indicators [Eq. (7)] or initialization indicators
[Eqg. (13)], one has to compute the gradi@dt/dz. Let us consider the general
flowchart of the forward problem when gradual deformation is used as parameter-

ization of the geological model (Fig. 1).
The four successive steps are:

[1] Gradual deformation of thé&l realizationsz; which result in the current

realizationz,

[2] Geological modeling step: one can consider either lognormal permeabil-
ity fields or facies-based models; conditioning to hard data is currently

performed,

[3] Upscaling issue to get the fluid flow simulation model,
[4] Fluid flow simulation and objective functiod calculation.

Using the chain rule, we can write the gradiéidt/ 0z as:

aJ 3 oK 9k

9z 0K 9k oz
—— S ——
1 2 3

1) [2] [3] [4]

2]

Figure 1. Flowchart of the key issues of the forward problem.

(15)
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The key point of the proposed methodology is to compute the gradients using
the adjoint approach (Chavent, 1974; Sun, 1994). The computatédi & using
adiscrete adjoint state is detailed in the Appendix. The secondteyidk has also
been computed by a discrete adjoint state, but the calculations are not detailed. The
third term corresponds to the geological modeling sequence and is easily computed
analytically (Schaaf, Mezghani, and Chavent, 2002 for facies-based models; Wen
and others, 2000).

We are thus able to compute the gradig&hio z for both lognormal and facies-
based models (Schaaf, Mezghani, and Chavent, 2003).

With this approach, the additional cost required to compute the gradient
0J/0z(z*) is similar to the computational cost of one evaluatiodefand, mostly
important, independent of the numipenof geostatistical cells, whichis very large.

REFINEMENT INDICATORS FOR AN IMPROVED INITIAL
GUESS OF PARAMETER VALUES

From Equation (10), we see that the signs of the refinement indicators con-
tain useful information. Suppose that a given refinement indicator has a positive
value. If we allocate a positive weight to the associated geostatistical realization,
this will tend to decrease the objective functidrvalue (at first order). The same
argument stands for negative values of refinement indicator and weight. Thus,
when initializing the optimization algorithm, one should allocate to each geosta-
tistical realization a weight of same sign than that of the associated refinement
indicator.

Case 1: Existence of an a Priori Geostatistical Modet;

Except the geostatistical realizatian, we choose theN-1 realizations
Z, ..., 2N Used in the gradual deformation process based on the refinement in-
dicators. We have computéd, J(z;) and also, by dot products, the components
A1, ..., AN OFV,J3((1,0,...,0)). We can then search on the sphEEZl ,oi2 =1
a new initial point in the directior-V, J:

— If A1 > 0, Jtendsto decrease whenisincreased. Thug, = (1,0, ...,0)
is the best initial reference point,

— If A1 < 0, one can move in the directienVv, J until intersecting again the
circle (Fig. 2):

Iol:]_—g)\,l’pj :0—8)\,],] :2,...,N :E_L
pf+...+p§‘:1 )&4....4.)&

(16)
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4 P2...PN

New initial point

Figure 2. Initialization in the case of an a priori geostatistical magel

Case 2: No a Priori Geostatistical Model

We have computedVzJ(Z =0), thus we haveV,J(O,...,0)=

(A1, ..., An). We can initialize the optimization algorithm using the following
rules:
':O—EA',-:]_,...,N 1
{ZIZJF e ey o (40
17T PN (AT+...+A%)

Equation (17) cannot be applied when conditioning to static well data is
performed (through kriging for instance) as we have a deterministic permeability
field of valuee™ [Eq. (12)] only outside the kriged area.

VALIDATION OF THE METHODOLOGY ON
3D INTERFERENCE TEST CASES

The optimization process is based on the analytical calculation of the sensi-
tivity coefficients i.e. the gradients of the fluid flow simulation results with respect
to the parameterization (Mezghani and Roggero, 2001; Schaaf, Mezghani, and
Chavent, 2002). Observation data reduce to presBuas we are considering a
single-phase case and parameterization reduces to the gradual deformation param-
etersd = {0y, ...,06n_1}. We compute the sensitivity coefficieni® /06; using
the gradient method (Anterion, Eymard, and Karcher, 1989; Rahon, Blanc, and
Guerillot, 1996). The objective of this test case is to match synthetic pressure data
simulated with a reference model at the geostatistical simulation scale using the
gradual deformation parameterization and the refinement indicators guide to speed
up the optimization process.
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Synthetic Reservoirs Description

We consider two 3D reservoir models:

— the first one, noted R illustrates the concept of refinement indicators
without any upscaling step interference,

— the second one, noted, Rallows us to test refinement indicators on a
multi-million cells geological model.

The synthetic model Ris a 3D reservoir containing 14¢ 141 x 4 cells
of dimension Ax =20 m, Ay =20 m, Az=>5 m). The permeability field is
lognormal with a meam = 100mD and a standard deviatien= 100mD. The
other petrophysical properties are constant and known: porosity is 30% and total
compressibility is 1.10* bar1. The variogram is spherical with anisotropic cor-
relation lengthsl¢; = 1000 m)., = 150 m and., = 6 m), the principal direction
being 45 clockwise from theY cartesian axis. At the geostatistical simulation
scale, we assumig, = ky, andk,/ky = 0.1. The fluid flow simulation is single
phase with a viscosity value of 1.1 cP. A production well with a radius of 7.85 cm
and no skin is located at the center of the reservoir and perforated over the four
layers. Its history comprises a period of constant production rate at #&ayn
during 7 days and a buildup period during 55 days. Four observation wells are
located around Pin a five-spot pattern. These wells are perforated over the four
layers too. All five wells are considered for hard data conditioning.

The synthetic model Rs a 3D reservoir containing 204 201 x 50 cells of
dimension Ax = 20 m,Ay = 20m,Az = 1 m). The permeability field is lognor-
mal with a meamm = 250mD and a standard deviatien= 250mD (Fig. 3(A)).
The variogram is spherical with anisotropic correlation lengths=t 750 m,
ley = 150 m, and.; = 6 m). All other properties are equivalent to those of the
model R. A production well (noted P with a radius of 7.85 cm and no skin is
located at the center of the reservoir and perforated over the 30 upper layers. Its
history comprises a period of constant production rate at 60@ay during 7 days
and a buildup period during 55 days. Four observation wells (note®® Os,
and Q) are located around;Rn a diamond pattern (Fig. 3(B)). These wells are
perforated over the 30 lower layers. Only the production well is considered for
hard data conditioning.

Reference and Initial Data

For a given synthetic reservoir model at the geostatistical simulation scale, we
compute the synthetic pressure for the five wells using an inhouse monophasic flow
simulator. The interference test data include the bottom-hole pressure evolution at
the production and observation wells and the pressure derivative evolution at the
production well.
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Figure 3. Permeability field for (A), the whole 3D reference model, and (B), the horizontal slice at
Z=25.

For the inversion process, the upscaling step of the geological medet&ts
in a flow simulation model composed of:

[1] 43 blocks along theX axis with variableA X,
[2] 57 blocks along ther axis with variableAY,
[3] 10 blocks along th& axis withAZ =5 m.

We use a numerical upscaling technique resolving the pressure field at the
geostatistical simulation scale over the upscaled block using no flow boundary con-
ditionsi.e.a pressure gradient along the equivalent permeability direction calcula-
tion and no flow boundaries elsewhere. This calculation is done for each diagonal
term of the equivalent permeability tensor so we get three upscaled permeability
fieldsKx, Ky, andKz (respectively along th&, Y, andZ axis). This simulation
model containdlM = 24,510 blocks. It corresponds to a reduction of around 99%
of the initial number of cells.

Inverse Problem Formulation

All structural parameters of the random functi@gx) and petrophysical
properties except permeability are assumed to be known. The objective is to
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characterize the permeability distribution by adjusting the paramétefsthe
gradual deformation.

The inversion process is based on a Gauss—Newton’s optimization algorithm.
Matching the interference test consists in minimizing the objective function de-
fined by Equation (3). Associated weights are calculated so that each observation
has the same weighting in the objective functibnalculation.

For the observation wells, both draw-down and buildup pressure variations
were considered whereas only the buildup pressures (and associated derivatives)
were considered for the production wells.

Refinement and Initialization Indicators Calculation for the Model R 1
Case 1: Existence of an a Priori Geostatistical Model z

For a given realizatiorz;, we may compute many refinement indicators
through dot products. Figure 4(A) represents the absolute value of refinement indi-
cators for 1000 geostatistical realizations picked out randomly. To demonstrate the
usefulness of refinement indicators, we compare three optimization loops (Fig. 5)
based on the gradual deformationf= 5 geostatistical realizations.

The first loop is based on the gradual deformation of the realizati¢inom
which we calculatedd/dz(z;), and four realizations picked out randomly. The
optimization algorithm is initialized withé = 0. This was the current

Absolute value of /, Absolute value of A,

15000 15000
® o

10000

400 7200 400 600 800

Seed number Seed number
(A) B)

Figure 4. (A), refinement indicators absolute value, and (B), initialization indicators absolute
value, for the 1000 considered geostatistical realizations.
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Figure 5. Evolution of the objectives functiod for the four considered optimization loops
with model R.

approach before refinement indicators were extended to the gradual deformation
parameterization.

The second loop corresponds to the gradual deformation of the realization
and the four realizations having the greatest sensitivity with respect to the objective
functionJ taken from the considered set of 1000 realizations. The refinement indi-
cators where not used for an improved initial guess of the optimization algorithm:
we still set gradual deformation parametérs: 0.

The third loop is based on the same geostatistical realizations as those of
the second loop but the optimization algorithm is initialized using the additional
information [Eq. (10)] we get from refinement indicators.

Several key issues have to be underlined:

— For a given iteration number, refinement indicators are associated with a
faster and better optimization process (loops 2 and 3 versus loop 1),

— Use of refinement indicators for an improved initial guess of the optimiza-
tion algorithm (loop 3) gives a lower initial objective functidrvalue, but
the remaining optimization process may not be significantly speeded up.

As history matching is not the purpose of this study, we do not perform another
optimization loop and we consider that the data integration process is over.
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Case 2: No a Priori Geostatistical Model

The alternative approach, based on so called initialization indicators, has been
tested. We consider that no a priori geostatistical mpdslavailable. Initialization
indicatorsA; [Eqg. (13)] are computed for the same 1000 geostatistical realizations
asthose considered for the case 1 (Fig. 4(B)). Once again, we compare the proposed
approach to a random picking of the geostatistical realizations.

The fourth loop (loop 4, Fig. 5) corresponds to the gradual deformation of the
five realizations having the strongest initialization indicaferg taken from the
given set. Initialization indicators cannot be used for an improved initial guess of
the optimization algorithm [Eq. (17)] as conditioning to hard data is performed.
Through initialization indicators we select the most sensitive geostatistical realiza-
tions with respectto the objective function. At this point, we do not have any control
on the initial value of the objective function. In order to have a low initial value, we
must recall Eqg. (14) and choose between the two solutioast1, 0, ..., 0 the
one having a weighp, of the opposite sign of\;. As the value ofA; is —5243,
the choicep = +1,0, ..., 0 ends with an initial value of 643 for the objective
function. The choice = —1, 0, ..., 0 would have led to an initial value of 14086
for the objective function.

The proposed method allows us to get a better and faster optimization process
compared to the current approach (loop 1, Fig. 5). When initialization indicators
are used instead of refinement indicators, the dynamic of the optimization process
may lead to a less lower objective function value.

Refinement and Initialization Indicators Calculation for the Model R»
Case 1: Existence of an a Priori Geostatistical Model z

We now test the concept of refinement indicators for multimillion-cell geo-
logical models for which an upscaling step is mandatory to perform a fluid flow
simulation. Upscaling has a more or less pronounced averaging effect which may
affect the refinementindicators’ efficiency to select the most sensitive geostatistical
realizations.

Once again, we compare optimization loops (Fig. 6) based on the gradual
deformation ofN = 5 geostatistical realizations.

The first loop is based on the gradual deformation of the realizati¢fnom
which we calculateédd/9z(z;)), and four realizations picked out randomly. The
optimization algorithm is initialized witld = 0.

The second loop corresponds to the gradual deformation of the realization
and the four realizations having the greatest sensitivity with respect to the objective
function J taken from a set of 1000 realizations. The refinement indicators where
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Figure 6. Evolution of the objective functiod for the four considered optimization loops with
model R.

not used for an improved initial guess of the optimization algorithm thus give
gradual deformation parametérs= 0.

The third loop is based on the same geostatistical realizations as those of
the second loop but the optimization algorithm is initialized using the additional
information [Eq. (10)] we get from refinement indicators.

We notice that the use of indicators for an enhanced initial guess of the
optimization algorithm (value of the objective function at iteration 0, loop 3, Fig. 6)
is useful but less efficient than an iteration of the optimizer (value of the objective
function at iteration 1, loop 2, Fig. 6).

Refinement indicators appear meaningful when a mandatory upscaling step is
performed as one is still able to select the most sensitive geostatistical realizations
from a given set.

Case 2: No a Priori Geostatistical Model

We compute initialization indicators; [Eq. (13)] for the same 1000 geosta-
tistical realizations as those considered for the case 1.
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The fourth loop (loop 4, Fig. 6) is based on the gradual deformation of the five
realizations having the strongest initialization indicafexrg taken from the given
set. In order to have alow initial value, we recall Equation (14) and choose between
the two solutionp = +1, 0, .. ., 0 the one having a weiglt of the opposite sign
of A;. As the value ofA; is +1267, the choiceg = —1, 0, ..., 0 corresponds to
an initial value of 172 for the objective function (the choigce= +1,0,...,0
would have led to an initial value of 915 for the objective function).

Initialization indicators select the most sensitive geostatistical realizations
when no a priori geostatistical model is available to get a better and faster opti-
mization process compared to the current approach (loop 1, Fig. 6).

CONCLUSIONS

In this report, we explored the feasibility to get closer to an optimal param-
eterization for dynamic data integration problems in reservoir engineering. We
proposed an approach based on refinement indicators that selects the most sensi-
tive geostatistical realizations from a given set with respect to the objective function
of the inverse problem. Selecting only the most useful realizations, we are able to
speed up the optimization process and to better constrain the geological model.
The refinement indicators calculation is extremely fast (compared to a standard
optimization loop timing) as it implies only one objective function evaluation,
adjoint state calculations and dot products. Refinement indicators are also useful
for an improved initial guess of the optimization algorithm as they contain useful
information (at first order) about the objective function behavior.
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APPENDIX
Computation of Lagrange Multipliers A" — Statement of Equation (9)

Recall the constrained optimization problem (4) and the associated
LagrangianL (b, p, A, u) defined by Equation (6% corresponds to the param-
eters;p corresponds to the state variablésand u correspond to the Lagrange
multipliers.

We have:

Jo=L(b0, p, 2, 1) (A1)
The differential of the Lagrangian is given by:

aL aL
SL=—6b 5% A2
T (A2)

For Lagrange multipliers verifying the adjoint equatiodk {3p)dp = 0, Vép
[Eq. (5)], we have:

aL
sL =2 ob (A3)

The coefficient oBly; in the differentials L corresponds t@J; /ab;. Differ-
entiating Equation (6), we deduce that this coefficient is equaitoand we have

[Eq. 9)I:

83 /by = — At (A4)

Adjoint State of the Monophasic Fluid Flow Simulator

The adjoint state method computes the gradients of any real furtqiio )
of statee with respect to parametess Contrary to the gradient method which
requires a number of auxiliary simulations proportional to the dimension of the
parameter space, the adjoint state technique requires only one extra simulation to
get the adjoint variables. The computational cost of the gradddmigw is similar
to the computational cost of two evaluationofThis real functiorh(«, €) may be
the objective function [Eq. (3] (K, Dsjmul) With parametere = K corresponding
to the permeability field and state variab&s Dgjmy corresponding to the fluid
flow simulation results.
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As we are limiting us to a single-phase case, the pressure behavior in a
reservoir is governed by the diffusivity equation:

V-<5VP>=CI>Ct£+Q (B1)
% ot

whereK is the permeability tensoR the pressurey the fluid viscosity,® the
porosity, ¢; the total rock pore and fluid compressibility, a@dthe sink/source

term. Discretization of Equation (B1) in space and time may be written under
matrix form:

p? = Po
(- (B2)
AP D(K) + B(K)p™(K) = CPforn=1,...,NT

where:

— NTis the number of time steps,

— NM the number of blocks of the fluid flow simulation model,

— NP the number of wells,

— NG =NM + NP,

— B(K) € RWM+NP) o RINM+NP) 5 matrix function of the permeability
field K,

— AV ¢ RNM+NP) o RINM+NP) 5 matrix function of the time discretization,

— p"(K) € RNM+NP) the pressure vector at time step

— Po the initial reservoir pressure

For clarity, let us forget subscriptand write variable such that vectpf is

there instead qbt(”). To compute the gradiendd /oK , consider the optimal control
problem:

Find K € RNMthat minimizes

J(K) = h(K, p(K), ..., p"(K))
P : { underthe constraints (B3)
p° = Po
AD pnfl + B(K)pn —Cn

The Lagrangian of the Equation (B3) is:

LK, pt .., N gt . gV =h(K, pt, ..., pNT)
NT

+) (APt 4+ Bp' - C", q"ree (B4)
n=1
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whereK correspond to the parameters, are the state variables, agt corre-
spond to the Lagrange multipliers. For Lagrange multipliers verifying the adjoint
equatlonszn 1 apn8p =0, Vép", we have to solve:

gNT+H =0

oh
An+1qn+1 + Bq" = _3—pn forn=NT,...,1 (85)

Equation (B5) corresponds to a time retrograde system of linear equations
whereas the pressure equations system is a time forward one. The gragjiéidts
correspond to the coefficients &K in dL:

L aL
OL = o OK + Z?Bp _—8K+Z<—p q> N (B6)
%/—/
=0

If there is no explicit dependence between the objective function value and
the permeability field, the terrdh/oK is null. For adJ/oK calculation along a
givendirection ¥, Y, or Z), one has to compute the associated md&rierivative.
Along the X direction for instance, we have:

—_Z< —p".q “> for j=1,...,NM (B7)
K % e

Notation

b: ith component of the RHS of the constraiaj 6f the problem (4),
i=2...,N*

Dlps jth component of the observation vectps=1, ..., nd

Dimur jth component of the simulated data vectos: 1, ..., nd

J: objective function of the inverse problem defined in a weighted
least square sense

J(2%): optimal value of the functiod when theith RHS of constraintd)
is changed fronl; = 0 tob; = §by;

K: permeability field of the fluid flow simulation model

k: permeability field of the reservoir model at the geostatistical
simulation scale

L: Lagrangian of the constrained optimization problem (4)

N: number of realizations considered for the gradual deformation

method
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N#:

number of realizations considered for the refinement indicators
calculation

number of observations for the objective functidicalculation

dimension of the realization

pressures, results of the fluid flow simulation

Gaussian random function with mean and variance 2

weight of thejth term of the objective functiod, j =1,...,nd

lognormal random function

standard Gaussian random function

realization ofZ(x) at locationx

ith realization ofZ(x)

realization associated to the weightsfor the gradual deformation
method

express the dependence zof the RHS of the constraingj of
the problem (4)

initialization indicator associated to thth realizationz

Lagrange multiplier of the constraird) of the optimization
problem (4)

Lagrange multiplier verifying the Lagrange necessary condition
defined by Equation (5), so called refinement indicator

express the dependenceonof the RHS of the constraing] of
the problem (4)

Lagrange multiplier of the constrairt) of the optimization
problem (4)

Lagrange multiplier verifying the Lagrange necessary condition
defined by Equation (5)

express the dependence whof the RHS of the constraing] of
the problem (4)

jth gradual deformation parameté¢r=1,..., (N — 1)

local solution of the constrained optimization problem (4)

express the dependence ghof the RHS of the constraingj of
the problem (4)

weight of thei th realization for the gradual deformation method,
i=1...,N

gradient of the objective functiod with respect to each cell of the
realizationz*

dot product



