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Abstract: The uncertainty of knowledge, in contrast to that of data, can be assessed by its
probability in the logical sense. The logical concept of probability has been developed since the
1930s but, to date, no complete and accepted framework has been found. This paper
approaches this problem from the point of view of logical entailment and natural sequential
calculus of Classical logic. It is shown herein that probability can be comprehended in terms of
a set of formal theories built in similar language. This measure is compliant with general
understanding of probability, can be both conditional and unconditional, accounts for learning
new evidence and complements Bayes’s rule. The approach suggested is practically infeasible at
present and requires further theoretical research in the domain of geoscience. Nevertheless, even
within the framework of existing methods of expert judgement processing, there is a way of
implementing logic that will improve the quality of judgements. Also, to reach the state of
formalization necessary to use logical probability, techniques of knowledge engineering are
required; this paper explains how logical probabilistic methods relate to such techniques, and
shows that the perfect formalization of a domain of knowledge requires these methods. Hence,
the lines for future research should be: (1) the development of a strategy of co-application of
existing expert judgement-processing techniques, knowledge engineering and classical logic; and
(2) further research into logic enabling the development of formal languages and theories in
geoscience.

Among the sources of uncertainty reported in
literature, several relate to scientific reasoning and
language. Probabilistic methods used to handle
them require conditions that are difficult to meet,
for example, an absolutely objective and bias-free
supervisor of expert judgements, a statistically
representative number of experts, or a kit of test
datasets and questions that are guaranteed to be
previously unknown to the tested experts and to
be absolutely perfect themselves (Aspinall &Woo
1994; Aspinall & Cooke 1998).
Another option, in the author’s view, is the

study of reasoning itself, which is known to be
governed by formal rules that are similar for
humans and computers. This paper explores the
applicability of Classical logic in assessing and
reducing various kinds of uncertainty. To
approach this goal, it is necessary to:

(1) give an overview of known sources and
measures of uncertainty;

(2) investigate how logic can cope with
uncertainty;

(3) discuss the role and place of logic among
other uncertainty-reducing methods.

Each of these tasks is addressed in this paper.

Sources and measures of uncertainty

Science has developed a wide vocabulary of
hesitation (e.g. uncertainty, probability, possibi-
lity, inaccuracy, imprecision, fuzziness, error,
disagreement) and there is little consensus in the
understanding of these terms (e.g. Woo 1999;
Virrantaus 2003; Baddeley et al. 2004). None-
theless, to the author’s knowledge, most
researchers are inclined to use ‘uncertainty’ as
a more-or-less umbrella term for situations in
which confidence in a scientific result is lacking.
In this paper, it will be used as the general term
for all kinds of measurable (at least principally
or hypothetically) lack of confidence.
The principle of the complex formal approach

to treating information (Pshenichny 2003) seems
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to serve as an appropriate basis for correct and
concise classification of sources and measures of
uncertainty. According to this approach, any
information about the object of study can be
regarded as data or knowledge. Data are any-
thing expressed as a singular statement (in which
the predicate is related to a singular subject), for
example, ‘The sample 72039 contains 65wt%
silica’. It is commonly accepted in science that
data are the result of observation or measure-
ment. Knowledge is anything expressed as a
general statement (in which the predicate is
related to a general subject), for example, ‘The
rock [meaning ‘all or some of the studied
samples’] contains (contain) 65wt% silica’. As
shown in Pshenichny (2003), this distinction is
actually context-dependent and what is consid-
ered knowledge at a local scale (e.g. the scale of
an outcrop) can become data at greater scales
(e.g. the scale of a region), and vice versa.
Nevertheless, in every particular case, knowl-
edge and data can (and should) be clearly
separated. Data and knowlege are then treated
by different formal approaches.
Sources of uncertainty that refer to data and

means of their processing include: sampling,
observational and measurement errors, errors of
mathematical evaluation of data and propaga-
tion of errors (Bardossy & Fodor 2001); estima-
tion errors, scale issues, ignorance and human
error (Bowden 2004); temporal, structural,
metric-related and translational uncertainties
(Rowe 1988); and possibly some others. A
spectrum of probabilistic, possibilistic (fuzzy)
and joint probabilistic-possibilistic methods
(Bardossy & Fodor 2001), including computer
applications (e.g. UncertaintyAnalyzer, see
http://www.isgmax.com) can be applied to
analyse such sources. Here the probability is
meant in a statistical or frequentist sense
(Baddeley et al. 2004; and Woo 1999, respec-
tively).
Consideration of data-related uncertainty and

its measures in more detail is beyond the scope
of the present paper. The sources of knowledge-
related uncertainty are reasoning and language.
Woo (1999) recognized two different kinds of
such uncertainty: conceptual (epistemic) and
aleatory. Epistemic uncertainty is rooted in the
knowledge itself, and aleatory uncertainty is
rooted in the belief in knowledge. This can be
illustrated by the following examples 2004:

How can we express the likelihood of a new

volcano forming in non-volcanic regions or of

a new active fault forming in regions far from

current active faults?

How can we determine whether or not a

volunteer site located in a region outside the

‘obvious’ exclusion zones for the site selection

criteria should be included or excluded from

the next investigation stage?

In the former case, for instance, it is implicitly
supposed that there is a model or models (called
‘probability models’ in the literature) saying
whether a volcano could form in a given non-
volcanic region. Every model has its own
intrinsic approximations and associated uncer-
tainty: the epistemic uncertainty. In addition,
every volcanologist may trust each model more
or less: this is the aleatory uncertainty of a model
attributed by individual scientists.

The degree of trust is determined by the
researcher’s bias (e.g. Halpern 1996; Baddeley et
al. 2004; and references therein). It is accepted
that personal or group bias erodes the quality of
expert judgements and should be reduced where
possible, e.g. by elicitation procedures (see
reviews in Baddeley et al. 2004; Curtis &
Wood 2004). However, bias is a virtue of
geology and other largely hermeneutic (inter-
pretative) sciences (e.g. history, psychology,
medicine, economics).

In effect, hermeneutics rejects the claim that

facts can ever be completely independent of

theory . . . we always come to our object of

study with a set of prejudgements: an idea of

what the problem is, what type of information

we are looking for, and what will count as an

answer (Frodeman 1995).

Among these prejudgements, Frodeman lists as
‘crucial . . . and often discounted . . . the social
and political structures of science’. He acknowl-
edges that exactly these structures and personal
preferences, and not a pursuit of absolute truth,
route the science.

Once bias is not only unavoidable but even
determines the direction of research, then the
very idea of decreasing bias becomes question-
able, even though there is the obvious involve-
ment of quite diverse circumstances (e.g. from
rock composition to standard of living) into any
single geoscientific rationale. At best we can
substitute personal bias with the most appro-
priate collective one. Apparently, the most
appropriate bias is not the one that is most
logically correct or statistically proven, but the
one shared by the largest and/or strongest
group, for example, the bias that the entire
world should adopt democratic values or that
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humankind should survive; the latter has given
ground to the whole study of risk assessment. In
general, science seems to have only two options:
(1) to ignore bias and fight for objective knowl-
edge, as prescribed by analytical philosophy, or
(2) to follow the Continental philosophy appre-
hension and accept bias, reveal, assess and
manage it, but not try to decrease it. This point
will be dealt with below.
Discussing present measures of uncertainty,

Woo (1999) considers three notions of prob-
ability: (1) frequentist, which relates to data in
the classification above; also termed ‘objective’
(Baddeley et al. 2004) or statistical (Carnap
1950); (2) subjective (Baddeley et al. 2004); and
(3) logical. Bardossy & Fodor (2001) add fuzzy
measures.
Measures of both epistemic and aleatory

uncertainty in most cases is subjective or
epistemic (Woo 1999; Fitelson 2003), i.e. prob-
ability formulated in probabilistic judgements
(Baddeley et al. 2004). Fitelson (2003) states:

On epistemic interpretations of probability,

PrM(H) is (roughly) the degree of belief an

epistemically rational agent assigns to H,

according to a probability model M of the

agent’s epistemic state. A rational agent’s

background knowledge K is assumed . . . to

be ‘included’ in any epistemic probability

model M, and therefore K is assumed to

have an unconditional probability of 1 in M.

PrM(H jE) is the degree of belief an epistemi-

cally rational agent assigns to H upon learning

that E is true (or upon the supposition that E

is true . . . ), according to a probability model

M of the agent’s epistemic state . . . So,

roughly speaking, (the probabilistic structure

of) a rational agent’s epistemic state evolves

(in time t) through a series of probability

models {Mt}, where evidence learnt at time t

has probability 1 in all subsequent models

{Mt0}, t
0>t.

A probabilistic framework for this evolving state
of knowledge in the geosciences is described in
Wood & Curtis (2004).
However, neither the rationality of the agent

(i.e. the expert) nor the structure of K, M and E
are explained by Fitelson (2003), and involve-
ment of time (t) brings a healthy spirit of
physiology into mathematical consideration,
because evolution of epistemic state through
time would depend, inter alia, on the expert’s
metabolism which determines the rate of diges-
tion of new evidence.

The main criteria of quality of probabilistic
statements (and, hence, the probability of sub-
jective probability values) are qualification and
objectivity of experts, as, for example, in the
approach of Cooke (1990). In this approach,
applied by Aspinall & Woo (1994) to assess the
expert’s qualification and objectivity, each expert
is asked some test questions. It is supposed that
correct answers for these questions are somehow
known, and any other answer can be calibrated
against these. Discussing the possible ways to
obtain such ‘bullet-proofed’ answers, Aspinall &
Cooke (1998) desire ‘an experienced technical
facilitator’ of expert judgement elicitation proce-
dure. The question remains unanswered as to
who evaluates his or her answers.
One of the weakest points of subjective

probability, to the author’s mind, is that it is
rather artificially and voluntarily normalized to
unity. Probability, be it frequentist or any other
form, requires the condition of additivity (e.g.
Bardossy & Fodor 2001) that implies mutually
exclusive cases or objects (populations). This
readily entails normalization as the ratio n/N,
where n is the number of cases or objects for
which something is true, and N is the total
number of said entities, for example, number of
tails v. total number of tossings of a coin.
However, if one expert says that he feels. A has
the probability of 0.7 while another expert gives
0.6, or if an expert is asked to give a probability
distribution based on his intuition, it is unlikely
that this can be considered ‘true’ normalization.
Nevertheless, this fits fairly well with the

concept of a membership function of fuzzy
logic. This has made Bardossy & Fodor (2001)
express a preference for the use of possibilistic
rather than probabilistic approaches to proces-
sing expert judgements. One problem, however,
is that these judgements are commonly used,
firstly, in Bayesian approaches for prior prob-
ability values where no distinction is made
between them and frequentist values, and
secondly, in probability trees where they are
processed according to the theorems of prob-
ability theory. Hence, there is a need for
probabilistic, not just fuzzy, estimation of
knowledge-related uncertainty. As was pointed
by Aspinall & Woo (1994):

It has been shown theoretically . . . that there

is no essential distinction between probability

assignments based on numerical frequencies

and those based on (general – CP) judgments:

both can be incorporated into a computation

of hazard (or any other item of interest – CP)

if the correct procedures are adopted.
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Further pursuit of these procedures should be
considered an important task for future
research.
A possible alternative might be one which has

been rejected with enthusiasm by the proponents
of probabilistic and then fuzzy thinking in
geoscience: the deterministic model. Once
knowledge is not data, probability assessments
based on general judgements must be of a
different nature than those based on frequen-
cies. On first sight, a ‘deterministic probability
model’ is nonsense. Nevertheless, Woo shows
that even the most strict and objective knowl-
edge has, or may have, its own genuine
uncertainty. The simplest example is division
by zero in arithmetic. Woo also quotes: the
Fourier expansion in a Hamiltonian system
describing the planet orbits, which, in some
cases, also reduces to a necessary division by
zero; Heisenberg’s principle of uncertainty in
quantum mechanics; deterministic chaos in
meteorology; and other examples where the
uncertainty ‘emerges from the midst of deter-
minism’ (Woo 1999, p. 72). Perhaps, one of the
sources of uncertainty in geoscience cited by
Bowden (2004), that of modelling constraints,
also falls in this field.
The measure of this ‘deterministic sort’ of

epistemic uncertainty, by Woo, is the third and
last kind of probability that he lists: logical
probability. Likewise, Virrantaus (2003, Fig. 1)

mentions among the sources of uncertainty the
‘validity of the model’, which includes, inter alia,
‘the logic of algorithm’. However, in contrast to
frequentist and subjective notions of probability
considered in much detail, neither of these
authors explain how logical probability can
work. Woo only mentions the principle of
indifference (or equiprobability) in absence of
additional information.

The logical concept of probability has been
developed since the 1930s by Johnson (see
references in Fitelson 2003, Carnap 1950 and
later works, and others). To evaluate this
concept, Classical logic must be introduced.
This is discussed in the next section.

To summarize this section, using the complex
formal approach of Pshenichny (2003), uncer-
tainty can be classified as that of knowledge and
that of data. The uncertainty of data can be
considered: to satisfy additivity and be measured
by probability in the frequentist sense; to be
‘fuzzy’ and be measured by a variety of fuzzy
parameters; or both. Reasoning and language
contribute to the uncertainty of knowledge: the
epistemic uncertainty and its refinement, the
aleatory uncertainty. As for the measure of
epistemic uncertainty, if one approaches knowl-
edge intuitively, the measure may only be fuzzy;
if one treats knowledge rationally the measure, if
it exists, should be probabilistic in a logical, but
not in a subjective, sense.
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The study of logic and its relation to

uncertainty

Classical logic, first described by Aristotle, was
elaborated in its modern form in the second half
of the nineteenth to the first half of the twentieth
century by Frege (1896), Whitehead & Russell
(1910), Kleene (1952), Hilbert & Bernyce (1956)
and some others. A brief account will be given
here, based dominantly on Kleene (1952). More
details can be found in Pshenichny et al. (2003).
Essentially, the logic consists of two parts:

propositional logic and predicate logic. They
differ in the mode of record of simple statements
(or narrative sentences) of natural language
(English, Russian, Chinese etc.). By ‘simple
statements’ we mean those grammatically con-
sisting of one subject and one predicate, for
example, ‘Some magmas ascend to the Earth
surface’ or ‘All volcanoes erupt’.
Propositional logic takes them as indivisible

elements (propositional variables, or proposi-
tions), that necessarily have one, and only one,
of two logical (or truth) values: TRUE and
FALSE. From propositions compound state-
ments are formed by the logical connectives
(‘not’, ‘and’, ‘or’, ‘either, or’, ‘if, then’, ‘is
equivalent to’ and possibly some others – see
denotations and definitions in Table 1). For
example:

Some magmas ascend to the Earth surface – p

All volcanoes erupt – q

Some magmas do not ascend to the Earth

surface – :p
Some magmas ascend to the Earth surface and

all volcanoes erupt – p & q

If some magmas ascend to the Earth surface,

then all volcanoes erupt – P � q.

Predicate logic, on the contrary, treats such
statements as constructions consisting of an
individual variable (‘magma’ – x; ‘volcano’ – y),
the predicate (‘ascend to the Earth surface’ – P;
‘erupt’ – Q) and quantifier (existential one

meaning ‘some’ – 9, and universal one meaning
‘all’ – V). Then the same simple statements will
be recorded as follows:

Some magmas ascend to the Earth surface –

9xPðxÞ
All volcanoes erupt – VyQðyÞ.

Literally, these statements mean: ‘For some
magmas it is true that they ascend to the Earth
surface’ and ‘For all volcanoes it is true that they
erupt’, respectively. Obviously, predicate logic
offers a better opportunity to study the anatomy
of a statement. However, any concept can be
expressed as an array of statements lined up by
logical inference (see below), and basic rules of
inference are the same for both types of logic.
Let us define both types of record of simple

statements – p, q, . . . , and 9xPðxÞ, VyQðyÞ, . . . –
as logical formulae (henceforth generally
denoted: A, B, C, . . . ) and postulate that, if A
and B are logical formulae, then :A, A&B,
AVB, A�B, A:B (see Table 1) are formulae
too.
The truth value of a formula is that of its main

connective. There are formulae that can have
only one truth value (i.e. are always true or
always false) with any values of variables; for
example, the formula ðpV:pÞ is always true and
ðp&:pÞ is always false (see Table 2).
If a formula is always true, it is called a logical

law, or tautology. If it is always false, it is a
controversy. (This is not to be confused with
controversy as the relationship between any two
statements, one of which is the negation of the
other; the conjunction of such statements gives
the controversy in the sense meant here. To
avoid ambiguity, this relation is also called
contradiction.) All the remaining formulae may
take both truth values and are called neutral, or
satisfiable.
This gives us, according to Kleene (1952), a

strict and definite answer to the question ‘What
means ‘‘to follow’’ in relation to thinking?’ If A,
B, C, . . . , X, Y are formulae (i.e. statements or
thoughts), then A, B, C, . . . , X is a finite list of
formulae. Y follows from A, B, C, . . . , X, if and
only if the following condition is met: provided
A, B, C, . . . , X are true, Y is true. The same is
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Table 1. General truth table for basic logical
connectives

A B :A A&B AVB A � B A:B

True True False True True True False
False True True False True True True
True False False True False True
False False False False True False

Table 2. Truth table for most simple tautology ðpV:pÞ
and controversy ðp&:pÞ

p :p pV:p p&:p

True False True False
False True True False

CLASSICAL LOGIC AND UNCERTAINTY 115



meant by the expression ‘Y is inferred from A,
B, C, . . . , X’ and denoted by the arrow: A, B, C,
. . . , Y?X.
A number of types of inference have been

suggested in the logical literature. Here we will
briefly describe the natural sequential calculus
elaborated by Gentzen (1934).

(1) Sequence is expression A1, A2, . . . ,
Am ?B, where A1, A2, . . . , Am, B are
formulae. A1, A2, . . . , Am are front
members of the sequence, and B is a
back member. There may be no front
members at all, but the back one must
always be present: ?B.

(2) Inference in natural-sequential calculus
consists of a number of sequences. Each
of these is either a main sequence or is
derived from a previous one by a struc-
tural transformation or a rule of inference
(see below). The last sequence of inference
has no front members and its back
member is a finite formula.

(3) There are two types of main sequences,
called logical and mathematical. A logical
main sequence is a sequence of general
form C?C, where C is a formula (this
sequence arises if the inference is based on
an assumption expressed by C). A math-
ematical main sequence is a sequence of
general form?D, where D is an axiom of
mathematics.

(4) Allowed structural transformations (a
horizontal line means that, if the above
sequence is present, the below one is
correct) are:

(4.1) Transposition of two front mem-
bers:

C,D,G?D
D,C,G?D

(4.2) Withdrawal of a front member,
which is the same as another front
member:

C, C,G?D
C,G?D

(4.3) Addition of any propositional for-
mula to front members:

G?D
C,G?D

(5) Rules of inference. Let A, B and C denote
any propositional formulae and G,D and
Y – any (possibly empty) lists of formulae
divided by commas. The formulae of these
lists are front members of some sequences.
The following rules of inference of nat-
ural-sequential calculus are applicable to
propositional logic.

. Introduction of conjunction (hence-
forth Rule IC):

G?A

D?B

G,D?ðA&BÞ

. Elimination of conjunction (hence-
forth Rule EC):

G?A&B

G?A

G?A&B

G?B

. Introduction of disjunction (hence-
forth Rule ID):

G?A

G?AVB

G?B

G?AVB

. Elimination of disjunction (henceforth
Rule ED):

G?AVB

A,D?C

B,Y?C

G,D,Y?C

. Introduction of implication (hence-
forth Rule II):

A,G?B

G?A � B

. Elimination of implication (henceforth
Rule EI):

G?A

D?A � B

G,D?B
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. Introduction of negation (henceforth
Rule IN):

A,G?B

A,D?:B
G,D?:A

. Elimination of double negation (hen-
ceforth Rule EN):

G?::A
G?A

. Introduction of universal quantifier V:

F?GðxÞ
F?VxGðxÞ :

. Introduction of existential quantifier
9:

GðxÞ?F

9xGðxÞ?F

Here x is an individual variable; F is any
correctly built formula independent of x, G(x) is
predicate.
In the above expressions, symbols put to the

left of the arrow can be regarded as the
‘memory’ of the inference, and those to the
right are its ‘working part’.
Hence, the conclusion is not a matter of

scientist’s intuition, but a certain operation
verifiable by an objective tool of logical infer-
ence. This can be illustrated by the following

example relevant to a situation of volcanic crisis
like that in Montserrat.
A lava dome is growing; the direction of

growth may change with time. Hot avalanches
originate on the growing lava dome. Old domes
occur nearby. X is a settlement located in the
vicinity of the lava domes, very accessible to
avalanches. Query, will the avalanches reach X
or not? Volcanologists say, if the new dome
‘chooses’ a direction toward, one of the old
domes and reaches it, hot avalanches may stop,
but only if the growing dome does not over-
whelm the older one. Otherwise avalanches may
resume and reach X. Logic allows us to verify
whether this rationale is correct. If we define:

p – fresh portion of magma extrudes

q – block of old lava dome occurs on the fresh

portion’s way

r – hot avalanches reach X

s – fresh portion of magma overwhelmes the

block of old dome,

then the whole rationale takes the form

ðp � rÞVððp&qÞ � ðs � rÞÞ:

There are at least two ways to verify this. The
first is using a truth table (Table 3).As is seen
from the table, the statement is satisfiable and
true except in two cases, when p, q, and s are
true and r is false, and when p and s are true and
q and r are false.
Another method of verification is to use

logical calculus. This is necessary when we are
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Table 3. Calculation of truth values of the satisfiable formula ðp � rÞVððp&qÞ � ðs � rÞÞ and tautology
r � ððp � rÞVððp&qÞ � ðs � rÞÞÞ (see comments in the text)

p q r s p � r p&q s � r ðp&qÞ � ðs � rÞ ðp � rÞVððp&qÞ � ðs � rÞÞ r � ððp � rÞVððp&qÞ � ðs � rÞÞÞ

T T T T T T T T T T
F T T T T F T T T T
T F T T T F T T T T
F F T T T F T T T T
T T F T F T F F F T
F T F T T F F F T T
T F F T F F F F F T
F F F T T F F F T T
T T T F T T T T T T
F T T F T F T T T T
T F T F T F T T T T
F F T F T F T T T T
T T F F F T T T T T
F T F F F F T T T T
T F F F F F T T T T
F F F F F F T T T T
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interested in inferability of a formula from a
given set of premises. Premises can be any
correctly built formulae. For instance, let us
assume that:

(1) p?p
(2) q?q
(3) r?r
(4) s?s.

Then the inference of the considered state-
ment (continued from line 5, as lines 1–4 are
assumptions) is:

(5) p, r?r Addition of formula assumed in
line 1 to front members for line 3

(6) r, p?r Transposition of two front mem-
bers for line 5

(7) r?p � r Rule II for line 6
(8) s, r?r Addition of formula assumed in

line 4 to front members for line 3
(9) r, s?r Transposition of two front mem-

bers for line 8
(10) r?s � r Rule II for line 9
(11) p, q?p&q Rule IC for lines 1, 2
(12) p&q, r?s � r Addition of formula

inferred in line 11 to front members for
line 10

(13) r?ðp&qÞ � ðs � rÞ Rule II for line 12
(14) r, r?ðp � rÞVððp&qÞ � ðs � rÞÞ Rule

ID for lines 7, 13
(15) r?ðp � rÞVððp&qÞ � ðs � rÞÞ With-

drawal of a front member for line 14
(16) ?r � ððp � rÞVððp&qÞ � ðs � rÞÞÞ Rule

II for line 15. Statement proved.

The statement r � ððp � rÞVððp&qÞ � ðs �
rÞÞÞ is a tautology, i.e. true with any values of
the variables (see Table 3). Similarly, one can
add the next assumption (p, q or s) left of the
arrow and move it to the right adding the
implication, for example:

(17) ?r � ððp � rÞVððp&qÞ � ðs � rÞÞÞ
(18) s?r � ððp � rÞVððp&qÞ � ðs � rÞÞÞ
(19) ?s � ðr � ððp � rÞVððp&qÞ �

ðs � rÞÞÞÞ.

and so forth, up to the sequence ?p � ðq �
ðs � ðr � ððp � rÞVððp&qÞ � ðs � rÞÞÞÞÞÞ in-
cluding all the premises (assumptions). Starting
with r � ððp � rÞVððp&qÞ � ðs � rÞÞÞ, only
tautologies will be yielded at every new step of
this inference. This inference indicates that the
considered rationale is correct with the given
premises.
However, as one might notice, nothing

changes in the above inference if one were to

substitute location X, say, with Edinburgh. This
is because propositional logic ensures only
formal correctness of thinking regardless of the
contents of statements (their meaning in the real
world). To deal with the contents, it should be
‘enhanced’ with the armoury of predicate logic.
All rules of propositional logic are maintained in
predicate logic but, in addition, contents-deter-
mined predicates are defined, special axioms can
be formulated in terms of these predicates and
individual variables and quantifiers can be
involved (see last two inference rules above).

All this opens an opportunity to formulate an
ad hoc strict language for a domain of knowledge
and to construct in this language a strict theory,
in which every statement is either an axiom or a
theorem inferred from axioms by the rules of
inference, either general (see above) or specific.
To become a theory, a set of statements should
comply with the following conditions: (1) the
language for the theory is defined, (2) a correctly
built formula is defined for this theory, (3)
axioms are identified among the formulae of the
theory, (4) rules of inference are defined in the
theory. The theory must be self-consistent
(which implies the impossibility to infer A and
not-A from any set of axioms and/or theorems
in the theory), complete (meaning that, for any
statement A of the theory, either A or not-A is a
theorem), deducible (i.e. that there is an algo-
rithm to identify whether A is a tautology,
controversy or is satisfiable in the theory for any
statement A of the theory), and independent of
axioms (Takeuti 1975).

Hilbert & Bernyce (1956) presented a strict
theory of arithmetics. Tarski (1959) formalized
Euclidean geometry. Another important exam-
ple is Kolmogorov’s axiomatization of prob-
ability theory (e.g. Woo 1999). An example of
strict theory, prone to formalization by pre-
dicate logic, is Mendeleev’s periodic system of
elements and its implications. Also, attempts
have been made to apply this method in physics
(e.g. Dirac 1964). However, these examples refer
to exact and experimental sciences, which, by
Frodeman (1995), can satisfy the condition of
bias-free observation and objective knowledge
posed by analytic philosophy.

However, there has been a temptation in logic
to conquer vaster terrains of mental activity than
the artificial world of abstraction or experiment.
Bacon (1620) in The Novum Organon first
claimed that logic must be a tool for obtaining
new knowledge and suggested a scheme for
inductive entailment. Later this idea was devel-
oped in the eighteenth to nineteenth centuries by
Hume, Mill and many others (historical back-
ground outlined in Fitelson 2003) and evolved
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into the project of inductive logic, aiming to
build an inference from particular to general,
relative to which the deductive inference would
be an extreme case (Carnap 1950; Fitelson
2003). So far, such a formalism has not been
constructed, and inductive logic as-is can gen-
eralize data but not introduce logical connec-
tives as do logical calculi.
Another idea was to account for natural

variability of the world by prescribing more
than two truth values to statements. Thus three-,
four-, n-, infinite-valued and, finally, fuzzy logics
appeared from the work of Vasiliev, Heiting,
Post, Levin, Zadeh and others (see, e.g., system
and bibliography at http://www.earlham.edu/
*peters/courses/logsys/nonstbib.htm). Despite
their wide application in technique, medicine,
geoscience and other fields, none of them has
suggested its own inference allowing the intro-
duction of connectives. Hence, these, so-called
non-Classical logical systems are not logic sensu
stricto. The same can be said, in the author’s
opinion, about the modal logic (see bibliography
mentioned above). In the author’s understand-
ing, inductive, multi-valued and even modal
logics all serve to process data and proceed, in
an essentially inductive manner, from data to
knowledge but not from knowledge to strict
theory (see Pshenichny 2003). Knowledge
remains as crisp and black-white, two-fold and
true false as it was in Aristotelean times, and
data are as incomplete and prone to non-unique
interpretation as they used to be.
The only actual attack on this concept, to the

author’s knowledge, was Brouwer’s approach in
mathematics, professing that thinking is essen-
tially intuitive and can be best understood not
through logical formalisms but through parti-
cular cases, one of which is logic itself.
Consideration of this idea, so sensational in
mathematics in the 1950s, and its relationship to
(discordance with?) the approach of Pshenichny
(2003) followed here, is outside of the scope of
the present paper.
Another challenge to deal with the ‘real’ world

was a logical approach to probability developed
by Carnap (1950 and later works) and yet earlier
by Johnson (see references in Fitelson 2003).
Carnap formulated unconditional and condi-
tional probabilities in the language of classical
(i.e. the first-order predicate) logic to make them
fit Bayes’s formula. However, problems arose
with formulation of conditional probability to
account for acquisition of new evidence that
made Carnap elaborate more and more compli-
cated theories, reviewed by Fitelson (2003). In
general, this problem was not solved. The
methodological reason for the lack of success

perhaps could be under-estimation of the
difference between data and knowledge and
inapplicability, or quite limited applicability, of
formalisms developed to process ideas (i.e.
predicate logic) to handle data – an incorrectness
symmetrical to the application of probabilistic
methods to study reasoning (see above).
The approach of Gentzen (1934) was free

from this consideration. Developing his logical
calculi, he simply tried to simulate thinking in
the natural science by virtue of one of them: the
natural sequential calculus (see above). As has
been demonstrated in this paper, (1) this calculus
does work for its purpose, but (2) on its own it
has little sense outside of a strict theory (e.g. in
the real world).
The author deems that it is exactly the logical

concept of strict theory that may give us the clue
to understanding logical probability. Herewith,
we should keep in mind the distinction between
knowledge and data and resist the temptation to
speak about the actual process of learning that
refers to data acquisition and processing, not to
logic sensu stricto.
Learning in a logical sense can be paralleled

with the concept of inference (see above). If A,
B, C, . . . , X is a finite list of formulae
(statements), then Y may be learnt from this
list if, and only if, Y follows from it. The latter is
unequivocally identified by a logical calculus. In
the simplest case, axioms follow from them-
selves, A ! A.
If a number of theories are built in one

language, then, as shown in Figure 1, a similar
statement Y may be inferable in: all of them (if Y
is tautology – case 1.1); in some of them (if Y is
satisfiable – case 2); or in none of them (if Y is a
controversy – case 1.2). The second case is of
interest to us. In this case Y follows from some
lists of formulae. Let us consider only the lists
where: (1) no operation of addition of formulae
to front members has been made, (2) no similar
formulae are present (that is, there is nothing to
reject), and (3) transposition of formulae is
ignored, which means that lists A, B and B, A
are considered to be the same.
These three conditions allow to us to consider

(and define) such lists as incompatible with each
other (even if there happens to be only one such
list over the whole set of theories; Fig. 1, case
2.1). Incompatible lists can be quite different.
For instance, if Y:ðY1&Y2Þ, it may be deduced
in one theory from a formula ðY1&Y2ÞVZ by
the rule of elimination of disjunction, and in
another theory, say, from independent premises
Y1 ! Y1 and Y2 ! Y2 by introduction of
conjunction, and in yet another theory be taken
for the axiom itself, Y1&Y2 ! Y1&Y2.
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Given a language (roughly, the set of predicates
and individual variables), a number (N) of
mutually exclusive strict theories can be con-
structed. For instance, in addition to Euclidean
geometry, there is Lobachevsky’s geometry, as
well as a few other geometries. All of them
operate with similar objects (points and lines,
from which angles, figures and other entities are
derived) and predicates (betweenness, equidis-
tance, parallel lines, etc.; see, e.g., Nam 1995) but
are incompatible with each other. Yet simpler
examples of an infinite set of theories from a
similar language are Smullyan’s puzzles about
knights, knaves andwerewolves (Smullyan 1978).
Let us denote one incompatible list A, B, C,

. . . , X, from which Y is inferred, by D1, another
list by D2, yet another one by D3 and so forth, up
to Dk, k being a natural number. Each of Di

occurs in ni theories in the given language. Then
three cases are possible, 2.1, 2.2.1 or 2.2.2 (see
Fig. 1). Case 2.2.1 is rather complicated for
further consideration; to begin with, let us
assume for simplicity that if Di and Dj occur in
one theory, then either of them is arbitrarily
excluded, so the theory is considered solely Di-
containing or Dj-containing to make the alter-
natives incompatible. For cases 2.1 and 2.2.2, if
the total number of theories in which Y is
inferred from any incompatible list of formulae
Di is n, n¼ n1þ n2þ n3þ . . . þ nk, the total
logical probability of Y over a set of theories in
a given language can be defined exactly in the
same way as a frequentist probability, i.e.

PLTðYÞ ¼ n=N ¼ PLðD1 ! YÞ
þ PLðD2 ! YÞ þ � � � þ PLðDk ! YÞ
¼ n1=Nþ n2=Nþ � � � þ nk=N

¼ ðn1 þ n2 þ � � � þ nk=N:

The additivity condition is satisfied by incom-
patibility of theories and lists of formulae. A
more accurate extension of this consideration to
case 2.2.1 (Fig. 1) will be reported elsewhere.
The same can be said not only about Y but

about every formula in every list Di as well. Each
of them would have a probability over a set of
theories in a given language. The probability of a
list, apparently, should be considered as the sum
of probabilities of all its formulae B1, B2, . . . ,
Bh, i.e.

PLðDiÞ ¼ PLTðB1Þ þ PLTðB2Þ þ � � � þ PLTðBhÞ
¼ nLT-B1=Nþ nLT-B2=Nþ � � � þ nLT-Bh=N

¼ ðnLT-B1 þ nLT-B2 þ � � � þ nLT-BhÞ=N,

the probabilities PL(B1), PL(B2), . . . , PL(Bh)

defined in the way shown in previous formula. A
priori logical conditional probability of Y given
any of Di, PLCðY jDiÞ, is nothing else but the
probability of logical inference Di ! Y, which
is obviously equal to 1. Hence, a posteriori
conditional logical probability of any (new) Di

given Y, PLCðDi jYÞ, in accordance with Bayes’s
theorem, would take the following form:

PCLðDi jYÞ ¼ PLðDiÞPCLðY jDiÞ=PLTðYÞ
¼ PLðDiÞ=PLTðYÞ
¼ ðPLTðB1Þ þ PLTðB2Þ
þ � � � þ PLTðBhÞÞN=
ðn1 þ n2 þ � � � þ nkÞ

¼ ðnLT-B1 þ nLT-B2 þ . . .þ nLT-BhÞ=
ðn1 þ n2 þ . . .þ nkÞ,

with the relative likelihood ratio expressed by
the simple term 1/PLT(Y). Thus, the posterior
logical probability of some knowledge
(expressed as a list of formulae) depends directly
on the number of theories in which the formulae
from this list are inferred (not necessarily
together), depends inversely on the numbers of
theories in which the consequence from this
knowledge (Y) is inferred from various lists, and
does not depend at all on the total number (N)
of theories.

The N strict theories can readily be taken, in
the author’s opinion, for N probability models.
In the general case, N is infinite.

Construction of strict theories and a logical
account of probability based on these is how
both the intellectual ambition of logicians and
the practical need of geoscientists in probabil-
istic estimation of knowledge-related uncertainty
(see above) can be satisfied. Moreover, this may
substantially alter (and optimize, in the author’s
opinion) ‘science’s own understanding of the
nature of science’, as put by Frodeman (1995).
Also, a minor yet important benefit is that
elaboration of a logical account of probability
frees us from a delicate mission of measuring
experts’ metabolism to estimate the speed of
passage of experts through an array of prob-
ability models.

To summarize the account of logic, its main
virtue is the relation of logical inference, or
deducibility. Logic sensu stricto consists of two
major parts: propositional logic and predicate
logic. Propositional logic is a simple tool useful
to introduce the logical calculi that actualize the
relation of inference in certain formal proce-
dures. However, alone, it is insufficient to
process knowledge. Predicate logic incorporates
all laws of propositional logic but offers specific
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means for construction of strict theories, which
have been successfully tested in exact and
experimental sciences. Consideration of infer-
ence of a statement in a set of strict theories
composed in similar language opens an oppor-
tunity to define and calculate logical probability,
which meets general requirements to probability
and, in particular, fits well the Bayesian
approach.

Discussion: logic and existing approaches

Consideration of logic as a tool to obtain
probabilistic estimates of knowledge-related
uncertainty raises three principal questions:

(1) How good is logic in comparison with
existing methods?

(2) Is it competitive or complimentary with
them?

(3) What can be done to make it work best?

Addressing point (1) first, logic may provide a
means to assess probability of knowledge just as
well as the existing methods of expert judgment
processing which lead to subjective probability.
However, contrary to subjective probabilities,
the logical probability is normalized to 1,
complies with the condition of additivity, and
is based on absolutely strict foundations and is
objective. This definitely favours application of
logical rather than subjective probability in the
Bayesian approach and elsewhere. Nevertheless,
it imposes very strict conditions on knowledge:

(1) it requires a formal language sufficiently
well describing the field of interest;

(2) the theories should be formulated in this
language, each satisfying the rigours of
self-consistency, completeness, deducibil-
ity and independence of axioms;

(3) even among these formally correct the-
ories it cannot be excluded that some will
appear senseless and would be rejected by
scientists, and this might revive the
undesirable ‘aleatory’ component in the
logical approach to probability. Though,
in contrast with the existing methodology,
even if present, here it will be formulated
in crisp yes/no mode (to include or not to
include a theory in the set N), instead of
assigning unverifiable values.

However, perhaps the most palpable consid-
eration is that the geoscientific community is
psychologically not ready to accept a formal
treatment of knowledge, possibly because of
impending consequence of changing, by Frode-

man (1995), the ‘self-understanding of science’.
Only in some exceptional cases like EYDENET,
an expert system supporting decisions on land-
slide hazard warning in northern Italy (Lazzari
et al. 1997; Woo 1999), a kind of propositional
logic is used.
Besides, even if we advance far in logical

formalization of some domains of geo-knowl-
edge, there will always be problems unreached
by logic but requiring urgent decision making.
Moreover, even concerning the well-formalized
fields, to relate new knowledge resulting from
generalization of new data or from intuition of a
new expert, the conventional methods of expert
judgement processing will be required. Thus,
logic is a theoretically better, but practically less
feasible option than the existing methods of
evaluating epistemic uncertainty, and in any case
it cannot replace these methods.
Addressing point (2), the above notwithstand-

ing, there is still room for logic in the framework
of existing procedures. Logical deducibility is the
criterion for correctness of formulation of
judgements. However, along with deducibility,
there are a number of other logical relations
between statements and concepts (e.g. contro-
versy, compatibility, subordination, incompat-
ibility), elucidation of which can be useful at
least in the reconciliation of views, in processing
the results of collective brainstorming (e.g.
Morgan & Henrion 1990), in producing collec-
tive scientific opinion by a decision support
system (Woo 1999), in various elicitation proto-
cols (Baddeley et al. 2004; Curtis & Wood 2004)
and in the compilation of test datasets and
questions to qualify experts in Cooke’s method
(Aspinall & Woo 1994).
To identify these relations between the state-

ments or concepts formulated in natural lan-
guage, Classical logic described above is
necessary but not sufficient. Psychological,
linguistic and other aspects should be accounted
for in order to extract crisp sense from the loose
and ‘woolly’ record in natural language, be it in
text or speech.
It should be recalled herewith that logic in its

modern form was developed only a few decades
ago, while for centuries, since Aristotle, it
existed in semi-intuitive, verbal form, perhaps
with the single exception of syllogistic deduc-
tion. Until now the so-called ‘traditional’, or
Aristotelean logic (e.g. http://plato.stanfor-
d.edu/entries/aristotle-logic/) occupied the first
half of textbooks on logic for first-year
students, serving as the introduction to the
strict study of reasoning. It offers rules, quite
clear by intuition, to define and classify
concepts, to identify the relations between
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statements and to conclude from premises.
However, these rules give unambiguous results
only in a limited context (i.e. the number of
involved entities – objects and/or properties – is
finite). Hence, it should be accompanied by
means of distinguishing data from knowledge
and relevant knowledge from noise, recognition
of linguistic ambiguities, extraction of knowl-
edge from texts and speech and its compact
presentation in various form (textual, graphical
etc.) forms. All this is the virtue of the new field
rapidly developing in recent years, knowledge
engineering (thousands of publications every
year and hundreds of thousands of references
on the Internet (e.g. the website of Knowledge
Engineering Review, http://titles.cambridge.org/
journals/journal_catalogue.asp?mnemo-
nic¼ ker; or a comprehensive, though rather
old, review of Lukose 1996), and information
technologies that utilize it (e.g. Loudon 2000;
Smyth 2003; http://www.jiscmail.ac.uk/files/
GEO-REASONING/dist.ppt). It incorporates
a variety of tools united by goal rather than by
methodology, ranging from psychological
approaches to interviewing experts to statistical
methods of extracting relevant words from texts
or speech. The possibilistic or fuzzy logic
approach advocated by Bardossy & Fodor
(2001) is likely to be related to knowledge
engineering when used to evaluate opinions.
Virrantaus (2003) pointed out the necessity to
involve knowledge engineering to decrease the
uncertainty (‘imprecision’) of knowledge. The
work on building ontologies for various fields
of geoscience reported by Smyth (2003) is one
of the first examples of this.
Likewise, the methods of expert judgement

processing developed ad hoc to estimate sub-
jective probability and support decision making
can also be considered a part of knowledge
engineering. In terms of the approach of
Pshenichny (2003), they all fall into the field of
methods enabling the passage from loose knowl-
edge to strict theory and are naturally connected
with logic. Therefore, a strategy is needed for
efficient co-application of existing approaches of
expert judgement processing, knowledge engi-
neering and Classical logic to obtain the best
estimation of epistemic uncertainty by possibi-
listic measures or by subjective probability
where necessary, and to proceed to estimation
of logical probability with time.
Addressing point (3), the passage from a loose

knowledge to a structured finite domain, then to
formal language and on to strict theories, is the
optimal way to implement logic to estimate
uncertainty. This may count as the answer to
Question 3 at the beginning of this section.

However, the outlined succession generates three
successive sub-questions:

(1) How do you confine a context?
(2) How do you make a language from it?
(3) How do you create N theories in this

language?

A serious problem in limiting geoscientific
contexts is the involvement of diverse sources of
knowledge, some of which are, in addition,
largely subjective. Observation in many cases
can hardly be distinguished from interpretation.
Modelling, especially at a regional and planetary
scale, often relies on a good portion of imagina-
tion. Putting together, say, a field description of
a sandstone, equations from mechanics and
dialectical laws widen the context rapidly. To
limit it, it is pertinent, in the author’s view, to
avoid ‘global’ (philosophical, natural-scientific,
physical, chemical and even regional geological)
terms whenever possible. Rather, one should
focus on a set of features furnished by the object
in question and akin to objects, recognized at a
given scale.

However, even if feasible, this is only part of a
solution because interpretation of an outcrop,
specimen or thin section unavoidably bears
personal or common bias (see above). For
instance, when describing a thin section, the
optical constants of minerals are determined by
what Frodeman calls, after Heidegger, the ‘fore-
havings’ and ‘fore-structures’ – properties of the
microscope and of the eye of the petrographer.
While the parameters of the microscope are at
least objective, and it can definitely be said that
they have nothing to do with the mineral in
question, what the eye sees is not only subjective,
but we cannot even firmly decide whether it is
relevant to the context or not. In a psycho-
physiological sense (the ability of the eye to see
and discern that depends on the eye proper and
on the personality of the researcher), it should
not be relevant to the nature of the object
studied, though certainly is influential on the
result of the study! Just as irrelevant is the
capacity of the microscope, while in an episte-
miological sense the eye is in fact a combination
of ‘eye and mind’, by the locution of Merleau-
Ponty quoted by Johnson (see reference in
Frodeman 1995), and therefore is loaded with
prior knowledge about what minerals are, and is
obviously relevant. Hence, focusing on the set of
features furnished by the object in question, one
should abstract not only from too ‘general’
terms but also from the ‘side’ (technical,
physiological) terms if possible, or, if these terms
are crucial, involve them somehow in the
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context. The latter is again illustrated by Frode-
man (1995, p. 962):

If the energy crisis is defined as a problem of

supply (‘we need more oil’), we will find a

different set of facts and a different range of

possible solutions than if it is defined as a

problem of demand (‘we need to conserve’).

This recalls the point made in the ‘Sources and
measures of uncertainty’ section, that science
has two alternatives: either to ignore bias or to
accept, reveal, assess and manage, but not to
decrease it. As is clear now, the latter case
implies that bias is explicitly formulated and
included in the context of consideration and,
further, into the strict language and, ultimately,
in the theories describing, for example, the
(im)possibility of a new volcano forming in
non-volcanic regions. This reflects the ‘division
of labour’ acknowledged by Frodeman between
Continental and Analytical philosophies in
hermeneutic (interpretive) sciences like geology:
like the humanities, geology is not bias-free, but
like mathematics, it should be strict.
In the limited context where the number of

involved entities (objects and/or properties) is
finite, a strict language can be constructed. The
main problem here, in the author’s view, is
minimization and strict formulation of terms,
making them universal for expression of various
standpoints.
For instance, a peculiar context of volcanol-

ogy is the formation of rocks of transitional
lava–pyroclastic outlook. In a few decades, a
number of concepts about their formation were
suggested. These include:

(1) pyroclastic flows (Smith 1960; Ross &
Smith 1961; and others)

(2) lava flows (Abich 1882)
(3) two immiscible lavas in one flow (Steiner

1960)
(4) ‘boiling’ lava turning into foam (Boyd

1954; and others)
(5) hydrothermally altered lava (Naboko

1971 – see reference in Sheimovich 1979)
(6) products of subaqueous lava flows (Iva-

nov 1966 – see reference in Sheimovich
1979)

(7) product of redeposition of ash in lakes
(Karolusova-Kočiščákova 1958 – see
reference in Sheimovich 1979).

Despite the striking diversity of views, they
form a united and long-lived context. In some
periods, for example, in the 1980s to early 1990s,

a particular concept (e.g. formation of all rocks
of transitional outlook from pyroclastic flows)
was popular (e.g. Fisher & Schmincke 1984).
However, later some objects (Rooiberg Felsite in
South Africa for instance) were reported that
can hardly be explained by this concept (Twist &
Elston 1989) as well as the cases of formation of
patches of pyroclastic-looking material in the
rocks confidently interpreted as lavas (Allen
1989; Fink 1989) and intrusive bodies filled with
the material of the same outlook (Stasiuk et al.
1996). Still, these authors, contrary to early
adepts of the ‘effusive’ concept, reconciled their
points with the concept of pyroclastic flow.
Another concept, that of rheomorphism, pro-
claimed by Smith (1960) and Ross & Smith
(1961), was developed that actually showed a
possibility of ‘effusive’ environment in a thick
body of pyroclastic flow material (Milner et al.
1992; Streck & Grunder 1995) after, and
(according to the most recent works) before
and during the deposition (Branney & Kokelaar
2002). We cannot exclude the possibility of
seemingly weird ideas of hydrothermal altera-
tion of lava, subaqueous lava flows or redeposi-
tion of ash in lakes, reformulated in new terms,
being revived and successfully used for inter-
pretation of the same rocks in the future.
Moreover, perhaps the maturity of a hermeneu-
tic science might be understood as the moment
when new concepts are no longer elaborated,
and new data continue to support or slightly
modify some of the previously suggested con-
cepts, none of which can ever be totally rejected
or totally adopted, so that further development
of science is an endless ‘championship’ of
concepts, in which no one wins the cup or leaves
the league.
However, once the ‘league’ has been formed,

the language should be able to describe the
concepts from, and relationships between each
‘player’ – and to do that in as strict and concise
form as possible in order to be translatable into
predicate logic language. In this language, the
standpoints are expected to become strict
theories, but some of them, if they appear
compliant, would merge to produce one theory,
and new theories may emerge by automatic
operation with variables and predicates. These
‘artificial’ theories should be examined by
scientists and either adopted or rejected (here-
with the ‘aleatory component’ may emerge
again, as discussed above). Nevertheless, as the
logical studies show, correct formulation of a
large number of theories in a given language is a
task requiring time and patience, with a high risk
of human error, even for a simple case of
Smullyan’s puzzles (Moukhachov & Netchitai-
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lov 2001). At the same time, the degree of
formality principally allows its complete auto-
matization, and this work is actually ongoing
(Moukhachov pers. comm.). Needless to say, for
geoscience, such an automated ‘theory genera-
tor’ is perhaps the only way to make the
assessment of logical probability practically
achievable.
Summing up the discussion, logic is a theore-

tically better, but practically less feasible option
than the existing methods of evaluating episte-
mic uncertainty, but in any case it can neither be
a total substitute for these methods nor totally
abolish the aleatory uncertainty. Therefore, a
strategy is needed for efficient co-application of
existing approaches of expert judgement proces-
sing, knowledge engineering and classical logic
to assess epistemic uncertainty by possibilistic
measures or by subjective probability where
necessary, and to proceed to logical probability
with time. This strategy should aim to confine
the context of geoscientific study but this context
may include, where relevant, the forestructures
and bias. To advance the logical estimation of
probability, an automated generator of logical
tasks (theories) is a prerequisite.

Conclusions

(1) Based on the approach of Pshenichny
(2003), uncertainty can be classified as
being either that of knowledge or that of
data. The uncertainty of data might be
considered: (a) in terms of additivity and
measured by probability in the frequentist
sense, (b) in fuzzy terms and measured by
a variety of fuzzy parameters, or (c)
jointly. Reasoning and language contri-
bute to the uncertainty of knowledge, or
epistemic uncertainty, and its refinement,
aleatory uncertainty. As for the measure
of epistemic uncertainty, if the approach
to knowledge is intuitive, it may only be
fuzzy; if the approach is to treat knowl-
edge objectively, in the tradition of
analytical philosophy, this measure, if it
exists, should be probabilistic in a logical
but not in a subjective sense.

(2) The main virtue of logic is the relation of
logical inference, or deducibility. Logic
sensu stricto consists of two major parts:
propositional logic and predicate logic.
Propositional logic is a simple tool, useful
to introduce the logical calculi that
actualize the relationship of inference in
certain formal procedures. However, it is
insufficient alone to process knowledge.
Predicate logic incorporates all of the laws

of propositional logic but offers specific
means for construction of strict theories,
which have been tested successfully in
exact and experimental sciences. Consid-
eration of inference of a similar statement
in a set of strict theories composed in
similar language opens the opportunity to
define and calculate logical probability,
which, being a measure of epistemic
uncertainty, meets the general require-
ments of probability and, in particular,
fits well with the Bayesian approach.

(3) Logic is a theoretically better but practi-
cally less feasible option than the existing
methods of evaluating epistemic uncer-
tainty, but in any case it can neither be a
total substitute for these methods, nor
totally abolish the aleatory uncertainty.

(4) Urgent tasks for future research include,
firstly, a strategy for co-application of
existing approaches of expert judgement
processing, knowledge engineering and
classical logic, able to incorporate pre-
judgements and bias if necessary, and
secondly, an automated generator of
logical tasks (strict theories) in a given
language.
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