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Abstract

A model of bubble growth during decompression of supersaturated melt was developed in order to explore the

conditions for preservation of gas overpressure in bubbles or for maintaining supersaturation of the melt. The model

accounts for the interplay of three dynamic processes: decompression rate of the magma, deformation of the viscous

melt around the growing bubble, and diffusion of volatiles into the bubble. Generally, these processes are coupled and

the evolution of bubble radius and gas pressure is solved numerically. For a better understanding of the physics of the

processes, we developed some analytical solutions under simplifying assumptions for cases where growth is controlled

by viscous resistance, diffusion or linear decompression rate. We show that the solutions are a function of time and

two dimensionless numbers, which are the ratios of either the diffusive or viscous time scales over the decompression

time scale. The conditions for each growth regime are provided as a function of the two governing dimensionless

parameters. Analytical calculations for some specific cases compare well with numerical simulations and experimental

results on bubble growth during decompression of hydrated silicic melts. The model solutions, including the division

to the growth regimes as function of the two parameters, provide a fast tool for estimation of the state of erupting

magma in terms of gas overpressure, supersaturation and gas volume fraction. The model results are in agreement

with the conditions of Plinian explosive eruption (e.g. Mount St. Helens, 18 May 1980), where high gas overpressure is

expected. The conditions of effusion of lava domes with sudden onset of explosive activity are also in agreement with

the model predictions, mostly in equilibrium degassing and partly in overpressure conditions. We show that in a

situation of quasi-static diffusion during decompression the diffusive influx depends on the diffusivity away from the

bubble, insensitive to the diffusivity profile.
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1. Introduction

Volcanic eruptions commonly involve forma-

tion and growth of gas bubbles. The growth dy-

namics play a major role in determining the style

of eruption. Current bubble growth models are

based on the formulation of Rayleigh (1917)

and Scriven (1959) that accounted for the £uid

dynamics of an incompressible viscous liquid

around an isolated spherical bubble with pressure

di¡erence between bubble and the surrounding

liquid. Bubble growth in highly silicic melts is

0377-0273 / 03 / $ ^ see front matter 1 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0377-0273(03)00229-4

* Corresponding author. Tel. : +972-2-531-4259;

Fax: +972-2-566-2581.

E-mail addresses: nadavl@mail.gsi.gov.il (N.G. Lensky),

oded.navon@huji.ac.il (O. Navon), vladi@geos.gsi.gov.il

(V. Lyakhovsky).

VOLGEO 2666 20-11-03

Journal of Volcanology and Geothermal Research 129 (2004) 7^22

R

Available online at www.sciencedirect.com

www.elsevier.com/locate/jvolgeores

mailto:nadavl@mail.gsi.gov.il
mailto:oded.navon@huji.ac.il
mailto:vladi@geos.gsi.gov.il
http://www.elsevier.com/locate/jvolgeores


characterized by mass £ux of volatiles from the

supersaturated melt into the bubble and by high

viscosity of the melt. These e¡ects were accounted

for by Sparks (1978), and the e¡ect of neighbor-

ing bubbles and variable melt properties were also

developed (Toramaru, 1989; Proussevitch et al.,

1993; Toramaru, 1995; Lyakhovsky et al., 1996;

Navon et al., 1998; Proussevitch and Sahagian,

1998).

Two characteristic time scales arise from the

governing equations for growth under constant

pressure: the time for viscous deformation, dvis,

which is an estimation of the time it takes to relax

gas overpressure, and the time for di¡usion of

volatiles into the bubble, ddif (Navon and Lya-

khovsky, 1998). The ratio between these two char-

acteristic time scales is the non-dimensional Peclet

number. Three end-member growth regimes were

characterized during the course of bubble growth.

At the initial stages of growth, di¡usion is very

e⁄cient and preserves gas pressure close to its

initial hydration pressure. Growth is then con-

trolled by the viscous deformation of the melt

around the bubble and follows an exponent of

time (Navon et al., 1998). After a time on the

order of the viscous time scale, gas pressure drops

and approaches ambient pressure. Growth is then

controlled by the di¡usive £ux of volatiles and

bubble growth follows a square root of time (Lya-

khovsky et al., 1996). Finally, the bubbles ap-

proach their ¢nal radius, which is a function of

the ambient pressure, initial volatile content and

initial separation between bubbles. The model

produces good ¢ts to experiments where bubbles

grew under constant ambient pressure (Navon

and Lyakhovsky, 1998). The e¡ect of gradual de-

compression on bubble growth was accounted for

by numerical simulations (Toramaru, 1995;

Proussevitch and Sahagian, 1996; Navon and

Lyakhovsky, 1998; Blower et al., 2001). Yet, there

are no analytical solutions and experimental ver-

i¢cations of the model under conditions of con-

tinuous decompression, which is the common case

in volcanic systems.

During continuous decompression of magma,

bubble growth is also governed by the decompres-

sion rate, in addition to the viscous deformation

and di¡usion. Accordingly, a third characteristic

time scale, the time needed to fully release ambi-

ent pressure by linear decompression, should be

introduced. As a result, two dimensionless num-

bers characterize the growth dynamics, which are

the ratios between di¡usion and decompression

time scales, and between the viscous resistance

and decompression time scales, instead of the Pec-

let number. We present analytical solutions of the

bubble growth model under falling ambient pres-

sure, and characterize the conditions for each

growth regime in terms of the two dimensionless

numbers. We compare the analytical results with

numerical simulations and experiments on bubble

growth during decompression of hydrated silicic

melts. In order to test the analytical model solu-

tions we conducted bubble growth experiments

and also use the results of Gardner et al. (1999).

2. Theory of bubble growth during decompression

of volatile bearing magma

A suspension of bubbles in a viscous liquid is

approximated by a close pack of spherical cells,

each consisting of a gas bubble of radius R sur-

rounded by a spherically symmetric melt shell

with outer radius S (Fig. 1). The cells are ar-

ranged in space with some overlaps and some

voids (Proussevitch et al., 1993), so that the vol-

ume fraction of gas in the magma, K, is :

K ¼ ðR=SÞ3 ð1Þ

This geometrical arrangement allows describing

the whole magma by examining the dynamics of a

single spherical cell, using equations developed for

a solitary bubble (Scriven, 1959; Sparks, 1978)

and former cell models (Toramaru, 1989; Prous-

sevitch et al., 1993; Toramaru, 1995; Lyakhovsky

et al., 1996; Navon and Lyakhovsky, 1998;

Proussevitch and Sahagian, 1998). The model pre-

sented here is based on the formulation of Prous-

sevitch et al. (1993).

Mass conservation of the melt is ensured by the

continuity equation, which for an incompressible

melt is simply div(v) = 0, where v is the velocity

¢eld at the melt shell. Integration of the equation

of continuity for the radial velocity in the melt, vr,
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around a bubble growing at the rate R5 (see Fig. 1

for notations) yields:

vr ¼ _RR
R2

r2
ðR9r9SÞ ð2Þ

Navier^Stokes equation (equation of motion)

states that the total pressure in the bubble (Pgas)

is the sum of ambient pressure (Pamb), surface

tension (c) and viscous stresses due to the defor-

mation of the melt shell :

Pgas ¼ Pamb þ
2c

R
þ 4

_RR

R
R eff ð3Þ

where Reff is the e¡ective viscosity that resists

bubble expansion, which accounts for the e¡ects

of ¢nite shell size and variable viscosity (Lensky et

al., 2001):

R eff ¼ RR 13
R S

RR

K þ R3

RR

Z S

R

dR

dr

1

r3
dr

� �

ð3aÞ

Inertial terms are usually negligible compared

with the viscous terms in most magmatic situa-

tions as indicated by small Reynold’s number,

Rerð _RRRbmeltÞ=ðR ÞI1. The evolution of bubble

size is implicitly determined using Eq. 3 when gas

pressure is known (as will be discussed below, in

Sections 3.2 and 3.7). However, in the case of

volatile bearing magmas, di¡usive in£ux from

the supersaturated melt has to be considered. Vol-

atile mass balance between bubbles and melt is:

4Z

3

d

dt
ðb gasR3Þ ¼ 4Z bmelt r2D

DC

D r

� �

r¼R ð4Þ

where bgas and bmelt are gas and melt densities, D

is volatile di¡usivity in the melt and C is the

weight fraction of volatiles in the melt. Gas den-

sity is related to gas pressure through the equa-

tion of state, assuming an ideal gas of molar mass

M, gas constant G and constant temperature T :

b gas ¼ Pgas
M

GT
ð5Þ

To solve the concentration gradient (the right

side of Eq. 4), we consider the di¡usion^advection

equation:

dC

dt
¼ 1

r2
D

D r
r2D

DC

D r

� �

ð6Þ

where d=dt ¼ ðD Þ=ðD tÞ þ vrðD Þ=ðD rÞ. The equation
is subjected to two boundary conditions. At the

bubble^melt interface, R, water concentration is

locally in equilibrium with the gas pressure

through the Henry’s law relation (Burnham,

1975):

CR ¼ KHP
n
gas ð7Þ

where KH is Henry’s constant and nW0.5 for

water in silicic melts. The second condition de-

rives from the requirement of volatile mass con-

servation in the cell, which states that the mass of

volatiles in the bubble plus the mass dissolved in

the melt equals the constant total (or initial) mass

of volatiles in the cell :

4

3
ZR3b gas þ

Z S

R

4Z r2bmeltCdr ¼
4

3
ZS30bmeltC0 ð8Þ

where ð4=3ÞZS30 ¼ ð4=3ÞZS3ðtÞ3ð4=3ÞZR3ðtÞ is

the volume of the incompressible melt shell

when the bubble vanishes (RC0), and C0 is the

concentration of volatiles in the melt under this

condition. The condition of mass conservation

may also be expressed as a no mass £ux condition

at the outer boundary S:

DC

D r
Mr¼s ¼ 0 ð8aÞ

Taken together, Eqs. 2^8 de¢ne a set of equa-

tions and boundary conditions which, at present,

calls for a numerical solution. For a better under-

standing of the physics of the processes, we

present some analytical solutions under simplify-

ing assumptions for some speci¢c cases.

3. Model solutions

3.1. Scaling

Non-dimensionalization allows simpli¢cation of

the formulations and clari¢cation of the parame-

ter dependencies and their importance in each

process. In Table 1 the £uid properties and other

physical parameters are transformed into a non-

dimensional form. Three di¡erent time scales that

relate to the three governing processes (decom-

pression, viscous resistance, and volatile di¡usion)
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include the important natural variables, as de¢ned

in Table 1. Decompression time scale,

d dec ¼ ðPiÞ=ð _PPambÞ, is the time it takes to decom-
press magma from initial pressure to zero ¢nal

pressure, where P5 amb denotes constant (or aver-

age) decompression rate. Time is scaled to the

decompression time scale and is in the range

09t̂t9ðtf Þ=ðd decÞ, where tf is the time when

the ¢nal ambient pressure is reached (in cases

where pressure is not fully released). Here and

throughout the paper, hat symbols denote dimen-

sionless variables. The viscous time scale,

Table 1

The governing variables and their scaling

Variable Notation Units Scaled to Non-dimensional

Pressure P Pa Initial pressure Pi P̂P ¼ P

Pi

Gas density bgas Kg m33 Initial gas density bi b̂b gas ¼
b gas

b i
¼ P̂Pgas

Melt density bmelt Kg m33 Initial gas density bi b̂bmelt ¼
bmelt

b i

Bubble radius R m Initial radius Ri R̂R ¼ R

Ri

Surface tension c Pa m Ri,Pi 4 ¼ 2
c

Ri

1

Pi

Di¡usivitya D m2 s31 Initial density Di D̂D ¼ D

Di

Viscosityb Reff Pa s Initial viscosity Ri R̂R eff ¼
RR

R i

13
RS

RR

K þ R3

RR

R S

R

dR

dr

1

r3
dr

� �

Decompression time scale d dec ¼
Pi
_PPamb

s

Time t s d dec ¼
Pi
_PPamb

t̂t ¼ t

d dec

Viscous time scale d vis ¼
4R i

Pi
s d dec ¼

Pi
_PPamb

3 V ¼ d vis

d dec

Di¡usion time scale d dif ¼
R2i
Di

s d dec ¼
Pi
_PPamb

3 D ¼ d dif

d dec

Growth velocity RP m s31
d dec

Ri

_̂
RR̂RR ¼ _RR

d dec

Ri

a When di¡usivity is constant DŒ =1.
b When viscosity is constant R=13;K, and when vesicularity is low RV1.

Fig. 1. The physical model. The magma is regarded as a pack of spherical cells, each composed of a gas bubble with radius R

centered in a spherical melt shell with outer radius S. The cells are arranged in a 3-D lattice with some overlap, so that gas vol-

ume fraction is K= (R/S)3. (Modi¢ed after Proussevitch et al., 1993).
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d vis ¼ ð4R iÞ=ðPiÞ, is a measure for the time for
viscous relaxation of gas overpressure. Di¡usion

time scale d dif ¼ ðR2i Þ=ðDiÞ, characterizes the dif-
fusive mass transfer in the melt around a bubble

with a radius Ri at the initial stages. The upper

bound for the time it takes to di¡use water from

the whole shell to the bubble can be approximated

as d dif ððS20Þ=ðR21ÞÞ, where S0 is the thickness

of the melt shell when the bubble vanishes,

S0 = (S
3
3R3)1=3 = const (Fig. 1).

The physical variables are condensed into two

dimensionless parameters that are the ratios

between these viscous and di¡usion time scales

to the decompression time scale 3 V ¼ ðd visÞ=
ðd decÞ ¼ ð4R i

_PPambÞ=ðP2i Þ and 3 D ¼ ðd dif Þ=ðd decÞ
¼ ðR2i _PPambÞ=ðDPiÞ, similar to the parameters

used by Toramaru (1995). These two parameters

become larger as decompression rate increases.

Dehydration also leads to higher values of both

parameters since viscosity increases and di¡usivity

decreases.

3.2. The governing equations in non-dimensional

form

Using the above scaling scheme, Eqs. 3^8 are

rewritten in their non-dimensional form (for no-

tations see Table 1).

Eq. 3 transforms to:

P̂Pgas ¼ P̂Pamb þ
4

R̂R
þ 3 V

_̂
RR̂RR

R̂R
R̂R eff ð9Þ

For constant decompression rate we de¢ne the

ambient pressure as:

P̂Pamb ¼ 13t̂t ð10Þ

where, as noted, 1vP̂PambvðPf =PiÞs0 and Pf is

the ¢nal ambient pressure. The equation of mass

balance (Eq. 4) transforms to:

1

d dec

d

dt̂t
ðP̂PgasR̂R3Þ ¼

3

d dif
b̂bmelt r̂r2D̂D

DC

D r̂r

� �

r̂r¼R̂R ð11Þ

which further develops to:

_̂
PP̂PPgas ¼ 3

1

3 D

b̂bmelt

R̂R3
r̂r2D̂D

DC

D r̂r

� �

r̂r¼R̂R33P̂Pgas

_̂
RR̂RR

R̂R
ð11aÞ

The number 3D may vary by several orders of

magnitude, and is typically smaller than one.

The equation of volatile transfer (Eq. 6) trans-

forms to:

3 D

dC

dt̂t
¼ 1

r̂r2
D

D r̂r
r̂r2D̂D

DC

D r̂r

� �

ð12Þ

When di¡usion is fast relative to decompression

rate, 3DI1, the left hand side of Eq. 12, van-

ishes, and concentration distribution is quasi-stat-

ic. The equation of di¡usion reduces to its steady

state form:

1

r̂r2
D

D r̂r
r̂rD̂D

DC

D r̂r

� �

¼ 0 ð12aÞ

Quasi-static conditions are expected to be in

dome building situations and other relatively

slow £owing magma.

The equation of volatile conservation (Eq. 8)

transfers to:

R̂R3P̂Pgas þ 3b̂bmelt
Z ŜS

R̂R

r̂r2Cdr̂r ¼ S30
R3i
C0 b̂bmelt ð13Þ

The solubility law in its non-dimensional form

is:

CR

Ci

¼ P̂Pngas ð14Þ

The solubility of water in silicic melt is closely

approximated by nw0.5, and KH is typically con-

stant when temperature is constant and pressure

rage is limited (Holtz et al., 1996).

3.3. Viscosity controlled growth regime

At the initial stages of growth, when bubbles

are small and di¡usion is fast enough relative to

decompression and to the viscous resistance, gas

pressure remains close to its initial value, which is

the sum of initial ambient pressure and surface

tension:

P̂Pgasw1þ
4

R̂R
ð15Þ

which is practically: PŒ gasw1. Overpressure in this

case increases with falling ambient pressure. Under

these conditions, volatile concentration is nearly

uniform throughout the melt, thus viscosity is uni-

form as well. Substituting Eq. 15 (including sur-

face tension) and Eq. 10 into Eq. 9, reduces it to:
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3 V

_̂
RR̂RR

R̂R
¼ t̂t; R̂Rð̂tt ¼ 0Þ ¼ 1 ð16Þ

Integration of Eq. 16 yields the viscosity con-

trolled growth law:

R̂R ¼ exp
t̂t2

2W3 V

� �

ð17Þ

This solution is valid as long as the di¡usive

in£ux is fast enough to keep gas pressure close

to the initial pressure. Pressure relaxation is con-

trolled by
ffiffiffiffiffiffiffiffi

3 V

p
. If t̂tI

ffiffiffiffiffiffiffiffi

3 V

p
(i.e. tI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d visWd dec
p

),

then gas pressure is expected to be close to the

initial pressure. At this stage growth is exponen-

tial so it is initially very slow (equivalent to the

time delay of Proussevitch and Sahagian, 1998).

At longer times, exponential bubble growth is fast

and the di¡usive £ux into the bubble cannot keep

pace with expansion of the bubble and the con-

tinuous drop of ambient pressure and Eq. 17 no

longer holds.

3.4. Di¡usive growth regime

Once di¡usion cannot keep up with expansion,

gas pressure relaxes and closely follows ambient

pressure (Eq. 10):

P̂Pgasw13t̂t ð18Þ

Here we assume that bubbles are already large

enough to neglect surface tension. The concentra-

tion at the bubble^melt interface is thus obtained

by substituting Eq. 18 into Eq. 14:

Cðr̂r ¼ R̂RÞ ¼ Ci

ffiffiffiffiffiffiffiffi

13t̂t
p

ð19Þ

In these conditions, bubble growth is governed

by the di¡usive £ux of volatiles into the bubble

and by the rate of decompression, as it is ex-

pressed by substituting Eq. 18 into Eq. 11a:

31 ¼ 3
b̂bmelt

3 D

r̂r2D̂D
DC

D r̂r

� �

r̂r¼R̂R

R̂R3
33ð13t̂tÞ

_̂
RR̂RR

R̂R
ð20Þ

Here di¡usivity varies as a function of volatile

concentration, which varies radially. When di¡u-

sion is quasi-static, the total mass £ux through

spherical shell is uniform (Eq. 12a). Integration

of Eq. 12a from the outer part of the shell

to the bubble^melt interface (Cðr̂r ¼ rÞ and

Cðr̂r ¼ R̂RÞ ¼ Ci

ffiffiffiffiffiffiffiffiffi

13t̂t
p

) yields:

r̂r2D̂D
DC

D r̂r
¼ R̂R

Z Ci

C i

ffiffiffiffiffiffi

13t̂t
p D̂DdC ð21Þ

Substituting of Eq. 211 into Eq. 20 yields the

law for bubble growth during decompression

when viscosity is unimportant and di¡usion is

quasi-static :

_̂
RR̂RR2 ¼ 2

3

R̂R2

13t̂t
þ 2b̂bmelt

3 D

1

13t̂t

Z Ci

Ci

ffiffiffiffiffiffi

13t̂t
p D̂DdC ð22Þ

For constant di¡usivity, integration yields:

R̂R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

7

b̂bmelt

3 D

Ci 3ð13t̂tÞ
3

2

337þ 4
ffiffiffiffiffiffiffiffi

13t̂t
p

2

4

3

5þ ð13t̂tÞ
3

2

3

v

u

u

u

t ð23Þ

For variable di¡usivity, approximated using a

polynomial DŒ =1+h(Ck3Cki ) where k is the degree

of the polynomial and h is constant, the integral

at Eq. 22 is:

Z C i

Ci

ffiffiffiffiffiffi

13t̂t
p D̂DdC ¼ Ci 13

ffiffiffiffiffiffiffiffi

13t̂t
p

3hCk
i

�

13
ffiffiffiffiffiffiffiffiffiffi

1� t̂t
p

3

�

1

k þ 1 13ð13t̂tÞðkþ1Þ=2
� �

��

wCi

t̂t

2
ð24Þ

To a good approximation, this solution is inde-

pendent on the choice of h and k, thus Eqs. 20

and 22 are independent of the variations of dif-

fusivity. It means that Eq. 23 is a close approx-

imation for di¡usive bubble growth even for var-

iable di¡usivity, as long as di¡usion is quasi-

static. The radial decrease of di¡usivity towards

the bubble is compensated by an increase of the

concentration gradient so that the mass £ux is

uniform along the pro¢le and is controlled by

the value of di¡usivity at the outer shell S. How-

ever, the decrease of the value of di¡usivity near

the bubble wall means that quasi-static di¡usion

will be reached after longer time. The time it takes

to reach quasi-static di¡usion may be obtained by

comparing the concentration gradient for a soli-

tary bubble in a quasi-static case with the non-

quasi-static case. The quasi-static di¡usion gra-
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dient for a solitary bubble is obtained by Eqs. 12a

and 14 (Lyakhovsky et al., 1996):

DC

D r̂r

� �

R̂R ¼ Ci

13

ffiffiffiffiffiffiffiffiffi

P̂Pgas

q

R̂R
ð25Þ

The non-quasi-static di¡usion gradient, is

(Carslaw and Jaeger, 1959):

DC

D r̂r

� �

R̂R ¼ Ci

13

ffiffiffiffiffiffiffiffiffi

P̂Pgas

q

R̂R
13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 D

Z

R̂R2

t̂t

s0

@

1

A ð26Þ

Thus the conditions for quasi-static di¡usion

are reached when t̂tsð3 D=Z ÞR̂R2.

3.5. Equilibrium solution

Bubbles reach their largest size at any given

ambient pressure when the system is close to me-

chanical and chemical equilibrium, i.e. when gas

pressure follows ambient pressure (Eq. 18) and

concentration at the melt shell is uniform accord-

ing to the solubility at ambient pressure (Eq. 19).

Substituting these conditions into Eq. 13) and in-

tegrating yields the equilibrium growth law:

R̂R ¼ S0

Ri
b̂bmelt

C03Ci

ffiffiffiffiffiffiffiffi

13t̂t
p

13t̂t

 !1

3 ð27Þ

C0 is the concentration of the melt when the bub-

ble vanishes and S0 is the cell size when the bub-

ble disappears.

3.6. Transition from high- to low-overpressure

growth regimes

The transition from high- to low-overpressure

growth regimes depends on the three major pro-

cesses (di¡usion, viscous deformation and decom-

pression). To account for the interplay of the

three processes we solve the equations of viscous

resistance (Eq. 9) and mass balance (Eqs. 11a and

12a). Substitution of Eqs. 9 and 25 into Eq. 11a)

yields the equation for the evolution of gas pres-

sure:

_̂
PP̂PPgas ¼ 3

b̂bmeltCi

3 D

13

ffiffiffiffiffiffiffiffiffi

P̂Pgas

q

R̂R2
3

3

3 V

P̂PgasðP̂Pgas31þ t̂tÞ ð28Þ

By using Eq. 25 we assume quasi-static di¡u-

sion, where the deviation from quasi-static condi-

tions is given in Eq. 26. The solution is a function

of the radius of the bubble. At the initial stages of

growth, t̂t6
ffiffiffiffiffiffiffiffi

3 V

p
, Eq. 17 is a close approximation

for bubble radius. Later on, when t̂ts
ffiffiffiffiffiffiffiffi

3 V

p
, it

is an over estimation for bubble radius, however

the e¡ect on the calculated pressure is practi-

cally negligible, for example when using the dif-

fusive solution Eq. 23 in Eq. 28 yields the same

results.

Solutions of Eq. 28 are demonstrated in Fig. 2,

which plots the evolution of gas pressure with

time as function of the dimensionless parameters

3D and 3V (bmeltCi is of the order of one). When

the time of viscous relaxation is short compared

with the decompression time (low 3V , Fig. 2a),

then gas pressure relaxes at the very beginning

of decompression, even when di¡usion is very ef-

fective (e.g. 3D =0.0001). However, for higher 3V

values the bubbles are overpressed even when dif-

fusion is ine¡ective (Fig. 2b). Fig. 2c,d shows that

gas overpressure depends on both di¡usion and

viscous resistance, which are represented by the

parameters 3V and 3D. For example, in the

case of no mass £ux pressure drops at 3VV1,

whereas in case of fast di¡usion (3D =0.0001)

pressure drops in 3V values that are 2^3 orders

of magnitude lower. Pressure drops from 95 to

5% of the di¡erence Pgas3Pamb along the 3V

range of up to 3 orders of magnitudes.

The dependence of gas overpressure on the dif-

fusive, viscous and decompression e¡ects is dem-

onstrated in Fig. 3, which plots the state of the

bubbly magma in a 3D vs. 3V plot. The ¢eld of

high overpressure (s 95% of the di¡erence

Pgas3Pamb, viscous regime) is bounded by a curve

that is constructed from Fig. 2 (squares and

circles for t“=0.05, 0.5, respectively). The ¢elds

of no-overpressure are bounded similarly. For

low 3V (6 0.0001) gas pressure is relaxed regard-

less 3D, however dehydration of the melt depends

on 3D and the di¡usion scale (S0 normalized to

Ri). The transition from equilibrium to di¡usion

occurs at t̂tV3 DðS20=R2i Þ. The di¡usive growth is
quasi-static when 3D6ZWt“.

Equilibrium degassing is obtained when gas

pressure is relaxed, as is shown above, and when
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di¡usion is fast enough to degas the melt shell.

The time to di¡use volatile from the outer cell

boundary is estimated by the length of di¡usion,

which is S3R6S0. Thus, if gas pressure is re-

laxed, then equilibrium is attained when

t̂ts3 DðS20=R2i Þ.
In some cases the above analytical approxima-

tions are not applicable, for example, in the tran-

sitions between the solutions and when the shells

are thin. To account for the e¡ects that were

neglected in the asymptotic solutions, we use

a numerical code that solves the full set of

equations described in Section 2. The numerical

model is based on Lyakhovsky et al. (1996), and

allows for variable pressure, di¡usivity, and vis-

cosity.

3.7. No volatile mass £ux solution

When the di¡usive mass £ux is insigni¢cant,

3DE1, Eqs. 11a and 9) yields the equation of

viscous relaxation under decompression:

_̂
PP̂PPgas ¼ 3

3

3 V

P̂Pgas P̂Pgas31þ t̂t34 P̂P
1=3
gas

� �

ð29Þ

Viscosity is uniform and volume fraction is

small (KI1). Substituting the no mass £ux con-

dition, PŒ gasRŒ
3 =1, into Eq. 29 yields:

_̂
RR̂RR ¼ 1

3 V

1

R̂R2
3R̂Rð13t̂tÞ34

� �

ð30Þ

Bubble size and gas pressure are obtained as

function of time for a given decompression rate

Fig. 2. (a,b) Evolution of gas pressure, legend in (c). Gas pressure is presented vs. time (both dimensionless) for various values

of di¡usion/decompression ratio, 3D, and for viscous/decompression ratio 3V =0.01 (a) and 3V =1 (b). The contribution of dif-

fusive £ux to the preservation of gas pressure is clear compared to the case of no mass £ux (nmf). The curves are solutions of

Eq. 28. (c,d) Gas pressure vs. viscous/decompression ratio, 3V . Gas pressure is plotted for various 3D values and for t“ = 0.05 (c)

and 0.5 (d). Depending on the e⁄ciency of di¡usion, 3D, the viscosity/decompression ratio (3V ) in which pressure drops varies

few orders of magnitude.
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and initial conditions. This solution is similar to

equation 18 in Barclay et al. (1995). The no vol-

atile mass £ux regime (Eq. 30) is applicable when

the decompression time is very short (ddecIddif )

and viscosity is high (upper right corner in Fig. 3),

which may occur if highly viscous silicic magma is

rapidly decompressed.

4. Experimental veri¢cation of the model

4.1. Di¡usion and equilibrium growth ^

experiments, analytical and numerical solutions

We designed a new experiment in order to test

the analytical and numerical model solutions

under the conditions of di¡usion and equilibrium

regimes.

4.1.1. Experimental procedure

The experimental procedure is presented in Fig.

4. A 1-mm-thick slab of obsidian from Little

Glass Butte (LGB), Oregon, was hydrated for

3 days at 850‡C and P0 =150 MPa in a rapid-

quench cold-seal pressure vessel (see Hurwitz

and Navon, 1994 for description of sample and

of procedure). The sample was then decompressed

to P=111 MPa in order to nucleate bubbles and

cooled to T=700‡C. The sample remained in the

above conditions for half an hour and the bubbles

reached their equilibrium size. At this stage the

sample reached the initial conditions for the

next stage of the experiment, the decompression

stage. The sample was then quenched, taken out

and photographed to obtain the initial parameters

for the decompression stage, radius and shell size,

for as many bubbles as possible. A total of 100

photos were taken to cover the surface of the

sample, 2U4 mm from 5 depth layers.

Fig. 3. The bubble growth regime of decompressing magma

as function of the two governing parameters, 3D and 3V at

two times, (a) t“ = 0.05, and (b) t“ = 0.5. The transition from

the overpressed bubbles (viscous regime) to relaxed bubbles

(dark gray area) is bounded by two curves that represents

95% and 5% of the pressure di¡erence Pgas3Pamb (see Fig. 2

with same markers: cross, circle, square and triangle). Gas

pressure almost equals the ambient pressure slightly higher in

all the ¢elds left from the ‘transition’ zone. For low 3V

(6 0.0001) gas pressure is relaxed regardless 3D, however de-

gassing of the melt depends on 3D and the di¡usion scale

(S0 normalized to Ri). The transition from equilibrium

growth regime to di¡usion controlled regime occurs at

t̂tV3DðS20=R2i Þ. The di¡usive growth is quasi-static when

3D6 ZWt“. The ¢eld of equilibrium grows with time at the ex-

panse of both the di¡usion regime and viscous regime.
Fig. 4. Experimental procedure. Hydration: 3 days at 850‡C

and 150 MPa. Nucleation and initial equilibrium: pressure

drops to 111 MPa, cooling to 700‡C and equilibration for 30

min. Sample was quenched, photographed (triangle, Fig. 5)

and reloaded to exactly the same conditions and a few min-

utes waited to allow thermal and structural relaxation of the

sample. Decompression: pressure drops over 32 s to 70 MPa

at 700‡C, immediate quenching and documenting (cross). Fi-

nal equilibrium: at 70 MPa, 700‡C for 30 min to allow bub-

ble growth to equilibrium, quenching and ¢nal documenta-

tion (circle).
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Having the photographic documentation at

hand, we reloaded the sample and brought it

back to the previous conditions (111 MPa,

700‡C) for half an hour to allow bubbles to return

to equilibrium. At the second stage of the experi-

ment we decompressed the sample in a nearly

constant decompression rate over 32 s, from

Pi =111 MPa to Pf =70 MPa and quenched. Re-

peating the documentation procedure, we were

able to identify bubbles recorded at the previous

stage in about 15 frames. By comparing the ¢g-

ures from the two stages, we obtained the amount

of growth during non-equilibrium decompression.

To verify that the bubbles did not equilibrate dur-

ing decompression, we reloaded it to the ¢nal

pressure of the second stage, Pf , and allowed it

to reach equilibrium, at this pressure, for 30 min,

quenched and photographed. Under the micro-

scope, in spite of reduction of visibility with the

increasing gas volume fraction, we succeeded to

identify 8 frames identical in location to previous

stages.

Using this procedure, we obtained the radii and

shell size of individual bubbles in the three stages

of experiments (initial equilibrium, dynamic and

¢nal equilibrium). This improves the ability to

model the data relative to standard techniques,

where initial bubble radii are unknown and only

the average radius characterizes the dynamic or

¢nal stages.

4.1.2. Experimental results

An example of a frame that was photographed

in all three stages is shown in Fig. 5. We measured

the radii of bubbles that were identi¢ed in pictures

from the three stages. The measurements are pre-

sented in Fig. 6 and in Table 2. Bubbles grew

signi¢cantly at each of the three stages. This

means that starting from initial state in equilibri-

um, at Pi =111 MPa, bubbles grew in disequilib-

rium under continuous decompression until

quenched at Pf =70 MPa. Then, bubbles contin-

ued to grow isobarically until they reached equi-

librium at the ¢nal pressure. Bubbles radii at the

dynamic and ¢nal equilibrium stages correlate

with the initial radii. This demonstrates that bub-

ble growth is also a function of initial bubble size.

Both the initial and ¢nal equilibrium radii can be

Fig. 5. Microphotographs of water bubbles in rhyolitic glass

(experiment NL-526). The three ¢gures show the same region

at the three stages. (a) The initial stage is in equilibrium at

700‡C and 111 MPa, decompressed from hydration condi-

tions of 850‡C and 150 MPa. (b) The dynamic stage of

growth was quenched at 700‡C and 70 MPa. (c) The ¢nal

stage is in equilibrium at 700‡C and 70 MPa. Arrows indi-

cate a single bubble that is identi¢ed in the three experimen-

tal stages. For experimental conditions, see text and Fig. 4.
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calculated using Eq. 8 for equilibrium conditions

(C= const and bgas proportional to Pgas =Pamb).

The ratio of the equilibrium/initial radii is inde-

pendent of the initial shell size, S0 :

Rf

Ri
¼ C03Cf

C03Ci

Pi

Pf

� �1=3

ð31Þ

The concentrations were calculated using Vola-

tileCalc software (Newman and Lowenstern,

2002): C0 =4.94 wt%, Ci =4.58 wt%, Cf =3.62

wt%. The calculated ratio, Ri/Rf =1.8, is in agree-

ment with the measured ¢nal radii (Fig. 6). This

agreement means that the cell model is a reason-

able approximation for describing bubble growth.

The shell radii calculated based on Ri and Rf are

in agreement with radii in the photographs. The

few large bubbles (Fig. 5) were not included in the

analysis because during the half hour equilibra-

tion time additional bubbles nucleated within

their shells.

The e¡ect of non-equilibrium growth is evident

from the comparison between the radii at the dy-

namic and ¢nal equilibrium stages. The non-equi-

librium growth is controlled by the dimensionless

numbers 3D, 3V and t“. The conditions of the

decompression experiment are 3DV1 and

3VV1034, which, according to Fig. 3, fall in

the ¢eld of quasi-static di¡usion. The di¡usion

regime solution (Eq. 23) yields a close ¢t to the

measured radii in the dynamic stage (Fig. 6). The

numerical simulations yield the same results. Pa-

rameters that were used for calculations are

bmelt =2300 kg m33, decompression rate

P5 =1.28W106 Pa s31, viscosity according to Hess

and Dingwell (1996) (10632W106 Pa s) and di¡u-

sivity D=1 Wm2 s31. The numerical model ac-

counts for variable di¡usivity and viscosity (other

parameters are mentioned above and initial radii

in Table 2). The agreement between the numerical

and di¡usive analytical solutions assures that

Table 2

Experimental results (NL-526)

Bubble number Measurements radii (Wm) Calculations radii (Wm)

Ri
a Rd

b Rf
c Rnum

d Rdif
e Req

f

14w-3 13.0 15.8 20.0 16.1 15.6 22.4

14w-4 7.6 9.6 11.0 10.0 9.5 13.1

14w-7 5.6 8.5 10.6 7.9 7.4 9.6

14w-8 6.5 9.6 12.1 8.8 8.3 11.2

14w-5 6.2 7.8 11.5 8.5 8.0 10.7

14w-6 7.4 9.6 11.8 9.8 9.3 12.7

10x-1 9.3 12.1 14.9 11.9 11.4 16.0

10x-2 7.4 9.6 13.6 9.8 9.3 12.7

10x-3 9.3 11.2 15.0 11.9 11.4 16.0

10x-4 8.7 11.5 14.2 11.3 10.7 15.0

10x-5 5.6 8.7 9.6 7.9 6.5 9.6

10x-6 7.5 10.5 13.0 9.9 9.4 12.9

10x-7 9.0 11.8 15.0 11.6 11.1 15.5

10w-4 8.7 10.2 16.0 11.3 10.7 15.0

10w-5 8.7 11.5 16.0 11.3 10.7 15.0

2b-1 6.8 9.3 9.2 8.7 11.7

2b-2 8.8 10.8 11.4 10.8 15.1

2b-4 10.0 12.7 18.0 12.7 12.2 17.2

2b-5 9.3 11.0 18.0 11.9 11.4 16.0

2b-6 10.2 12.6 18.0 12.9 12.4 17.5

a Initial equilibrium radius.
b Dynamic radius measured after continuous decompression.
c Final equilibrium radius.
d Numerical simulation of each bubble, using initial radius (1).
e Di¡usive bubble growth solution (Eq. 23), using initial radius (1).
f Equilibrium growth solution (Eq. 27), using initial radius (1).
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growth is indeed governed by the di¡usive £ux, as

is expected from the dimensionless analysis (Fig. 3

and Eq. 28).

4.2. Di¡usion controlled growth: experiments and

analytical solutions

Gardner et al. (1999) performed controlled de-

compression experiments in which rhyolitic melts

were saturated with water at 200 MPa and 825‡C,

decompressed to lower pressures at constant rates

ranging from 0.025 MPa s31 to 1.0 MPa s31 and

then rapidly quenched at various ¢nal pressures

and documented. They found that at the lower

decompression rate (0.025 MPa s31), melt^vapor

equilibrium was maintained over the entire pres-

sure range examined and measured vesicularity

reached the expected equilibrium size. At higher

decompression rates (0.25^1.0 MPa s31) equilibri-

um was not established, bubbles were smaller

than expected and volatile content in the melt

was higher than the equilibrium values.

According to the dimensionless analysis, the

viscous resistance is unimportant even in the high-

er decompression rate, 3V 6 1035 (Fig. 3). Gas

pressure is thus expected to relax at the very be-

ginning of decompression long before the ¢rst ex-

perimental observation (t“=0.1E1035) (Fig. 2).

However, the role of di¡usion varies according

to the decompression rate. In the low decompres-

sion rate (0.025 MPa s31), the dimensionless time

for melt depletion is 3DWS
2
0/Ri

2
6 0.1, which means

that equilibrium is expected to be achieved from

the beginning of the decompression, t6 0.1, as is

shown in ¢g. 7 in Gardner et al. (1999). Di¡usion

limits the growth of bubbles and the melt remains

supersaturated in the faster decompression experi-

ments (0.25^1.0 MPa s31) since 3DWS
2
0/Ri

2
s 1. In

Fig. 7 we compare measured radii (from ¢g. 8 in

Gardner et al. (1999)) with the radii calculated

according to Eq. 17. The di¡usive growth law

closely follows the experimental results of decom-

pression rates of 1 MPa s31 (Fig. 7A) and decom-

pression rate 0.25 MPa s31 (Fig. 7B). The initial

bubble radius is not known in these experiments,

but is expected to be smaller than the ¢rst ob-

served radii, which is less than 2 Wm. The di¡u-

sion solution in these conditions (Ri6 2 Wm) is

not sensitive for the choice of initial bubble

radius. The di¡usivity that best ¢ts all the data

points of the two di¡erent decompression rates,

1 Wm2s31 (Fig. 7), is in the order of the di¡usivity

reported by Zhang and Behrens (2000).

5. Discussion: gas overpressure in decompressing

magmas

The buildup of gas overpressure and supersatu-

ration during magma eruption are major process-

es controlling the fragmentation of magma. When

the viscous resistance of the melt keeps gas pres-

sure above the ambient pressure, the strength of

the melt walls between the bubbles may be ex-

ceeded and the magma can potentially fragment

(Alidibirov and Dingwell, 1996; Mungall et al.,

1996; Zhang, 1999). Explosive eruptions are com-

monly attributed to such a fragmentation mecha-

Fig. 6. Bubble radius from the three experimental stages vs.

initial bubble radius (Table 2). Bubble size during decom-

pression (crosses) and at ¢nal equilibrium (squares) signi¢-

cantly increase with increasing initial bubble size (Ri, trian-

gles), which means that the initial bubble size is an

important parameter controlling bubble growth. Three theo-

retical curves are plotted: the equilibrium growth curve (thin

dashed line, Eq. 31), di¡usion growth curve (thick line, Eq.

23) and the numerical solution (thick dashed curve), all ac-

count for the initial bubble radius.
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nism (Sparks, 1978; Wilson et al., 1980). As

shown above, the buildup of gas pressure and

supersaturation of erupting magma depend on

the interplay of the three dynamic processes (de-

compression of magma, di¡usion of volatiles and

viscous deformation of the melt). We compare the

predictions of gas overpressure, based on the an-

alytical solutions, with observations from two

eruption styles in silicic volcanoes.

Explosive Plinian eruptions are characterized by

fast decompression rates. Sparks et al. (1994) es-

timated that in the violent explosive eruption of

Mount St. Helens (18 May 1980), the time scale

for the main degassing was tens of seconds or

even less. The viscous time scale is estimated to

be of the same order of magnitude (RV107^108

Pa s, PiV107^108 Pa), thus the dimensionless ra-

tio of the time scales, 3V , is in the order of 0.1^

10. The di¡usion time scale is also estimated as

tens of seconds (RiV10 Wm, DV10311 m2 s31),

thus 3D is also of the order of one. Fig. 8 dem-

onstrates that the eruption conditions fall in the

transition from high to low overpressure, where

bubbles are overpressed and the fragmentation

threshold may be exceeded. New bubbles may

nucleate in the supersaturated melt surrounding

the overpressured bubbles. Due to their smaller

size and correspondingly higher 3D, their gas

pressure is higher and they are more likely to ex-

plode.

We now examine the case of steady £ow in the

deeper part of the conduit during steady Plinian

eruption. Here, dvis =4R/Pi, and ddec =H/V where

H is the depth of initial saturation and V is the

ascent rate. Thus, the dimensionless number re-

lated to viscosity is :

3 V ¼ 4RV

PiH
ð32Þ

Note that if conduit £ow can be approximated

by Poiseuille £ow (i.e. the volume increase of

magma due to bubble growth is small and viscos-

ity is constant), then V ¼ ð4vP=R Þða2=HÞ, and
Eq. 32 simpli¢es to 3V = a

2/H2, where a is the

conduit radius. For a typical conduit geometry,

with conduit diameter of the order of a few tens

of meters and depth of a few kilometers,

3V 6 1033 and, according to Fig. 8, there is no

gas overpressure within the bubbles. Towards the

fragmentation level, viscosity and ascent rate in-

crease, 3V increase accordingly and magma

moves to the right hand side of Fig. 8 where gas

pressure increase.

Lava domes are normally associated with slow

e¡usion of lava. However, in some cases dome

rocks may explode, e.g. Sato et al., 1992, or the

whole dome may be destroyed by sudden onset of

explosive activity (Sparks, 1997). The conditions

preceding such explosions do not di¡er much

Fig. 7. Variations of bubble radius vs. time in experimental

suites of (A) 1.0 MPa s31, and (B) 0.25 MPa s31 (for the

source of data, see Gardner et al. (1999)). Open squares rep-

resent the expected equilibrium radius according to Eq. 27

and curves showing the di¡usive solution Eq. 23. The thick

curve represents the di¡usive regime solution where the value

of di¡usivity (1 Wm2 s31) was ¢tted for both sets (A and B).

Thin and dashed curves are solutions for di¡usivity of 1.0

Wm2 s31 and 0.1 Wm2 s31, respectively.
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from those during magma e¡usion (Sparks et al.,

1994; Sparks, 1997; Melnik and Sparks, 1999).

The viscosity of the cooling and partly degassed

lava in the dome may be 109^1013 Pa s and the

initial supersaturation pressure is of the order of a

few MPa, leading to a viscous time scale of the

order of minutes to weeks. The di¡usion time is

tens to hundreds of seconds. For decompression

time of the order of 106 s (days to weeks; Sparks

et al., 1994), the dimensionless parameters are

3VV1^1034 and 3DV1033^1035. As can be

seen in Fig. 8, the dome growth conditions fall

mostly in the equilibrium regime. However,

when magmas is degassed, 3V increases and the

magma may migrate towards the explosive regime

of Fig. 8 and dome rocks may explode (Sato et

al., 1992; Navon et al., 1998). During major dome

explosions, a fragmentation wave moves down the

conduit, decompression is fast and accordingly

3V and 3D increase and the magma enters the

explosive eruption ¢eld at the upper right part

of Fig. 8.

During ascent, the ambient pressure monotoni-

cally decreases, so that unless decompression is

slow enough, the melt is supersaturated. If gas

pressure in the bubbles is maintained higher

than ambient, it hinders degassing and keeps the

melt supersaturated relative to solubility at ambi-

ent pressure. Even if gas pressure is relaxed to

near ambient, melt away from the bubble may

still be supersaturated due to di¡usion kinetics.

These excess volatiles may pump gas pressure to

above ambient if viscosity increases (as in the case

of the dome above). Cooling due to exsolution,

which becomes signi¢cant as magma approaches

the vent (Sahagian and Proussevitch, 1996), leads

to slowing the di¡usive volatile £ux and leads to

faster release of gas pressure, and on the other

hand to viscosity increase and buildup of gas

overpressure. Another mechanism that may build

gas pressure up is con¢ning the volume of super-

saturated magma, e.g. by plugging the conduit. In

such a case, gas pressure will increase due to de-

gassing from the supersaturated melt until gas

pressure is in equilibrium with the remaining dis-

solved volatiles in the melt. Pressure buildup in

this case is controlled by the rate of volatile dif-

fusion, so the time is roughly the di¡usive time

scale, ddif , of the order of minutes. As pressure

increases by the continuous addition of volatiles

into the melt, it may exceed the strength of the

barrier to £ow and eruption may continue.

6. Conclusions

(1) The interplay of three dynamic processes

controls the growth of bubbles during decompres-

sion of hydrated melts : decompression rate, de-

formation of the viscous melt, and di¡usion of

the volatile specie from the supersaturated melt

into the bubbles. Based on dimensionless analy-

sis, we distinguish three bubble growth regimes.

(a) The viscous regime appears at the initial stage

of decompression when bubbles are small, dif-

fusion is fast and gas pressure remains close

to the initial hydration pressure. Overpressure

(Pgas3Pamb) continuously increases due to the

drop of ambient pressure. (b) The di¡usive regime

occurs when gas pressure follows ambient pres-

sure, but di¡usion degassing is not fast enough

relative to the buildup of supersaturation with

the falling pressure. (c) Equilibrium degassing is

reached when gas pressure closely approaches am-

Fig. 8. Conditions of the explosive eruption of Mount St.

Helens (18 May 1980) and following e¡usive dome eruptions

plotted on the 3D vs. 3V diagram. The explosive eruption

falls in the transition ¢eld where bubbles are overpressed and

the melt is supersaturated. The e¡usive eruptions fall mostly

in the equilibrium-degassing ¢eld and also in the overpres-

sure growth regime.
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bient pressure and di¡usion is fast enough to keep

melt at supersaturation. We present the analytical

solutions of the di¡erent growth regimes.

(2) The conditions for each growth regime in

decompressing magma are a function of two di-

mensionless parameters, which are the ratios of

di¡usive or viscous time scales over the decom-

pression time scale. Using these parameters, 3V

and 3D, it is possible to determine the state of the

£owing magma in terms of the three bubble

growth regimes.

(3) Experimental results on bubble growth dur-

ing decompression of hydrated silicic melts were

used in order to test the model solutions. The

measured radii were successfully ¢tted by the an-

alytical solutions and by a numerical model.

(4) The model solutions, including the division

to the growth regimes as function of the two pa-

rameters, provide estimation of the state of erupt-

ing magma in terms of gas overpressure, super-

saturation and gas volume fraction. The model

results are in agreement with the conditions of

Plinian explosive eruption (e.g. Mount St. Helens,

18 May 1980), where high gas overpressure is ex-

pected. The conditions of e¡usion of lava domes

with sudden onset of explosive activity fall mostly

in the regime of equilibrium degassing and partly

in overpressure conditions.

(5) We analyze the e¡ect of variable di¡usion

on bubble growth. In principle, water di¡usivity

varies with water content. However, we show that

in situation of quasi-static di¡usion during de-

compression, the di¡usive in£ux depends on the

di¡usivity away from the bubble and is not sensi-

tive to the di¡usivity pro¢le. The concentration

pro¢le adjusts so that the water £ux remains uni-

form and is controlled by the far ¢eld £ux.
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