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Abstract

Decrease of the velocity of a pressure wave in magma by the presence of bubbles is regarded as a fundamental
process in seismoacoustic activities of a volcano. However, we show that the large viscosity of magma (v 105 Pa s)
prevents this decrease in wave velocity. To investigate how the acoustic properties of a liquid^bubble mixture depend
on liquid rheology, laboratory experiments were conducted using silicone oil and syrup. Both liquids have a viscosity
as high as 1000 Pa s. Propagation of a pressure wave and the radial motion of a bubble were observed in a shock-
tube-type apparatus, but were quite different in the two liquids. Although the velocity of the pressure wave
significantly decreased as the void fraction in silicone oil did, bubbles did not decrease the wave velocity in syrup.
From conducting several material tests, we found that both liquids are viscoelastic, and that the rigidity (the shear
elasticity) of silicone oil is smaller than that of the syrup by several orders. The motion of a single bubble and
propagation of the pressure wave were calculated using the Oldroyd model for linear viscoelasticity. The numerical
solutions explained the difference as a result of the different rigidities of the two liquids. The same mathematical
model was then applied to understand pressure wave propagation in bubbly magmas with a variety of viscosities.
Results of the experiments and the subsequent numerical analyses suggest that pressure wave propagation in a liquid^
bubble mixture and the motion of a single bubble depend significantly on the viscoelastic properties of the liquid. The
sound velocities of liquids with large viscosities and rigidities are not decreased by bubbles; magmas with high
viscosity are in this category. To evaluate propagation velocity and attenuation of a pressure wave in a bubbly liquid,
we need to deal with the dispersion relationship with an adequate liquid rheology model. The present results give an
insight into the bubble dynamics in a viscoelastic liquid, which is important for developing mathematical and
experimental methods to investigate seismoacoustic phenomena in volcanoes.
4 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Magma is frequently a mixture of liquid, bub-
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bles, and solid particles. When we work on the
seismoacoustic activities of a volcano, we are al-
most certainly confronted with acoustic phenom-
ena problems. In fact, many features of volcanic
activities are ascribed to the presence of bubbles
in magma. Bubbles can signi¢cantly reduce the
sound velocity of magma (Kiefer, 1977) and
may generate spectral features of long-period
earthquakes, tremors, and acoustic waves in the
atmosphere (e.g. Chouet, 1996; Benoit and
McNutt, 1997; Garces and McNutt, 1997; Kuma-
gai and Chouet, 2001). The motion of a huge
bubble in the volcanic conduit can generate seis-
mic waves (Vergniolle and Brandeis, 1996; Ripepe
and Gordeev, 1999), and oscillation or bursting of
bubbles at the magma surface can generate acous-
tic waves in the air (Vergniolle and Brandeis,
1994, 1996; Ripepe et al., 1996).
A considerable number of works have been

published, mainly in the engineering area, on the
dynamics of a single bubble, and on pressure
waves in a bubbly liquid. Radial motion of a sin-
gle bubble was ¢rst formulated by Rayleigh
(1917) for an incompressible Newtonian liquid.
When motion of the bubble is very fast, radiation
of energy as a pressure wave into the liquid be-
comes important. Such an e¡ect was included into
the equation by taking account of liquid compres-
sibility (Keller and Miksis, 1980; Prosperetti and
Lezzi, 1986). E¡ects of heat transfer (Prosperetti,
1991) and mass transfer (e.g. Takemura and Mat-
sumoto, 1994) between the liquid and the bubble
were also formulated and investigated. The equa-
tions were tested by laboratory experiments and
good agreements obtained (e.g. Shima, 1997; Ka-
meda and Matsumoto, 1999). These equations for
a single bubble were applied to formulate the
acoustic properties of a liquid^bubble mixture
(Prosperetti, 1984; Ca£ish et al., 1985;
Commander and Prosperetti, 1989). The acoustic
properties were also formulated based on scatter-
ing theory, which is often used for composite solid
materials (Gaunaurd and Uº berall, 1981; Varadan
et al., 1985). A decrease of the wave velocity, dis-
persion and attenuation represented by these
equations agree well with the laboratory experi-
ments (e.g. Silberman, 1957; Cheyne et al., 1995;
Commander and Prosperetti, 1989). A numerical

method that reproduces the measured waveform
of a shock wave in a bubbly liquid has been pre-
sented (Kameda et al., 1998).
However, all the above studies are intended for

liquids with low viscosity. An important feature
of a magmatic system is the huge variety of the
viscosity, which can be less than 1 Pa s, but can
also be more than 1014 Pa s, and the viscoelastic-
ity with a relaxation time from 10311 to 104 s
(Webb and Dingwell, 1995). Such a large variety
of viscosities has not been treated in the engineer-
ing area. Although we can ¢nd several theoretical
and numerical works on bubble dynamics in var-
ious viscoelastic models (e.g. Fogler and God-
dard, 1970, 1971; Tanasawa and Yang, 1970;
Brujan, 1999), the e¡ects of the elasticity and vis-
cosity have yet to be systematically investigated.
Only a few experiments using highly viscous or
viscoelastic liquids have been reported. Brujan et
al. (1996) observed the behavior of laser-induced
cavitation bubbles in polymer solutions that have
non-Newtonian shear-thinning viscosity. They
recognized an obvious e¡ect of the non-Newton-
ian rheology of the liquids only when a bubble
collapsed very close to a solid boundary. How-
ever, the viscosity of the liquids used in their ex-
periment was still small, 0.01 Pa s.
Although currently theories and models of bub-

ble dynamics developed for low-viscosity liquids
are applied to volcanic systems, their applicability
has not been tested. Possible e¡ects of the high
viscosity and viscoelasticity have been discussed
by several authors. Mikada (1992) pointed out
that sound velocity of magma with high viscosity
might not be e¡ectively decreased by bubbles be-
cause a volumetric change of the bubbles is di⁄-
cult. In such a case, models that assume a low
sound velocity for the magma do not work. Bub-
bles may increase the e¡ective viscosity of the
mixture (Manga and Loewenberg, 2001), causing
large attenuations of pressure waves (Garces et
al., 2000). When magma is excited at periods
smaller than the relaxation time, the melt’s behav-
ior is more akin to a solid than to a liquid, and
viscous attenuation may decrease (Garces et al.,
2000). Viscous magma around a bubble is ex-
pected to exhibit non-Newtonian viscoelastic be-
havior in explosive events and to go into fragmen-
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tation (Dingwell and Webb, 1989). These possibil-
ities need quantitative evaluation.
Recently, experiments investigating the dynam-

ic behaviors of bubbly liquids with high-viscosity
and/or viscoelasticity have begun to be conducted
in the area of volcanology. Bagdassarov and
Dingwell (1993) measured the dynamic shear
modulus of a high-viscosity magma (109:5^1011:5

Pa s) with void fraction of 0^0.3 using the forced
torsion oscillation (0.005^10 Hz). Llewellin et al.
(2002) applied the same technique for a viscous
syrup (40^70 Pa s) with void fractions of 0^0.46.
Both experiments demonstrated the viscoelastic
nature of the mixtures. Lane et al. (2001) con-
ducted a scaled experiment simulating gas^liquid
£ow in a volcanic conduit. They used a gum ros-
in^organic solvent solution, which simulates the
rheology of hydrated magma (Phillips et al.,
1995). They produced various types of two-phase
£ows, from bubbly £ow to fragmented foam £ow,
and demonstrated that pressure oscillations of dif-
ferent characteristics occurred in di¡erent £ow re-
gimes. Although their experiment included lots of
similarities to actual volcanic processes, formula-
tions to describe the complicated phenomena have
not yet been established.
In the present study, we conducted experiments

using two liquids: a high-viscosity silicone oil
(Shin-Etsu KF96H-1M, density 978 kg/m3) and
a commercial syrup (density 1400 kg/m3). The
viscosity of both liquids was about 1000 Pa s,
which is comparable to that of relatively viscous
basaltic magma. Liquids with such a large viscos-
ity have never been used in experiments on bubble
dynamics. We investigated the responses of a bub-
ble and of liquid^bubble mixtures to weak shock
waves. A shock wave was used for three reasons.
Firstly, a stepwise pressure increase is one of the
simplest mathematical functions. Secondly, prop-
agation of a shock wave in bubbly magma is rel-
evant in explosive volcanic phenomena such as
explosion earthquakes (Nishimura and Chouet,
2002) and phreatomagmatic explosions (Zima-
nowski et al., 1991). Thirdly, the phenomena
have been well studied and understood in cases
of low-viscosity liquids (Campbell and Pitcher,
1958; Noordzij and van Wijngaarden, 1974; Ka-
meda et al., 1998).

A shock wave behaves quite di¡erently in the
two test liquids despite similar viscosities and void
fractions. The behavior of a single bubble is also
quite di¡erent in the two liquids. We ascribe the
di¡erences to the di¡erent elastic properties of the
liquids. Mathematical models that adequately de-
scribe the motion of a single bubble and the wave
propagation are explored.
Our experimental conditions are quite simple in

contrast to actual volcanic systems. The major
purpose of the experiments is to establish the fun-
damental theory. We regard it as the essential step
to develop scaling laws for the two-phase phe-
nomena, which are a useful mathematical tool
for volcanology. The present experimental results,
clearly demonstrating the e¡ects of not only vis-
cosity but also elasticity, give new insights into
bubble dynamics in a viscoelastic liquid.
Several material tests are also conducted in or-

der to con¢rm the di¡erent elastic properties of
the liquids. The results are qualitatively consistent
with the theories used to explain the bubble mo-
tion and the wave propagation. However, quanti-
tative comparisons are limited, because the com-
mon methods cannot measure the viscoelastic
properties in the present ranges of parameters
and time. In order to complete our understanding
of the bubble dynamics in viscoelastic liquids, we
need to develop techniques to measure time-de-
pendent material properties in wider ranges.

2. Experimental apparatus and methods

2.1. Shock tube

Fig. 1 shows a sketch of the experimental ap-
paratus. Experiments were conducted using a ver-
tical shock tube made of Pyrex glass having an
inner diameter of 52 mm and a total length of
about 2.8^3.4 m. The shock tube consists of three
parts : atmospheric-pressure liquid (LQ), atmo-
spheric-pressure air (A-P), and high-pressure air
(H-P). The H-P part is initially kept at 150 kPa
and separated from the lower parts by a plastic
diaphragm. A shock wave is generated by an elec-
trical rupturing of the diaphragm.
The test section in the liquid part is made from
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a hollow acrylic rectangular block (77 mmU90
mm) designed to reduce optical distortion. Mini-
mum and maximum wall thicknesses are 12.5 and
33.2 mm, respectively. Photographs are taken
with rear illumination.
Pressure is measured by piezoelectric trans-

ducers (Kistler-603B, rise time 1 Ws, resonant fre-
quency 400 kHz; PCB-113A21, rise time 1 Ws,
resonant frequency 500 kHz). The transducers
are connected to charge ampli¢ers as prescribed
by the manufacturers (Kistler-5011A; PCB-
402A16). The signals are stored in a personal
computer through a digital transient memory
(Autonics, APC-204). The sampling rate is
1 MHz. The transducers are £ush-mounted on
the side-wall of the tube at A in the air and at
L1 and L2 in the test section. The transducers
have been calibrated by the manufacturers. We
also checked that all three transducers record
the same shock-wave amplitude in the shock
tube without liquid (Fig. 4a).

2.2. Pressure wave experiments

When liquid was poured into the shock tube,
the surrounding air was automatically mixed into
the liquid to form bubbles. The pouring height
and the rate were manually controlled so that
bubbles were uniformly distributed in the liquid.
In the experiments with the silicone oil, void

fraction and bubble size distribution could be
modi¢ed after the LQ part was ¢lled with the
liquid^bubble mixture in the following way. The
mixture was pressurized at 150^200 kPa for about
10 min and released. Under compression, a cer-
tain amount of air in the bubbles dissolved into
the liquid. Completely dissolved bubbles did not
exsolve when the mixture was brought back to the
atmospheric pressure. Because smaller bubbles are
more likely to dissolve due to surface tension, the
size distribution of the remaining bubbles became
more uniform after this procedure. According to
the material report provided by the manufacturer,
the solubility of air in the silicone oil is 20 vol% at
atmospheric pressure. The liquid was not in equi-
librium with the bubbles in the experiments and
bubbles grew or shrank in minutes. Because this
time scale, which is controlled by di¡usion of the
air in the liquid, is much longer than the time
scale of one experiment (ms), the di¡usion e¡ect
on the experimental results is regarded as being
unimportant. The solubility of air in the syrup
seems much smaller than that of the silicone oil,
though precise details of it are not known; thus
this method was not e¡ective for the syrup.
The test section was photographed just before

each experiment (Fig. 2). Void fraction (P) for
each experiment was determined by measuring
radii of all bubbles in a certain part of the test
section (Fig. 2, inside the green frame). Bubble
radii were measured by ¢tting circles (red circles
in Fig. 2) to the bubbles one by one. For the
examples in Fig. 2, we obtained (a) P=0.0116
and (b) P=0.0113. Because the resolution of the
digital images is 0.07 mm/pixel, the measurement
error due to uncertainty of the bubble edge is
T 0.035 mm. With consideration of the error,
ranges of the void fractions for the cases in Fig.
2 are (a) 0.0085^0.0135 and (b) 0.01^0.0128, re-
spectively.

Fig. 1. A vertical shock tube consisting of atmospheric-pres-
sure liquid (LQ), atmospheric-pressure air (A-P), and high-
pressure air (H-P) parts. A detailed sketch of the test section
and the bubble injector are shown at bottom right.
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Since it took almost a day to analyze just one
image utilizing the precise method above, we ap-
plied a quick method for most experiments. Using
this method, we recorded positions of three arbi-
trary points on the edge of each bubble on the
image coordinate. Then the radius of a circle pass-
ing through the three points was calculated. Dif-
ferences between the void fractions obtained by
the precise method and the quick method were
smaller than the possible error due to image res-
olution. For example, in the case of Fig. 2a, we
obtained 0.0101 by the quick method as against
0.0116 by the precise one. In another case, we
obtained 0.0042 and 0.0038 by the quick and
the precise methods, respectively.
Because acrylic is a relatively £exible material,

wave propagation inside the test section may be
a¡ected by deformation of the wall. Velocity c of
a pressure wave in a circular tube is represented
by:

c ¼ coffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f ðxÞbc2o=E

p ð1Þ

f ðxÞ ¼ 13X þ ð1þ X Þð1þ xÞ2
xð1þ x=2Þ ð2Þ

where co and b are the sound velocity and the
density of the liquid (or mixture) in the tube, re-
spectively, E and X are the Young modulus and

the Poisson ratio of the tube material, respec-
tively, and x is the wall thickness divided by the
inner radius (Matsuo et al., 1997). Using E=3
GPa, X=0.3 and 0.486x6 1.28 for the test
section, we ¢nd that 5.0U108 Pa6E/f(x)6
8.5U108 Pa. When bc2ovE/f(x), namely, when
the sound velocity co is larger than several hun-
dreds m/s, the actual value is not measured. In
fact, Eq. 1 is applicable to long waves, because
it is based on an assumption of static deforma-
tion, which is axi-symmetric and uniform along
the tube axis. For a short wave such as the
shock-wave front, the e¡ect of wall deformation
may be smaller. Nevertheless, the e¡ect should be
taken into consideration in these conditions. In
order to reduce such an e¡ect, pressure was mea-
sured in a brass tube (E=100 GPa, X=0.35,
x=0.54) in some experiments. The acrylic tube
was inserted 200 mm below the brass section,
and the void fraction was measured there.

2.3. The single-bubble experiments

We attempted to investigate motion of a single
bubble in the absence of other surrounding bub-
bles.
To remove bubbles from the silicone oil in the

LQ part, we pressurized the mixture at 150^200
kPa until all bubbles dissolved into the liquid.

Fig. 2. Images of the test section taken just before the incidence of the pressure waves. All the bubbles recognized in the green
frame have been ¢tted with circles. By measuring the radii of the circles, the void fractions were determined as (a) 0.0116
(0.0085^0.0135) and (b) 0.0113 (0.01^0.0128). The uncertainty is due to the image resolution (0.07 mm/pixels).

VOLGEO 2668 20-11-03 Cyaan Magenta Geel Zwart

M. Ichihara et al. / Journal of Volcanology and Geothermal Research 129 (2004) 37^60 41



Next, an injector was inserted from a small hole
beneath the test section (Fig. 1) and air was in-
jected. The size of the bubble was adjusted by
moving the injector piston. After making a bub-
ble, the injector was removed and the hole was
closed with a screw. When the bubble rose to
the same level as one of the transducers in the
test section, the experiment was started. The bub-
ble motion was observed using a high-speed dig-
ital video camera (Photoron FASTCAM-Ultima-
UV) at a rate of 13 500 frames per second (fps).
The image resolution of the camera with that
frame rate was 128U128 pixels. The images
were at once recorded on S-VHS tape, and trans-
ferred to a computer for analyses. The bubble
radius was measured on each frame by the meth-
ods described above. The needle of the injector
was photographed in advance with the same cam-
era setting in order to be used as a scale (Fig. 3a).

In the example presented in Fig. 3a^c, measure-
ment errors due to uncertainties regarding the
edges are 0.013 and 0.04 mm for the needle (outer
diameter 0.8 mm) and for the bubble (radius 1.11
mm), respectively.
For the syrup, we decreased viscosity by warm-

ing the liquid above 90‡C and let the bubbles go.
Experiments were conducted with a void fraction
smaller than 0.004. One bubble, isolated from the
others and located at a level of one of the trans-
ducers, was chosen. The bubble motion was taken
by a high-speed digital video camera (nac MEM-
RICAM-K3) at a rate of 4000 fps with 640U256
pixels. The images were recorded on mini-DV
tape, and analyzed on a computer. The transducer
holder was used as a scale (Fig. 3d). An example
is presented in Fig. 3d^f; measurement errors are
0.054 mm for the 2.5 mm scaler and 0.013 mm for
the bubble (radius 0.65 mm).

Fig. 3. Images taken by the high-speed video camera in the single-bubble experiments in silicone oil (panels a^c) and in syrup
(panels d^f). The uncertainty of the edges is indicated by arrows. (a) The needle of the bubble injector is used as a scale. (b) A
magni¢ed view of panel a. (c) A magni¢ed view of a bubble (radius 1.1 mm). (d) The sensor holder is used as a scale. (e) A mag-
ni¢ed view of panel d. (f) A magni¢ed view of a bubble (radius 0.65 mm).
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3. Experimental results and preliminary analyses

3.1. Pressure wave in bubbly liquids

A shock wave generated in the apparatus with-
out liquid was measured by the pressure trans-
ducers A, L1, and L2 as presented in Fig. 1. All
three transducers recorded the same shock-wave
amplitude (Fig. 4a), indicating that they were ad-
equately calibrated.
Using the same set of transducers, pressure

waves were measured in silicone oil with various
void fractions (P). Results for PV0, 0.009, and
0.018 are presented in Fig. 4b^d. In each ¢gure,
the numbers indicating the individual lines repre-
sent distances (mm) measured from the liquid sur-
face, positive downward. Two shock waves are
recorded at A: the ¢rst step up to V20 kPa is
the incident shock wave going downward, and the
second one to V40 kPa is its re£ection from the

liquid surface. The origin of the horizontal axis is
set at the time when the ¢rst pressure perturba-
tion is recognized on the pressure pro¢le at L1.
In Fig. 4b with few bubbles, the sharp shock

front propagates into the liquid. The propagation
velocity of the wave front is 868 m/s. The re£ec-
tion wave from the bottom arrives at tV2 ms.
Pressure oscillation in a similar time scale is
caused by wave re£ections between the bottom
and the surface of the liquid column. Fluctuations
at higher frequencies right after the shock front
are considered to be due to the non-£at liquid
surface, remaining small bubbles, and oscillation
of the tube wall.
As the void fraction increases (Fig. 4c,d), the

wave front becomes smoother, and the propaga-
tion velocity and the amplitude decrease. The
waveform, consisting of the smooth front fol-
lowed by oscillation, is similar to a typical shock
wave in a low-viscosity liquid containing bubbles
(Noordzij and van Wijngaarden, 1974). A weak
precursor is recognized ahead of the main step, as
indicated by arrows. The velocity of the precursor
is more than 900 m/s. The green triangles in Fig.
4c,d indicate the points at which pressure in-
creases by 10% of the maximum value on each
pro¢le.
Using the time interval between these points,

wave velocities were calculated as 212 m/s for
P=0.009 (Fig. 4c), and 113 m/s for P=0.018
(Fig. 4d). Matsumoto and Kameda (1996) mea-
sured wave velocity in the same way in a bubbly
liquid with low viscosity. Their results were in
good agreement with the theoretical shock-wave
velocity in a liquid with a small fraction of bub-
bles and without dissipation (Campbell and Pitch-
er, 1958):

cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 þ vp
b P ð13P Þ

r
ð3Þ

where cm is the velocity of the shock-wave front,
p0 is the initial pressure, vp is the shock-wave
amplitude, and b is the density of the liquid.
For the cases in Fig. 4c,d, cm =124 m/s
(P=0.009, vp=3.5U104 Pa) and cm =84 m/s
(P=0.018, vp=2.5U104 Pa). The measured
wave velocities (212 m/s in Fig. 4c, 113 m/s in
Fig. 4d) are larger than those given by Eq. 3.

Fig. 4. Pressure waves in the empty shock tube (a), in sili-
cone oil with void fractions of 0 (a), 0.009 (b), and 0.018 (c),
respectively. The broken black line, the red line, and the blue
line are the data taken at A, L1, and L2 in the shock tube
(Fig. 1), respectively. The numbers indicating the lines are
distances of the transducers in mm measured from the liquid
surface, positive downward. In panels c and d, the precursor
signal on each pro¢le is indicated by an arrow of the same
color. The points at which the pressure increases by 10% of
the maximum value on each pro¢le are indicated by green
triangles. The wave velocity is calculated using the time inter-
val between the triangles.
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To obtain these values from Eq. 3, we need
P=0.003 and 0.01, respectively. These values are
too small compared with the observation even if
we take account of the measurement error. It is
also noted that the present analysis tends to
underestimate the wave velocity, because the
wave front becomes smoother as it propagates.
A pressure wave in syrup with P=0.006 is pre-

sented in Fig. 5a. The wave velocity is obviously
much larger (650 m/s using the 10% points), and
the wave front is steeper than the waves in sili-
cone oil. Separation between the precursor and
the main wave front is not clear in the syrup.
Because of the large wave velocity, deformation
of the acrylic tube cannot be ignored. We con-
ducted experiments with the brass tube, and ob-
tained a wave velocity as large as 1620 m/s with a
void fraction of P=0.011 (Fig. 5b). Although the
amplitude of the wave decreases signi¢cantly as it
propagates, the wave front is as steep as that in
the bubble-free liquid (Fig. 5c). If the waveforms
in Fig. 5b,c with the normalized amplitudes (Fig.
6) are compared, that the red and the blue pairs
of lines have identical slopes, except for the initial

Fig. 5. Pressure waves in syrup with void fractions of 0.006
(a), 0.011 (b), and 0 (c). The acrylic test section was used for
panel a and the brass test section was used for panels b and
c. The numbers indicating the lines are distances of the
transducers in mm measured from the liquid surface, positive
downward.

Fig. 6. The wave pro¢les in syrup with void fractions of
0.011 (Fig. 5c) and 0 (Fig. 5d) are compared with the ampli-
tude normalized to unity. Onsets of the waves are indicated
by arrows.

Fig. 7. Images of a single bubble in silicone oil. The broken circle indicates the bubble surface.
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small steps indicated by arrows, can be seen.
These steps propagate at the same velocity (2000
m/s) in both cases and can be regarded as corre-
sponding to the precursor in the silicone oil.
Without bubbles, the main phase propagates as
fast as the precursor, and faster than in the case
with bubbles.

3.2. Motion of a single bubble

Because it is acknowledged that the pressure
wave in a bubbly liquid is controlled by volumet-
ric changes of individual bubbles (van Wijngaar-
den, 1972), we investigated the motion of a single
bubble in those liquids. The results are presented
below.
Selected frames of the video records of the mo-

tion of a single bubble in silicone oil are presented
in Fig. 7. The images were taken with the same
scale as Fig. 3a^c. The bubble surface is ¢tted by
a broken circle. We can see that the spherical
shape of the bubble is maintained during its mo-
tion. On the images at times 5.778 and 5.926 ms,

the bubble motion is so fast that two di¡erent
radii are recognized on a single frame. We mea-
sured both and took their average as the radius at
each of those times. The initial radius was
1.105T 0.025 mm.
Changes of bubble radius in silicone oil and

syrup are plotted in Fig. 8a,b, respectively. In
Fig. 8a, the closed circles connected with dotted
lines represent data obtained by the quick mea-
surement. The accuracy of the measurement is
supported by the open circles obtained indepen-
dently by the precise method. The solid lines dis-
play pressure changes measured by a transducer
at the same level as the bubble. It can be seen, at
a glance, that bubble behavior is quite di¡erent
between the two liquids.
Two phases are distinguished in the bubble in

Fig. 8a: a rapid decrease in the radius followed by
a more gradual decrease. Rapid oscillation is
superimposed on the second phase. We infer
that the rapid and the slow shrinkage regimes
are exposures of the elastic and viscous responses
of the bubble, respectively.

4. Viscoelastic properties of the liquids

We applied several rheology tests to the test
liquids. It is noted that there is no established
method to measure the dynamic properties of
liquids in the time scale of the present experiment
(0.1^1 ms), though some new methods are under
development (Yoneda, 1998, 2000; Kajitani et al.,
2002).
The measured properties are summarized in Ta-

ble 1. The important results obtained by the
rheology tests are:
(1) Both the silicone oil and the syrup have

viscoelastic properties.
(2) While the viscosities of the liquids are sim-

ilar, the rigidity of the silicone oil is three orders
smaller than that of the syrup.
The methods to obtain these values are ex-

plained below.

4.1. Long-term responses

The slow response of the silicone oil was mea-

Fig. 8. Results of the single-bubble experiment (a) in silicone
oil, and (b) in syrup. The points represent changes of the
bubble radius and the solid line represents pressure changes
measured at the same level as the bubble. The bubble radius
was measured by precise and quick methods for panel a (see
the text for details). The results are shown by the closed and
open circles, which agree well with each other.
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sured by static and dynamic tests using a rota-
tional stress rheometer (Rheometric Scienti¢c,
SR-200). The rheometer applies a given torsion
stress to the specimen inserted between two plates
(25 mm diameter, 1.4 mm gap) and measures the
strain.
In the static test, a ¢xed torsion stress is applied

to the specimen (for 30 s in the present case) and
then removed. From the strain rate under torsion
stress and recovery after stress release, viscosity
(Rs) and rigidity (Ws) are calculated (Graessley,
1993). Applying a torsion stress of 100 Pa, we
obtained Rs = 960 Pa s and Ws = 8.2 kPa, respec-
tively. Viscosity tended to decrease and rigidity to
increase as the stress and strain rate increased.
For 1000 Pa, we obtained Rs = 930 Pa s and
Ws = 9.3 kPa, respectively.
For the dynamic test, a sinusoidal torsion stress

is applied. By measuring the amplitude and the
phase delay of the associated strain, we obtain
the complex shear modulus as a function of an-
gular frequency g. The test was done for the
available frequency range of the apparatus, and
the result is presented in Fig. 9 with open circles
and squares. The solid and broken lines and tri-
angles in the ¢gure are described later. The fre-
quency dependence of the complex modulus is
similar to that of a typical polymeric viscoelastic
liquid in the viscous frequency domain (Graessley,
1993). The real part, GP(g), and the imaginary
part, GQ(g), represent the elastic and viscous re-
sponses of the material, respectively. They are
linked to Ws and Rs in their low-frequency limit
as limg!0GP(g)/g2 =R

2
s /Ws and limg!0GQ(g)/g=

Rs, respectively (Graessley, 1993). From the data
presented in Fig. 9, we obtained Rs = 960 Pa s and
Ws = 8.3 kPa, respectively, which are consistent
with the results of the static test.
We tried the same tests on the syrup. However,

the syrup protruded out of the plates and mea-
surements were unstable. Viscosity of the syrup
was measured by a rotational viscometer. It had
the value of 850 Pa s right after it was taken out
of the container. When the syrup was heated to
90‡C to remove bubbles, and then cooled to room
temperature (21‡C), its viscosity increased to 1150
Pa s. We consider that this viscosity increase is
due to the loss of water.

Table 1
Mechanical properties of the silicone oil (Shin-Etsu KF96-1M) and the syrup used in the model and measured by the mechanical
tests

Silicone oil Syrup Magma

Model Measured Method Model Measured Method Model

W (MPa) 0.12 0.22^3.9 Ultrasound 700 700^960 Ultrasound 104

R (Pa s) 84 960 Rheometer 1150 1150 Viscometer 100�14

h (Pa s) 1.68 ^ 0 ^ 0
K (GPa) 1 1 Ultrasound 8 8 Ultrasound 20
b (kg/m3) 980 980 Catalog 1400 1400 Measured 2600
Kg (MPa) 0.1 0.1 Atmosperic-p 0.1 0.1 Atmospheric-p 1

Representative values for magma are also listed.

Fig. 9. The dynamic rigidity of silicone oil is shown as a
function of angular frequency g. The real and the imaginary
parts of the dynamic rigidity are denoted by GP(g) and
GQ(g), respectively. The open symbols are the data measured
by a stress rheometer. The lines are the model employed in
the numerical analyses with the parameters listed in Table 1.
The time range of the present experiment is indicated on the
upper horizontal axis. The triangles are presented by Kajitani
et al. (2002) based on their observation of bubble oscillation.
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4.2. Short-term responses

In order to observe the short-term behaviors of
the liquids, ultrasonic tests were conducted.
A pair of piezoelectric s-wave transducers

(Panametrics V153, 1 MHz) were used in trans-
mission mode at various spacings, and the veloc-
ities of the p-wave and s-wave (denoted by cp and
cs) were determined from the transfer time of the
acoustic wave.
The bulk modulus, K, and the rigidity, W, of the

liquids are calculated using the relation,

cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK þ 4

3W Þ=b
q

and cs ¼
ffiffiffiffiffiffiffiffiffiffi
W=b

p
, respectively

(Webb and Dingwell, 1995).
Fig. 10 shows the output of the receiver trans-

ducer. In silicone oil, the distance between the
transducers (L) was changed from 0.05 to 1.4
mm, and data taken every 0.05 mm. Fig. 10a
shows the data from L=0.1 mm to L=1.0 mm
with an interval of 0.1 mm. In syrup, L was
changed from 0.5 to 3.5 mm, and data taken
with intervals of 0.25 or 0.1 mm. Fig. 10b presents
the data from L=1.5 mm to L=2.4 mm with an
interval of 0.1 mm (solid lines) and the data for
L=3.5 mm (broken line). The ¢rst positive phase,
seen in both liquids, is regarded as the p-wave.

Although the transducers are designed for an
s-wave, slightly non-parallel alignment of the
transducers produces a p-wave signal. The prop-
agation velocities are determined as 1000 m/s in
the silicone oil and 2500 m/s in the syrup. In Fig.
10a, the equally spaced initial phases start to be
entangled around t=2 Ws. This is ascribed to the
arrival of the re£ected p-wave, because the distur-
bance propagates with an apparent velocity of
V1000/3 m/s and has the same polarity as the
¢rst one. The s-wave is not distinguished in the
wave ¢eld. On the other hand, in Fig. 10b, the
di¡erent phase after the ¢rst wave peaks has the
opposite polarity from the ¢rst phase. We regard
this as the s-wave. When the broken line is sub-
tracted from the other wave pro¢les, with the time
and the amplitude adjusted so that the p-wave
phase is canceled, the second phase becomes
clearer (Fig. 10c). Onsets of the second phase
are marked with solid circles. The propagation
velocity was determined as 710 m/s. The corre-
sponding rigidity is Wr =700 MPa.
Yoneda (personal communication, 2002) mea-

sured rigidity of these liquids by the re£ection
method. He put the liquids on a bu¡er rod at-
tached to an s-wave transducer (Panametrics,
V220-BA-RM, 5 MHz). An s-wave was generated
by the transducer, and as the wave re£ected from
the interface between the rod and the liquid, it
was measured by the same transducer. The ratio
of the re£ected s-wave amplitude to the incident
s-wave amplitude is:

Rol ¼ Ao
bcs3b ocso
bcs þ b ocso

ð4Þ

where quantities for the rod are indicated with a
subscript ‘o’, and Ao is the attenuation factor of
the system. By measuring the re£ectivity of the
rod^air interface (Roa), Ao is determined as
Roa =3Ao. The rod is made of fused silica with
bo = 2200 kg/m3 and cso = 3760 m/s. Using the
known densities of the liquids, the s-wave veloc-
ities of the silicone oil and the syrup were deter-
mined as 39T 24 m/s and 826 m/s, respectively.
The corresponding rigidities are 0.22^3.9 MPa
and 960 MPa, respectively. The accuracy of the
data for the silicone oil is limited, because the
di¡erence between Rol and Roa is very small.

Fig. 10. Signals taken by the receiver transducer in the ultra-
sonic tests. (a) Data in silicone oil for source^receiver distan-
ces from 0.1 to 1 mm with an interval of 0.1 mm. (b) Data
in syrup for source^receiver distances from 1.5 to 2.4 mm
with an interval of 0.1 mm. The broken line is for the dis-
tance of 3.5 mm. (c) The broken line is subtracted from each
pro¢le in panel b so that the ¢rst positive phases (the
p-wave) are canceled. The points indicate the onset of the
second negative phases (the s-wave).
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5. Numerical calculation

5.1. Single bubble behavior

We now show that di¡erent bubble behaviors
can be ascribed to di¡erent rigidities.
We employ the equation of motion for a spher-

ical bubble in an incompressible liquid with linear
viscoelasticity (Fogler and Goddard, 1970). It is
acknowledged for low-viscosity liquids that liquid
compressibility is unimportant when the bubble
wall velocity is much smaller than the sound ve-
locity of the liquid (Prosperetti and Lezzi, 1986).
The e¡ect of liquid compressibility on bubble os-
cillation in viscoelastic liquids has not been su¡-
ciently investigated, and needs to be the subject of
further investigation.
The equation presented by Fogler and Goddard

(1970) is:

R€RRþ 3
2
_RR2 ¼ 1

b

pg3
R

R
r

3d rr
r
dr3

2c s
R

3p3po

� �
ð5Þ

d rr ¼ 32
R

t
0Nðt3t0Þ _OO rrdt0 ð6Þ

where R is the bubble radius, r is the distance
from the center of the bubble, t is the time, cs
is the surface tension, p and po are the acoustic
and the static pressures in the liquid, respectively,
pg is the pressure in the bubble, drr and Orr are the
radial components of deviatoric stress and strain
rate tensors, respectively, and N(t) is a memory
function for a relaxation modulus. The integral
term in Eq. 5 is transformed as:

R
R
r

3d rr

r
dr ¼

12
R

t
0Nðt3t0ÞR

2ðt0Þ _RRðt0Þln½Rðt0Þ=RðtÞ

R3ðt0Þ3R3ðtÞ dt0 ð7Þ

In Eq. 7, the following relations required by the
continuity and incompressibility of the liquid were
used:

ur ¼
_RRR2

r2
ð8Þ

ðr0Þ3 ¼ r3 þ R3ðt0Þ3R3ðtÞ ð9Þ

where rP denotes the position at past time tP

(09 tP9 t) of a particle which is at position r at
the present time t.
From the bubble behavior in the silicone oil, we

infer that the liquid ¢rst deforms elastically and
then relaxes viscously. In order to represent such
a property, we employ the linear Oldroyd model
(Tanasawa and Yang, 1970; Fogler and Goddard,
1971), which consists of one elastic component
and two viscous components, as schematically
shown in Fig. 11. The model is equivalent to the
Je¡reys model (Barnes et al., 1989). The corre-
sponding memory function is :

NðtÞ ¼ h NðtÞ þ Wexpð3t=d Þ ð10Þ

d ¼ R=W ð11Þ

where W represents the elasticity, d the relaxation
time, and R and h the viscosity. The model in-
cludes the Maxwell viscoelastic model as a case
with h=0. It also includes the Newtonian liquid
as a case in which h=0 and WCr with R=Wd

¢xed.
Substituting Eq. 10 into Eq. 7, one obtains:

R
R
r

3d rr
r
dr ¼ 4h

_RR
R
þ

12W
R

t
0exp 3

t3t0

d

� �
R2ðt0Þ _RRðt0Þln½Rðt0Þ=RðtÞ


R3ðt0Þ3R3ðtÞ dt0 ð12Þ

Eq. 5 with Eq. 12 were solved numerically by
the fourth order Runge^Kutta method. The sur-
face tension was neglected. Integration in Eq. 7
was calculated with the trapezoid method in the
range t315d6 tP6 t, and the contribution of the
integral outside this range was negligible. The am-
bient pressure p at each time step was given by
interpolation of the experimental data. The pres-
sure inside the bubble, pg, was calculated assum-
ing an isotropic process:

pgR3Q ¼ pgoR
3Q
o ð13Þ

Fig. 11. Schematic diagram of the linear Oldroyd model.
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where the subscript ’o’ indicates the initial values
at time zero and is the ratio of speci¢c heats of
the air. The initial conditions are R=Ro and
R? =0.
First, we assume the Maxwell model (h=0),

and take W and R as variable parameters. Fig.
12 shows the numerical results (the line), which
¢t the experiments (the circles) relatively well. For
silicone oil (Fig. 12a), we use W=120 kPa and
R=84 Pa s. It can be seen that initial rapid
shrinkage and following gradual shrinkage with
oscillation are reproduced. However, the ampli-
tude of bubble oscillation was too large in the
calculation. For syrup (Fig. 12b), we use W=700
MPa obtained by the ultrasonic test and R=1150
Pa s measured by the rotational viscometer.
Agreement of the data and the numerical solution
is quite good, and the solution hardly changes if
we use W=960 MPa obtained by the re£ection
method.
The rapid oscillation of the bubble in the nu-

merical solution in Fig. 12a occurs in the elastic

regime of silicone oil, because the period (V0.2
ms) is shorter than the assumed relaxation time
(R/W=0.7 ms). The elastic oscillation is damped as
the relaxation time gets shorter and closer to the
oscillation period, because a larger fraction of the
elastic energy that concerns the oscillation relaxes
within a period. The relaxation time is shortened
either by increasing the rigidity or decreasing the
viscosity. Then, the oscillation amplitudes in the
numerical solutions become smaller (Fig. 13a).
However, agreement in the general pro¢le be-
comes poorer. Although the measured rigidity
W=220 kPa may be available, the oscillation be-
comes very large and agreement is poor with the
measured viscosity R=960 Pa s. Thus, we need to
assume a much smaller viscosity (Fig. 13b). It
may seem contradictory that damping of bubble
oscillation increases as the viscosity decreases.
Damping usually increases as the viscosity in-
creases in a viscous liquid. However, the oscilla-
tion in these ¢gures occurs in the elastic regime,
with a period shorter than the relaxation time of
the silicone oil. As the viscosity decreases, the
relaxation time shortens and becomes closer to
the oscillation period. Finally, the elastic energy

Fig. 12. Numerical solutions for the bubble radius with
Maxwell viscoelastic model (Oldroyd model with h=0). The
conditions correspond to the experiments shown in Fig. 8.
(a) For silicone oil, the rigidity and viscosity are chosen so
that the solution ¢ts the experimental data. (b) For syrup,
the rigidity and viscosity measured by the material tests are
used in the calculation.

Fig. 13. Numerical solutions for bubble radii with di¡erent
viscoelastic parameters for the same conditions as in Fig.
12a.
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that concerns the oscillation relaxes within a peri-
od and the elastic oscillation vanishes.
Next, the second dashpot of the Oldroyd mode

is added. In Fig. 14, we use W=120 kPa and
R=84 Pa s as in Fig. 12, with another viscous
component, h=R/50. Agreement between the so-
lution and the experimental data is excellent.
The mechanical properties of the liquids that ¢t

the bubble motion are summarized in Table 1.
The relation between these parameters and the
measured properties is discussed in Section 6.1.

5.2. Pressure wave in bubbly liquids

We now demonstrate that the di¡erent features
in the pressure waves can also be ascribed to the
di¡erent rigidities of the silicone oil and syrup.
The same viscoelastic parameters that were used
to ¢t the motion of a single bubble (Table 1) are
used in the following calculations. We also in-
cluded the bulk modulus of the liquid in order
to describe wave propagation in the liquid.
A one-dimensional plane pressure wave can be

represented in a Fourier integral form as:

pðt; zÞ ¼
R

r
3rFðg Þeiðkmðg Þz3g tÞdg ð14Þ

where z is the space axis toward the direction of
the wave propagation, t is time, g is angular fre-
quency, and F(g) is the Fourier component of p
at z=0. The wave number, km(g), is given by the
dispersion relation for a pressure wave in the bub-
bly liquid as a function of g. The mathematical
method to obtain the dispersion relation is de-
scribed in the Appendix.

We assume a stepwise pressure increase at
z=0:

pðt; 0Þ ¼
0ðt90Þ

vpðts0Þ

(
ð15Þ

The Fourier transform of Eq. 15 is :

Fðg Þ ¼ 3
vp
2Zg i

ð16Þ

Eq. 16 is substituted into Eq. 14 and the inte-
gration in Eq. 14 is partially conducted around
the pole at g=0. Then one obtains:

pðt; zÞ
vp

¼ 1
2
3
1
2Zi

R
r
þ0
eikmðg Þz3ig t3eikmð3g Þzþig t

g

dg ð17Þ

Eq. 17 is numerically integrated with the trap-
ezoid method. The integration is calculated in the
range 10359gR/cp9 1.5, where R is the average
bubble radius and cp is the p-wave velocity of the
liquid. These upper and lower bounds were deter-
mined so that the step function Eq. 15 was re-
produced in the time scale we are interested in
(1 Ws6 t6 2 ms). The results of the calculations
and experiments are compared in Figs. 15 and 16.
The size distributions of the bubbles (frame b)
measured in each experiment were used in the
calculation. The corresponding dispersion relation

Fig. 15. The pressure wave in silicone oil is calculated using
the Oldroyd model with parameters listed in Table 1. The so-
lution is compared with the corresponding experiment in
panel a. The measured bubble size distribution (panel b) was
used in the calculation. Phase velocity (cm) and the attenua-
tion factor (Q31

m ) calculated byEqs. A43 and A44 for these
conditions are shown in panel c.

Fig. 14. The numerical solution for bubble radius with the
linear Oldroyd model (W=120 kPa, R=84 Pa s, h=1.68 Pa
s), which ¢ts the experimental data in the silicone oil.
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(the phase velocity and the attenuation factor) is
displayed as a function of frequency in frame c.
In Fig. 15a, the main features of the pressure

wave are reproduced by the calculation. Also, the
small precursor is recognized in the calculated
wave pro¢le. The propagation velocity of the pre-
cursor and the main phase in the calculated pro-
¢le agree well with the experimental data. To ob-
tain complete agreement, we might need two- or
three-dimensional calculations including precise
positions and sizes of all the bubbles on the
wave path (Kameda and Matsumoto, 1996; Ka-
meda et al., 1998).
Agreement of the calculations with the experi-

mental data is not as good for the syrup (Fig. 16)
as for the silicone oil. In the experimental data, a
small step is separated from the main phase, and
the wave front is less steep. Since these character-
istics were observed in syrup even without bubbles
(Fig. 6), we assume that they are generated by the
physical properties of the syrup that have not
been represented in the present model, or in the
experimental setup. While the pressure is almost
constant after the rapid increase at the wave front
in the experiment, the calculated pressure contin-
ues to increase gradually and becomes much larg-
er than the experimental data. With all these dis-

crepancies unresolved, the calculation represents
an important feature: the wave front propagates
much faster in syrup than in silicone oil, or than
the theoretical velocity given by Eq. 3.

6. Discussion

6.1. Meaning of the ¢tting parameters

In Section 5.1, we explained the motions of a
single bubble in silicone oil and in syrup by em-
ploying the linear Oldroyd model. The model in-
cludes three parameters, W, R, and h. In syrup, W
and R used in the calculations are consistent with
the rigidity and the viscosity measured in the me-
chanical tests ; h was not used. On the other hand,
in silicone oil, the parameters chosen to ¢t the
numerical solution to the experimental data have
not been supported by the mechanical tests. The
relation between these parameters and the mea-
sured properties of the liquids are discussed be-
low.
The observations of the motion of a single bub-

ble were conducted on a time scale of 0.1^5 ms,
bounded by the length of time of the experiment
(5 ms) and the frame rate of the video camera
(6 13 500 fps). If we estimate the relaxation times
of the liquids, which are de¢ned by Eq. 11, using
the viscosities and the rigidities obtained by the
mechanical tests, we obtain 1.2^1.6 Ws for the syr-
up (R=1150 Pa s, W=700^980 MPa) and 0.25^4.4
ms for the silicone oil (R=960 Pa s, W=0.22^3.9
MPa). The short relaxation time indicates that the
syrup is completely in its viscous regime in the
experiment. We consider that is why the bubble
motion is consistent with the static viscosity. On
the other hand, the estimated relaxation time of
the silicone oil is exactly in the range of the ex-
periment. Complex liquid behaviors related to vis-
coelastic properties are expected from this result,
and have actually been observed in the experi-
ments.
The dynamic rigidity (Wg ) corresponding to the

model for silicone oil (W=120 kPa, R=84 Pa s,
h=1.68 Pa s) was calculated by Eq. A41. The real
and the imaginary parts of Wg , which are denoted
by GP and GQ, respectively, are presented by solid

Fig. 16. The pressure wave in syrup is calculated using the
Oldroyd model with parameters listed in Table 1. The solu-
tion is compared with the corresponding experiment in panel
a. The bubble size distributions (panel b) measured in the ex-
periment were used in the calculations. Phase velocity (cm)
and the attenuation factor (Q31

m ) calculated by Eqs. A43 and
A44 for these conditions are shown in panel c.
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and broken lines in Fig. 9. For comparison, Wg

was calculated neglecting h.
The real part is identical to the previous one,

and the imaginary part is presented with a thinner
broken line. In the frequency range where
GPsGQ, elastic behavior is dominant, while in
the frequency range where GP6GQ, viscous be-
havior is dominant (Graessley, 1993). The inter-
section of the GP and GQ lines, indicated by an
arrow, is g= W/R, which is the inverse of the re-
laxation time of the model. The dynamic response
of the model is mainly governed by the viscosity R
below this frequency, and by the rigidity W above
it. The second viscosity, h, starts to in£uence the
results in the higher frequencies.
One might worry about the mismatch between

the model and the rheometer test in the low fre-
quencies. It should be noted that the three param-
eters of the model were determined by the obser-
vation of the motion of the bubble in the
frequency range indicated in Fig. 9. We consider
the model is true in this frequency range, even if it
fails in lower frequencies. Actually, we have de-
termined the model parameters from observations
of bubble oscillation in lower frequencies (trian-
gles in Fig. 9: data are from Kajitani et al.
(2002)). Then, agreement between the model and
the rheometer test was better. In many cases, a
polymeric liquid has more than one relaxation
time. Depending on the time scale, the dynamic
response of the liquid may be controlled by di¡er-
ent relaxation mechanisms (Graessley, 1993). The
behavior of such a liquid is not represented by the
three parameters in all the frequency ranges.
The present model introduces the second vis-

cous component h to damp high-frequency oscil-
lations. This might represent the viscous damping
associated with other relaxation mechanisms that
work at higher frequencies. In addition to viscous
damping, two other damping mechanisms for
bubble oscillation are known: thermal damping
due to heat transfer between liquids and the gas
in a bubble, and acoustic damping due to the
radiation of energy as acoustic waves (Prosperetti,
1991). The thermal damping is e¡ective on the
time scale of the thermal di¡usion in the bubble,
which is estimated with the bubble radius (Ro)
and the thermal di¡usion coe⁄cient of the gas

(Ug) as R2o/Ug (Prosperetti, 1991). Assuming
Ro = 1033 m and Ug = 1035 m2/s, the time scale is
0.1 s, which is much larger than the period of the
oscillation (0.2 ms). We can ¢nd few reports dis-
cussing acoustic damping in viscoelastic liquids.
By analyzing the equation of motion for a bubble
in a compressible viscoelastic liquid, which was
presented by Brujan (1999), Ichihara et al.
(1999) suggested that the acoustic radiation may
but partly contribute to damping of the bubble
oscillation.

6.2. Implications for bubble dynamics in magma

The experimental and numerical results suggest
that behaviors of a single bubble and a liquid^
bubble mixture are signi¢cantly a¡ected by the
viscoelastic properties of the liquid. We now ap-
ply the present equations to a magmatic system
that takes account of the properties of magma.
There exist a number of studies of viscoelastic

properties of silicate melts : ultra-sonics (MHz fre-
quencies) (Macedo et al., 1968; Rivers and Car-
michael, 1987; Secco et al., 1991; Webb, 1991),
torsion deformation (mHz to Hz) (Mills, 1974;
Webb, 1992; Bagdassarov et al., 1993), ¢ber elon-
gation (mHz) (Li and Uhlmann, 1970; Webb and
Dingwell, 1990a,b), viscosity measurements (de-
formation rates of 1033 s31) (Li and Uhlmann,
1970; Webb and Dingwell, 1990a,b), and so on.
Useful compilations of those data are provided by
Bansal and Doremus (1986), Dingwell and Webb
(1989), Webb and Dingwell (1995), and Webb
(1997). The available data indicate the following
features: (1) The composition dependence of the
bulk modulus and rigidity in the elastic limit (K
and W, respectively) are relatively small compared
with the viscosity. (2) The average value of the
rigidity is W=1010�0:5 (i.e. W from 3.2 to 32
GPa), and the bulk modulus tends to be a little
larger. (3) The viscosity of magma varies by up to
10 orders of magnitude with temperature and
composition. The measured viscosity of silicate
melts ranges from below 1 to above 1014 Pa s.
The corresponding relaxation time ranges from
10311 to 104 s. (4) Part of the bulk elasticity
also relaxes on the same time scale as the rigidity.
Taking account of these features, we represent
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K and W by the ¢xed values 20 GPa and 10 GPa,
respectively, and take the viscosity R as a variable
parameter. The density is also represented by a
constant: b=2600 kg/m3. The bulk modulus of
the bubble, which is equivalent to the pressure,
is assumed to be Kg = 106 Pa. Another viscosity,
h, and the relaxation associated with the volumet-
ric deformation are neglected. These parameters
are summarized in Table 1.
Pressure waves in mixtures of bubbles and mag-

ma were calculated with these material constants
for various viscosities. The same incident wave,
void fraction, and size distribution of bubbles as
those in Fig. 16 were assumed. Fig. 17 shows the
pressure pro¢les at a depth of 171 mm, which
corresponds to the position of the L2-transducer
in the case of Fig. 16. The vertical axis is normal-
ized by the amplitude of the incident shock wave.
The following features are noted:
(1) As the viscosity becomes smaller, the prop-

agation velocity approaches the theoretical shock-
wave velocity (cm) given by Eq. 3. As the viscosity
becomes larger, it approaches the elastic p-wave
velocity (cp). The theoretical values of these veloc-
ities for the present condition are cm =188 m/s
and cp = 3580 m/s, respectively. The estimated ar-
rival times of a wave with velocities of cm and cp
at a depth of 171 mm are indicated by broken
lines in Fig. 17, which are 0.9 and 0.048 ms, re-
spectively.
(2) When the viscosity is small, the pressure

wave has a smooth front followed by an oscilla-
tion, which is a typical feature of a shock wave in
a bubbly liquid with low viscosity. When the vis-

cosity is large, the wave front is as sharp as the
incident shock wave.
(3) Attenuation is largest at the intermediate

viscosity, where the characteristics of the wave
propagation shift from a low-viscosity type to a
high-viscosity type.
The calculation presented in Fig. 17 as well as

the experimental data suggest that the acoustic
properties of bubbly magma are not simply rep-
resented by a reduced sound velocity given by Eq.
3 (e.g. Benoit and McNutt, 1997; Garces et al.,
1998; Kumagai and Chouet, 2001). To estimate
adequate wave velocity and attenuation, we need
to take account of the dispersion relation, which
signi¢cantly depends on liquid rheology. The the-
oretical dispersion relation also depends on the
void fraction, the bubble size distribution, and
the pressure. We might need to consider the ef-
fects of these parameters for individual condi-
tions, or there might be some simple way to pre-
dict wave behavior. In the present paper, we have
presented only one numerical result of wave prop-
agation in bubbly magma (Fig. 17) to demon-
strate the variation produced by the magma vis-
cosity. More detailed mathematical analyses and
parameter studies will be given in a future work.

7. Conclusion

The paper presents experimental results demon-
strating the e¡ects of liquid rheology on pressure
wave propagation in a liquid^bubble mixture. The
experiments were conducted using a high-viscosity
silicone oil and a syrup, which have similar static
viscosities (1000 Pa s) but di¡erent rigidities.
From the experimental results and the subsequent
numerical analyses, we obtained the following
conclusions:
(1) Pressure-wave propagation in a liquid^bub-

ble mixture and motion of a single bubble depend
signi¢cantly on both the viscosity and the rigidity
of the liquid.
(2) Bubbles do not decrease the velocity of pres-

sure waves, when both rigidity and viscosity of
the liquid are large. Because magma has a large
rigidity, the sound velocity of viscous magma is
not decreased by bubbles.

Fig. 17. Pressure waves in the magma with a variety of vis-
cosities are calculated assuming the Oldroyd model with pa-
rameters listed in Table 1. The same bubble size distributions
and the void fractions as in Fig. 16 are assumed. A stepwise
pressure wave penetrates into the magma at 0 ms, and the
pressure pro¢les at a depth of 171 mm are presented.
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(3) To estimate velocity and attenuation of
pressure waves in a viscoelastic liquid with bub-
bles, we have to take account of the dispersion
relation with an adequate viscoelastic model for
the liquid. Such a theoretical model has not been
completed, and further investigations are re-
quired.
(4) Analogous experiments are a useful method

to investigate volcanic phenomena. In such ex-
periments, understanding the e¡ects of liquid
rheology on bubble dynamics is especially impor-
tant. The present experiments revealed that quite
di¡erent phenomena can be observed in liquids
with similar viscosities if they have di¡erent elas-
ticity.
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Appendix A. Acoustic properties of a liquid^
bubble mixture

The concept of a mathematical method to cal-
culate the e¡ective bulk modulus, shear modulus,
and density of a mixture is as follows. It is sup-
posed that a sinusoidal, plane p-wave is being
scattered by a spherical cloud of bubbles in a liq-
uid. When the concentration of the bubbles is
small and the interaction between the bubbles is
neglected, the scattered wave from the bubble
cloud is approximated by gN

n¼1B
sc
n , where B

sc
n is

the scattered wave from the nth bubble and N is
the total number of bubbles in the cloud. Then a
scattered wave from a homogeneous spherical
body of the same size as the bubble cloud is con-

sidered. The bulk modulus, shear modulus, and
density of the body with which the sphere produ-
ces the same scattered wave as gN

n¼1B
sc
n are re-

garded as representing the e¡ective properties of
the liquid^bubble mixture.
This method provides us with mathematical ex-

pressions for the e¡ective properties of the mix-
ture using a well-established solution for a scatter-
ing problem with a single sphere. The original
idea was presented by Kuster and Tokso«z (1974)
to calculate static moduli of solids or liquids with
inclusions. Gaunaurd and Uº berall (1981) used the
same idea to calculate the dynamic bulk modulus
of a liquid^bubble mixture. Their formulation in-
cludes the e¡ect of resonant oscillation of bub-
bles, which is a very important factor in such a
system. However, it does not include viscosity or
shear stress. Combining previous studies, we ob-
tained the e¡ective properties of a mixture of bub-
bles and viscoelastic liquid.

A.1. Scattering of a p-wave by a single sphere in a
viscoelastic liquid

First, we summarize expressions of axially sym-
metric wave ¢elds in a series of spherical functions
(Varadan et al., 1991). Although the following
formulations were originally developed for an
elastic system, they are applicable to a viscoelastic
system by giving the elastic moduli as complex
functions of frequency representing the viscoelas-
tic response of the system (Gaunaurd and Uº ber-
all, 1978).
Let us take a coordinate system (r, a), where r

denotes the radial length and a denotes the angle
with respect to the symmetry axis. Assuming a
harmonic wave ¢eld with frequency g, the time
dependence of all quantities is suppressed. The
scalar potential for a p-wave and the vector po-
tential for an s-wave are:

BðrÞ ¼
Xr
l¼0

ð2l þ 1Þil31Apl
kp

M lðkprÞPlðcosa Þ ðA1Þ

8 ðrÞ ¼ 9Ur
Xr
l¼0

ð2l þ 1Þil31Asl
ks

M lðksrÞPlðcosa Þ ðA2Þ

where r is the radial vector, Apl and Asl are con-

VOLGEO 2668 20-11-03 Cyaan Magenta Geel Zwart

M. Ichihara et al. / Journal of Volcanology and Geothermal Research 129 (2004) 37^6054



stants particular to the wave ¢eld, Pl is the Legen-
dre function, and Ml is either the spherical Bessel
function (jl) or the spherical Hankel function of
the ¢rst kind (hð1Þl ). For the incident plane wave
and the wave inside the sphere, which are regular
at the origin, jl is used. For the scattered wave,
which propagates outward from the origin, hð1Þl is
used. The wave numbers for the p- and s-waves
denoted by kp and ks are de¢ned as:

kp ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ðK þ 4

3
W Þ

r
; ks ¼ g

ffiffiffiffiffiffiffiffiffiffi
b=W

p
ðA3Þ

where K, W, and b are the bulk modulus, the shear
modulus (rigidity), and the density of the medium.
The displacement ¢eld is :

uðrÞ ¼ 9 B þ 9U8 ¼ r̂r
D

D r
þ âaaa

1
r

D

D a

� �
Pþ

3r̂r
1
r2

D
2

D a
2 þ

1
tana

D

D a

� �
þ âaaa

1
r

D
2

D rD a


 �
ðr8 Þ

¼
Xr
l¼0

X
K¼p;s

ð2l þ 1Þil31AK l r̂rU
M

rK lPlðcosa Þ
�

þâaaaU M

a K l
dPlðcosa Þ

da

 ðA4Þ

U M

rpl ¼ ½lM lðkprÞ3kprM lþ1ðkprÞ
=kpr
U M

rsl ¼ lðl þ 1ÞM lðksrÞ=ksr
U M

a pl ¼ M lðkprÞ=kpr
U M

a sl ¼ ½ðl þ 1ÞM lðksrÞ3ksrM lþ1ðksrÞ
=ksr

8>>><
>>>:

ðA5Þ

where rŒ and aaŒ are the unit vectors along the r- and
a-axes.
The stress ¢eld is :

c rr ¼ 2W
D ur
D r

þ K3
2
3
W

� �
9 Wu ¼

Xr
l¼0

X
K¼p;s

ð2l þ 1Þil31AK l
SM

rrK l

r
Plðcosa Þ ðA6Þ

c ra ¼ W r
D

D r
ua
r

� �
þ 1

r
D ur
D a


 �
¼

Xr
l¼0

X
K¼p;s

ð2l þ 1Þil31AK l
SM

ra K l

r
dPlðcosa Þ

da
ðA7Þ

SM

rrpl ¼ 2W ½lðl31ÞM lðkprÞ þ 2kprM lþ1ðkprÞ
=kpr3bg
2r2M lðkprÞ=kpr

SM

rrsl ¼ 2W lðl þ 1Þ½ðl31ÞM lðksrÞ3ksrM lþ1ðksrÞ
=ksr
SM

ra pl ¼ 2W ½ðl31ÞM lðkprÞ3kprM lþ1ðkprÞ
=kpr
SM

ra sl ¼ 2W ½ðl231ÞM lðksrÞ þ ksrM lþ1ðksrÞ
=ksr3bg
2r2M lðksrÞ=ksr

8>>><
>>>:

ðA8Þ

Next we specify Apl and Asl for the scattered
wave from a single sphere in an in¢nite body of
viscoelastic liquid. The radius of the sphere is de-
noted by a.
The displacement ¢eld outside the sphere is :

uðrÞ ¼ ẑzexpðikpzÞ þ uscðrÞ ¼

9 B
inc þ 9 B

sc þ 9U8 sc ðA9Þ

where zŒ is a unit vector pointing in the direction
of the incident p-wave (a=0), and the incident
and scattered waves are denoted with superscripts
‘inc’ and ‘sc’, respectively. According to Eqs. A1
and A2, these potentials are expressed in terms of
spherical functions as:

B
incðrÞ ¼

Xr
l¼0

ð2l þ 1Þil31 1
kp
jlðkprÞPlðcosa Þ ðA10Þ

B
scðrÞ ¼

Xr
l¼0

ð2l þ 1Þil31Apl
kp

hð1Þl ðkprÞPlðcosa Þ ðA11Þ

8 scðrÞ ¼

9Ur
Xr
l¼0

ð2l þ 1Þil31Asl
ks

hð1Þl ðksrÞPlðcosa Þ ðA12Þ

Let us denote all the quantities related to the
material inside the sphere withY . The wave ¢eld
inside the sphere is represented in the same way
as:

~uuðrÞ ¼ 9 ~BB þ 9U ~88 ðA13Þ

~BBðrÞ ¼
Xr
l¼0

ð2l þ 1Þil31
~AApl
~kkp

jlð~kkprÞPlðcosa Þ ðA14Þ

~88 ðrÞ ¼ 9Ur
Xr
l¼0

ð2l þ 1Þil31
~AAsl
~kks

jlð~kksrÞPlðcosa Þ ðA15Þ

At the surface of the sphere (r= a), displace-
ment and the stress are continuous, so that:

Uhð1Þ
rp0 3 ~UUj

rp0

Shð1Þ
rrp0 3~SSj

rrp0

 !
Ap0
~AAp0

 !
¼

3Uj
rp0

3Sj
rrp0

 !
ðA16Þ
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Uhð1Þ
rpl Uhð1Þ

rsl 3 ~UUj
rpl 3 ~UUj

rsl

Uhð1Þ
a pl Uhð1Þ

a sl 3 ~UUj
a pl 3 ~UUj

a sl

Shð1Þ
rrpl Shð1Þ

rrsl 3~SSj
rrpl 3~SSj

rrsl

Shð1Þ
ra pl Shð1Þ

ra sl 3~SSj
ra pl 3~SSjra sl

0
BBBB@

1
CCCCA

Apl
Asl
~AApl
~AAsl

0
BBBB@

1
CCCCA ¼

3Uj
rpl

3Uj
a pl

3Sj
rrpl

Sj
ra pl

0
BBBBB@

1
CCCCCAðlv1Þ

ðA17Þ

where U and S are de¢ned in Eqs. A5 and A8.
Using the long-wave approximation, MkKMaI1,

MkCKMaI1 (K=p,s), only the terms of the lowest
degree in frequency are retained in Eqs. A16 and
A17. For l=0, 1, 2, one obtains (Korneev and
Johnson, 1993):

Ap0 ¼ 3i
ðkpaÞ3
3

~KK3K
~KK þ 4

3W
ðA18Þ

Ap1 ¼ i
ðkpaÞ3
9

~bb

b

31
� �

ðA19Þ

Ap2 ¼ 3i
4ðkpaÞ3O 2

45
~WW

W

31
� �

1þ½

2
15

~WW

W

31
� �

ð3þ 2O 2Þ
31 ðA20Þ

As0 ¼ 0 ðA21Þ

As1 ¼
Ap1
O
3 ðA22Þ

As2 ¼
1
2
Ap2
O
4 ðA23Þ

where

O ¼ kp
ks

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W

K þ 4
3W

r
ðA24Þ

Eqs. A18^A20 are equivalent to equation 17 of
Korneev and Johnson (1993). The coe⁄cients al
and bl in their paper correspond to 3Apl and Asl ,
respectively.
The above formulation does not include the

resonance of the sphere. In many cases, the reso-
nances of inclusions are located at relatively large
frequencies. However, in cases of a bubble in vis-
cous or viscoelastic liquids with no or a very small
rigidity, the monopole resonance (l=0) occurs in

the low-frequency region (Gaunaurd and Uº berall,
1981). They noticed that the term bg

2a2, which is
a higher-order term with respect to frequency, is
larger than the other lower-order terms, when b is
much larger than either of W, ~WW , and ~bb . Leaving
the term in the long-wave approximation, one ob-
tains:

Ap0 ¼ 3i
ðkpaÞ3
3

~KK3K
~KK þ 4

3W3
1
3bg

2a2ð1þ ikpaÞ
ðA25Þ

The frequencies of higher resonant modes are
beyond the range of the long-wave approximation
and are negligible (Gaunaurud and Uº berall,
1981).
Eqs. A19 and A20 are obtained using the long-

wave approximation for both p- and s-waves.
However, when the material is gas, or liquid as
in the present case, the s-wave is absent or its
wavelength may be much shorter than that of
the p-wave. Therefore, it is necessary to check if
these expressions are applicable to £uids with
W=0 and/or W=0.
In the case that only the internal material is

£uid (W=0, Wg0), Eq. A17 becomes:

Uhð1Þ
rpl Uhð1Þ

rsl 3 ~UUj
rpl

Shð1Þ
rrpl Shð1Þ

rrsl 3~SSj
rrpl

Shð1Þ
ra pl Shð1Þ

ra sl 0

0
BB@

1
CCA

Apl
Asl
~AApl

0
B@

1
CA ¼

3Uj
rpl

3Sj
rrpl

3Sj
ra pl

0
BB@

1
CCA ðA26Þ

The corresponding solutions are:

Ap1 ¼ i
ðkpaÞ3
9

~bb

b

31
� �

ðA27Þ

Ap2 ¼ i
4ðkpaÞ3
3

O
2

934O 2
ðA28Þ

These equations agree with Eqs. A19 and A20
with ~WW =0.
In the case that both the internal and the ex-

ternal materials are £uid (~WW =W=0), we have

Uhð1Þ
rpl 3 ~UUj

rpl

Shð1Þ
rrpl 3~SSj

rrpl

 !
Apl
~AApl

 !
¼

3Uj
rpl

3Sj
rrpl

 !
ðA29Þ

Apl ¼ 3i
ðkpaÞ3
3

b3~bb

b þ 2~bb ðA30Þ
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Ap2 ¼ 0 ðA31Þ

Eq. A31 agrees with Eq. A20 with W=0
(ksCr), while Eq. A30 does not agree with Eq.
A19. Therefore, we have to choose Eq. A19 when
the external material is closer to a solid
(MWMVMKM), and Eq. A30 when it is closer to a
£uid (MWMIMKM).

A.2. E¡ective properties of a viscoelastic liquid
containing bubbles

Let us assume N bubbles in a spherical region
of radius Rc in an in¢nite body of liquid. The
origin of the coordinate is taken at the center of
the sphere. When we neglect interaction between
the bubbles, the p-wave scattered from the region
containing bubbles is represented by:

B
scðrÞ ¼

XN
n¼1

B
sc
n ðr3rnÞ ðA32Þ

where B
sc
n (r3rn) is the p-wave potential scattered

by a single bubble at rn. At a large distance from
the bubbles, we may approximate r3rnVr, and

B
scðrÞ ¼

XN
n¼1

Xr
l¼0

ð2l þ 1Þil31
An
pl

kp
hð1Þl ðkprÞPlðcosa Þ ðA33Þ

The bulk modulus and the density of the gas in
the bubbles are represented by Kg and bg, respec-
tively. The bulk modulus and rigidity of the vis-
coelastic liquid are denoted as Kg and Wg , respec-
tively, which are complex functions of frequency.
The density of the liquid is b. Then An

p0;1;2 in
Eq. A33 is obtained from Eqs. A25, A19 (or
A30), and A20 with (K, W, b) = (Kg , Wg , b),
(KC , ~WW , ~bb ) = (Kg, 0, bg), and a=Rn, where Rn is
the radius of the nth bubble.
On the other hand, a cloud of bubbles is re-

garded as a homogeneous sphere of the same
size with bulk modulus Km, shear modulus Wm,
and density bm. The radius of the sphere, Rc, is
assumed to be small enough so that a long-wave
approximation is applicable for the assumed inci-
dent wave, and that the frequency of the reso-

nance of the sphere lies above the limit of validity
of the low-frequency expansion, while it is as-
sumed to be large enough to include many bub-
bles. Gaunaurd and Uº berall (1981) assumed its
radius about 20 times as large as those of the
bubbles. In this case, the scattered wave from
the sphere, Bsc(r) :

B
scðrÞ ¼

Xr
l¼0

ð2l þ 1Þil31
Ampl
kp

hð1Þl ðkprÞPlðcosa Þ ðA34Þ

where Amp0;1;2 are given by Eq. A18, which is the
one without resonance, Eq. A19 (or A30), and
Eq. A20 with substitution of (K, W, b) = (Kg , Wg ,
b), (KC , ~WW , ~bb ) = (Km, Wm, bm), and a=Rc.
In order that Eqs. A33 and A34 agree with each

other:

Ampl ¼
XN
n¼1

An
pl ðl ¼ 0; 1; 2; TÞ ðA35Þ

We represent the number fraction of the bub-
bles with radius R by f(R) and replace gN

n¼1 by
Nvr0 f(R)dR. Using Eq. A35 for l=0, 1, 2, we ob-
tain Km, Wm, and bm as:

Km ¼
Kg þ 4

3Py Wg

13P y

ðA36Þ

with:

y ¼ Kg3Kg

Kg þ 4
3Wg

U

R
r
0 f ðRÞ

R3

13
bg

2R2

3Kg þ 4Wg

1þ igR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b

Kg þ 4
3Wg

r !dR
R

r
0 f ðRÞR3dR

and:

Wm ¼ Wg 13
P

13
2
15

ð13P Þ 3þ 2Wg

Kg þ 4
3Wg

 !
2
66664

3
77775 ðA37Þ

bm ¼ b gP þ b ð13P Þ ðMWg MVMKg MÞ ðA38Þ
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bm ¼

b

13P ðb3b gÞ=ðb þ 2b gÞ
1þ 2P ðb3b gÞ=ðb þ 2b gÞ

ðMWg MIMKg MÞ ðA39Þ

where P=gN
n¼1R

3
n/R

3
c =Nvr0 f(R)R

3dR/R3c is the
void fraction. It is noted that the e¡ective bulk
modulus has a complicated form, including not
only the bulk modulus and the void fraction,
but also the rigidity of the liquid and the reso-
nance of the bubbles. On the other hand, the ef-
fective rigidity and density are mainly determined
by the liquid property, with small modi¢cations
proportional to the void fraction. The e¡ective
density depends on the void fraction in di¡erent
ways in cases that the matrix is close to a solid
(MWg MVMKg M) and to £uid (MWg MIMKg M) In the
case of a £uid matrix, where relative motion be-
tween the inclusion and matrix can occur, the
e¡ective density Eq. A39 is governed by inertia
and is di¡erent from Eq. A38, which is governed
by gravity (Kuster and Tokso«z, 1974).

A.3. A constitutive model for the viscoelastic
liquid

We assume the linear Oldroyd model represents
the shear rheology of the liquid. Viscoelasticity
associated with volumetric deformation is ne-
glected and Kg =K (constant) is assumed. The
di¡erential equation representing the stress^strain
relation for the linear Oldroyd model (Fig. 11) is:

c þ R

W

dc
dt

¼ ðR þ h ÞdO
dt

þ R h

W

d2O
dt2

ðA40Þ

where c is the shear stress and O is the shear strain
(Fogler and Goddard, 1971). When we assume a
periodic ¢eld as c=cg eig t and O= Og eig t, and de-
¢ne the complex dynamic rigidity Wg , Eq. A40 is
rewritten as:

c ¼ Wg Og ¼
ig ðR þ h Þ3g

2R h

W

1þ igR

W

Og ðA41Þ

The dispersion relation for the pressure wave in

the mixture is given in the same way as in an
elastic medium by:

g
2

kmðg Þ2 ¼
Kmðg Þ þ 4

3Wmðg Þ
bm

ðA42Þ

cmðg Þ ¼ g

Re kmðg Þ ðA43Þ

Q31
m ¼ Im kmðg Þ

Re kmðg Þ ðA44Þ

where km(g) is the wave number, cm is the phase
velocity, and Q31

m is the attenuation factor (Gau-
naurd and Uº berall, 1981).
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