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Abstract

Volcanic explosions generate pressure perturbations in the atmosphere and a seismic wavefield in the ground. The source is

therefore well coupled with the atmosphere and the ground. The acoustic and elastic wavefields reflect dynamical processes at

the source and the viscoelastic properties of the magma–gas medium. At low pressure (< 10 MPa), magma cannot be

considered as a homogeneous medium, and must be treated as a mixture of fluid magma and gas bubbles. Acoustic waves are

strongly affected by the transmission properties of the magma–gas medium. We analyze the propagation of the acoustic

wavefield in a two-phase medium in which the viscosity and compressibility are spatially inhomogeneous. Gas bubble

nucleation starts when the magma pressure drops below the supersaturation level (at a depth of a few hundred m for H2O in

basaltic magmas) and the gas-volume fraction increases toward the surface, reaching its maximum value at the magma–air

interface. The variation of gas-volume fraction is non-linear with depth and is particularly strong at shallow depths (< 50 m).

Density and sound velocity of the mixture drop drastically and the shear viscosity of the mixture increases with decreasing

depth. Under these conditions, we tested if the propagation of an acoustic wavefield generated by a source embedded in the

magma column can generate an infrasonic wavefield in the atmosphere. The acoustic wavefield in the magma is here modeled

as function of the void fraction in the magma and resonance is considered to be induced only by body-wave. Large gas bubble

concentrations (>70%) strongly affect the propagation properties of the acoustic wavefield. We found that the amplitude of the

infrasonic wavefield in the atmosphere typically recorded in case of strombolian explosions (2� 105 Pa) can be explained by a

deep (>50 m) source embedded in the magma conduit only if a very large unrealistic pressure drop (1013 Pa) is assumed. The

strong damping, linked to the poor elastic properties of the shallow magma–gas mixture, prevents the efficient propagation of

the acoustic waves in the magma–gas mixture, and resonance of body waves cannot occur. Infrasonic waves can be transmitted

from the magma to the atmosphere only when the source is very shallow (< 10 m). In conclusion, we neglect the possibility that

resonance of body waves can induce infrasonic waves in the atmosphere. Moreover, we introduce new evidence of a strong

attenuation induced by the shear viscosity on the propagation of elastic waves in a gas-rich magma. We believe that this latter

result could have also a large impact on all the theories based on the resonance of elastic waves in a conduit as model to explain

tremor and/or LP events on volcanoes.
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1. Introduction

Seismic and acoustic waves produced by volcanic

explosions are usually explained in terms of (1) source

dynamics or (2) resonance properties of the source

volume. The former models relate the acoustic wave-

field to the explosion of a gas bubble near the surface of

the magma column (Vergniolle and Brandeis, 1996;

Ripepe et al., 1996). In the resonance models, a sudden

pressure drop embedded in, or at the top of the magma

column (Chouet, 1985; Buckingham and Garces, 1996;

Neuberg, 2000) generates body and interface waves

trapped in the magma body. Acoustic resonance in the

magma–gas fluid is believed to enhance the energy

content of the source, which in this way can radiate

acoustic waves in the atmosphere as infrasound (Buck-

ingham and Garces, 1996) and in the ground as seismic

signals (Chouet, 1985; Neuberg, 2000). The radiated

energy depends on the impedance contrast at the

magma–air and magma–conduit wall boundaries.

Resonance models are based on strong agreement

between measured and theoretical wavefields. The

latter is calculated by taking into consideration the

propagation of acoustic waves in the viscoelastic mag-

ma–gas medium. The role played by gas has always

been considered as a fundamental factor affecting the

elastic properties of the melt. Models developed so far

however have generally neglected the viscoelastic

effects of the void fraction on acoustic propagation.

In this paper, we analyze the acoustic wavefield in

terms of propagation of viscoelastic wave in a two-

phase medium. This problem has been developed by

other authors before us to explain both infrasonic

waves (Garces et al., 2000) and volcanic tremor

(Chouet, 1985; Neuberg, 2000; Neuberg et al., 2000),

but always without considering the attenuation in-

duced by the large viscosity changes due to the bubbles

in the melt.

At low pressure (< 107 Pa), the magma cannot be

considered as a homogeneous medium, but must be

treated as a mixture of fluid magma and gas bubbles.

Overpressure in gas bubbles is considered critical in

triggering volcanic explosions. Many theoretical

(Sparks, 1978; Toramaru, 1989) and experimental

studies (Lyakhovsky et al., 1996; Navon et al.,

1998) focus on the nucleation and growth of bubbles

in magma. Nucleation starts when the pressure in the

volcanic conduit drops below the supersaturation
level, which corresponds to a depth of a few hundred

meters for H2O in basaltic magma (Sparks, 1978). The

void fraction increases from the nucleation depth

toward the surface, and reaches its maximum value

at the magma–air interface. The void fraction profile

is non-linear with depth and the gas bubble content is

particularly high near the surface. As a consequence

the seismo-acoustic properties of the melt change

significantly with the decrease of depth (Massol and

Jaupart, 1999; Garces et al., 2000). The increase in

void fraction induces a drop in density and sound

velocity of the mixture (Aki et al., 1978; Chouet,

1996) and a significant increase in the mixture vis-

cosity (Jaupart and Vergniolle, 1989). In order to

understand if the infrasonic wavefield generated by

volcanic explosions can be explained in terms of

propagation of an elastic wavefield induced by an

embedded source and transmission to the atmosphere

(Buckingham and Garces, 1996), we investigate

the propagation of an acoustic wave in the shallow

( < 200 m) bubbly section of the volcanic conduit. We

calculate the attenuation of the acoustic wavefield

generated by a source embedded in the magma

column as a function of the void fraction of the melt.

Laboratory experiments suggest a large attenuation of

pressure waves in viscoelastic bubbly liquids with a

viscosity in the order of 103 Pa s (Ichihara et al.,

2004). This paper presents new insights on viscoelas-

tic effects in the propagation of acoustic waves in a

bubbly magma.
2. Shallow volcanic system

The propagation of an acoustic wave in a shallow

volcanic system (< 1 km) is controlled by the presence

of gas bubbles and minerals, which vary the rheology

of the melt. The void fraction is a critical parameter,

because it affects the viscosity, density and sound

speed of the mixture. When the amount of gas is

sufficiently high (>70%) and the bubbles are in

contact with each other (foam), the physical properties

of the system depart from pure elastic behavior and

are controlled by the surface tension of the bubbles

(Cashman and Mangan, 1994; Proussevitch et al.,

1993). It is therefore necessary to analyze the mag-

matic system as a multiphase mixture. In this study,

we neglect the presence of minerals and consider the
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shallow magma as a mixture of silicate melt and

exsolved gas bubbles. This assumption simplifies

the model without reducing its reliability. The pres-

ence of minerals mainly affects the viscosity of the

melt. A melt with a higher percentage of minerals is

more viscous (Saar et al., 2001). The nucleation of

bubbles and crystallisation of minerals are linked in a

magmatic system and both lead to analogous changes

in the viscosity of the mixture (Sparks et al., 1994;

Spera, 1999). Therefore, neglecting the effects of

minerals in our model will lead to an underestimation

of the actual viscosity of the magmatic system.
3. Void fraction and exsolution model

The distribution of voids with depth in the volcanic

conduit is based on the assumption that the volcanic

conduit is open. In open conduit volcanoes (e.g.,

Stromboli, Etna) infrasonic records reveal a persistent

degassing activity associated with volcanic tremor

(Ripepe et al., 1996, 2001b). Individual pressure

pulses repeat regularly in time (at a rate f 1 s) and

can be explained by the bursting of small gas bubbles

at the top of the magma column (Ripepe and Gordeev,

1999). This persistent bursting of small gas bubble at

the top of the magma column will prevent the estab-

lishment of a large overpressure and ensures a nearly

hydrostatic pressure profile.

The steady eruptive style and persistent degassing

activity observed on open conduit volcanoes suggests a

continuous supply of fresh magma (Kazahaya et al.,

1994; Stevenson and Blake, 1998). We consider that

gas bubble nucleation starts at the exsolution depth,

which is mainly controlled by the type and concentra-

tion of the gaseous phase. For example, considering

water and carbon dioxide as the only two volatiles

dissolved in the magma, we can estimate two different

exsolution levels. Although the CO2 concentration is

much smaller than that of H2O in magma, the exsolu-

tion level of CO2 is deeper than that of H2O in most

cases. This is a result of the solubility of the two gas

phases, which is much higher for H2O than for CO2. In

a mafic magma, the solubility of H2O is obtained as a

function of hydrostatic pressure P (Hamilton et al.,

1964) as:

xH2O ¼ KH2OP
0:7; ð1Þ
where xH2O in weight fraction of H2O, P is pressure

(Pa) and KH2
O = 6.8� 10� 8 wt.%/Pa0.7 is an experi-

mental parameter. The solubility of CO2 is obtained as

(Stolper and Holloway, 1988):

xCO2
¼ KCO2

P; ð2Þ

where xCO2
in weight fraction of CO2, P is pressure

(Pa) and KCO2
= 4.4� 10� 12 wt.%/Pa is an experimen-

tal parameter.

Some exsolution models consider CO2 bubbles

between the exsolution depths of CO2 and H2O, and

the coexistence of the two gas phases above the H2O

exsolution depth. Actually, a system containing two

volatiles behaves in a slightly different way from a

system containing a single volatile (Tait et al., 1989).

When the concentration of one of the volatiles

exceeds the solubility limit, both the volatiles exsolve

with different partial pressures as functions of the

initial concentrations, according to Henry’s law, as

expressed by Eqs. (1) and (2), above. Accordingly, at

a depth off1000 m, where the pressure is higher than

the H2O supersaturation pressure, the exsolution of

CO2 will also force some H2O to exsolve. This is true

for all gaseous phases in general. In the specific case

addressed here, the great difference in solubility

between H2O and CO2 tends to strongly limit such

process.

In this paper we assume H2O as the only volatile

dissolved in the melt. In open conduit volcanic systems

like Stromboli, where the volume of H2O is three times

larger than that of CO2 (Allard et al., 1994), this

approximation is quite close to reality. Considering

an initial H2O concentration of 0.35 wt.% dissolved in

the basaltic magma (Pineau and Javoy, 1994; Sparks et

al., 1994), a nucleation pressure Pof 5� 106 Pa is

obtained from Eq. (1). When the magma is decom-

pressed to atmospheric pressure, Patm = 105 Pa, the

initial 0.35 wt.% of the volatile dissolved in the melt

reduces to 0.02 wt.%. If all the gas phase remains in

the magma (assuming a closed system), the void

fraction may exceed 98%, far larger than the 75%

generally considered as the fragmentation limit.

In open conduit volcanic systems fragmentation

will not be reached and the void fraction near the

magma surface can be estimated from the density of

scoria ejected during explosions. In the present paper,

we assume a void fraction at the free surface of the

magma column of 44%, as this value has been
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estimated for Stromboli Volcano, which is the typical

example of open conduit volcanic system. This indi-

cates that the system is open and that bubbles are free

to leave the melt. This is evidenced by the strong

degassing of the magmatic system at Stromboli and

indicates that the bubbles rise much faster than the

magma, which can be considered stationery compared

to the bubble rise speed.

The distribution of voids in the conduit is deter-

mined by the upward motion of the magma, volatile

exsolution and bubble degassing. Mathematical mod-

els describing such conduit flows have been studied

by various authors (Melnik and Sparks, 1999; Yoshida

and Koyaguchi, 1999; Dobran, 1992). Most of these

models are intended for silicic magma flow, which

may cause Plinian eruptions. The constitutive equa-

tions for a basaltic system may be different from those

used in these models. Determining the precise void

distribution is not the purpose of the present work.

The effects of bubble motion relative to melt on the

void fraction distribution will be analyzed in a future

paper. For our present purpose, we represent the void

distribution as a simple function, which increases as

pressure decreases according to:

/ ¼ /o

Po � P

Po � Patm

� �n

; ð3Þ

where Po is the nucleation pressure, P is the local

pressure, Patm is the atmospheric pressure, / is the

void fraction distribution, /o = 0.44 is the void frac-
Fig. 1. (a) Void fraction of the magma–gas mixture as a function of depth

volcanic conduit: density (b), compressibility (c) and longitudinal wave p
tion at the magma surface and n is an arbitrary

parameter. We assume n = 1.
4. Physical property of the system

Gas bubbles in the melt significantly affect the

seismo-acoustic properties of the liquid–gas mixture.

An increase in void fraction causes a decrease of the

two-phase medium density (q):

q ¼ qg/ þ qmð1� /Þ; ð4Þ

where qm and qg are the densities of the melt and gas,

respectively. We assume a melt density of 2700 kg/

m3. The gas density is obtained from the perfect gas

law as:

qg ¼
P

RgT
; ð5Þ

where the gas constant Rg = 8.31/0.018 J/kg/K for H2O

and the temperature T is taken as 1200 K. The pressure

profile is fixed by the magmastatic relation:

dP

dz
¼ qg; ð6Þ

where z is the vertical coordinate, taken positive

downward, and g is the gravitational acceleration.

Solution of Eqs. (3)–(6) yields the void fraction and
in the conduit. Physical properties of the two-phase medium in the

ropagation velocity (d).
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density as functions of depth (Fig. 1a and b). Once the

void fraction and pressure profiles are known, the

acoustic properties of the system are known as a

function of depth in the conduit (Fig. 1c–d). The

compressibility, k, increases with the void fraction as:

k ¼ kg/ þ kmð1� /Þ ð7Þ

where km and kg represent the magma compressibility

and gas compressibility, respectively. We assume

km = 10� 10 Pa� 1 for a sound velocity of 2000 m/s in

pure melt (Murase and McBirney, 1973) and fix

kg =P
� 1 for constant temperature (Eq. (5)). The de-

crease in density and compressibility of the mixture

affects the sound velocity c of the system according to

the relation:

c ¼ 1=
ffiffiffiffiffi
ek

p
: ð8Þ

The sound velocity in the magma–gas mixture

decreases drastically with the increase in gas bubble

concentration (Fig. 1d). The minimum velocity of the

two-phase system is much lower (f 20 m/s) than the

sound velocity of either the magma or steam (Gibson,

1970; Kieffer, 1977). Note that Eq. (8) defines the

sound speed at the equilibrium. In low-viscosity

liquids, the observed speed or the phase velocity

agrees with the equilibrium values. However, recent

experimental studies showed that the presence of

bubbles in high-viscosity liquids (gf 103 Pa s)

reduces the sound velocity in the mixture, but the

effect is not so critical as theoretically predicted

(Ichihara et al., 2004; Ichihara and Kameda, 2004-this

issue). The equations of sound velocity in bubbly

liquid are indeed derived for low-viscosity liquids,

and their applicability to high-viscosity liquids is

not trivial. In the present study, we apply equations

of the sound speed derived for low-viscosity liquids.

Future improvement of the model will consider the

proper sound velocity in high-viscosity (gf 103 Pa s)

bubbly magma. The viscosity of the system is another

critical parameter that is strongly affected by void

fraction. We assume that the mixture of silicate melt

and bubbles is an isotropic linear viscous medium with

rheology represented by the two parameters, shear and

bulk viscosity. The viscoelastic nature of the pure

silicate melt (Webb, 1997) is neglected, because the

relaxation time for basaltic magma has a time scale
< 10� 5 s (Dingwell and Webb, 1989), which is much

shorter than the time scale of acoustic waves

(>5� 10� 2 s). Both the shear and bulk viscosity are

controlled by the void fraction and both increase with

the gas-volume fraction via two different processes,

namely a decrease in dissolved H2O (Jaupart, 1996;

Massol and Jaupart, 1999) on the one hand and an

increase in the number of undeformable gas bubble on

the other hand. The decrease in dissolved H2O is not

compensated by the fluidizing role of the bubbles

(Richet et al., 1996). Undeformable bubbles increase

the shear viscosity gs of the mixture according to the

relation:

gsð/Þ ¼ gso 1� /
/c

� ��5=2

ð9Þ

where gso is the shear viscosity of the melt in the

absence of bubbles and /c = 0.6 is a model parameter

(Spera, 1999). Eq. (9) is valid for bubbles with small

values of the capillary index Ca:

Ca ¼
ėgsoR

r
; ð10Þ

where ė is the shear rate, R is the bubble radius and s is

the surface tension of the melt vapor.

The capillary index represents the ratio between

viscous forces (ėg so) and tension at the gas–melt

surface (r/R). This ratio is difficult to estimate.

Notice, however, that ėg so tends to deform the

bubble, while r/R tends to keep the bubble spheri-

cal. Therefore, a convenient way to estimate Ca it is

to consider the shape of the bubbles (Stein and

Spera, 1992); Ca = 0 for perfectly spherical bubbles,

while bubble elongation is significant when Ca tends

to 1. The explosive activity associated with open

conduit volcanic system is generally consistent with

scoria containing bubbles populations that are quite

spherical, which suggests a capillary index less than

unity.

The shear viscosity gs of the magma–gas mixture

changes with the void fraction according to Eq. (9). At

the same time, the exsolution of water from the melt

according to Eq. (1) induces a change in the shear

viscosity of the melt gso. In order to estimate the shear

viscosity of residual melt, produced by gas bubbles

exsolution, we apply the equation developed by Shaw



Fig. 2. Viscosity of the magma–gas mixture in the volcanic conduit. The shear viscosity gs of the mixture (gray line) increases with the void

fraction. The bulk viscosity gb (dashed gray line) undergoes a sharp increase at the exsolution depth. As a consequence, the effective viscosity of
the mixture geff (black line) increases with void fraction after an initial peak at the exsolution level (a). Relaxation time evaluated for the magma

gas mixture (b).
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(1972) assuming the composition of basaltic magma

and scorias, which we infer representative of the

residual melt before and after water exsolution. In the

present model, we take into consideration the compo-

sitions derived for Stromboli Volcano (Francalanci et

al., 1993). As a consequence, we assume in the present

paper a shear viscosity of the melt gso = 500 Pa s before
the exsolution of bubbles and gso = 5000 Pa s at the

free surface. Shaw’s model indicates that the shear

viscosity depends on the amount of dissolved water

almost linearly in the present range of change. There-

fore, we assume, between gso = 500 and 5000 Pa s, that
the shear viscosity changes proportional to P0.7 as in

Eq. (1).

The void fraction affects the bulk viscosity of the

mixture in a similar way. Based on the formulation of

Ichihara and Kameda (2004-this issue), and con-

sidering that gas has a larger compressibility than

the melt (kgHkm), the bulk viscosity (gb) of the

mixture is given by:

gbð/Þ ¼
1� /

ð/ þ km=kgÞ2
4

3
gso/ þ gbo

km

kg

� �2
" #

:

ð11Þ
As for general fluids (Landau and Lifshitz, 1987),

we may use gbo = gso, so that Eq. (11) can be simpli-

fied as:

gbð/Þ ¼
4

3
gso

1� /
/

; ð/Hkm=kgÞ; ð12Þ

gbð/Þ ¼ gsoð1� /Þ

� 4

3
/

kg

km

� �2

þ1

" #
; ð/bkm=kgÞ: ð13Þ

Note that Eq. (12) agrees with the expression used

by Massol and Jaupart (1999) for large void fraction.

The bulk viscosity of the mixture gb shows a sharp

increase for low values of void fraction and decreases

when the compressibility of the mixture becomes

larger as the number of gas bubbles increases. As a

consequence, the presence of bubbles causes a net

increase in medium viscosity (Fig. 2). The bulk

viscosity increases mainly at low void fraction

(/ < 5� 10� 4), while the shear viscosity increases

towards the surface, where the bubble content is

higher (Fig. 2).
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5. Attenuation of the medium

Acoustic wave absorption in a fluid depends on the

time lag occurring between the stress and the strain.

Attenuation in a bubbly-liquid with low gas-volume

fraction, up to a few percent, is related to viscosity,

heat transfer and acoustic radiation.

To formulate the relationship between stress and

strain, we consider the general equation of motion for

one-dimensional flow:

q
B
2uz

Bt2
¼ � Bp

Bz
þ BDzz

Bz
þ BDzx

Bx
þ BDzy

By
; ð14Þ

where uz is the vertical displacement, Dzi (i = x,y,z) are

the components of the deviatoric stress tensor and p is

the pressure. Averaging Eq. (14) over the horizontal

cross section of the conduit, we obtain:

q
B
2u

Bt2
¼ � Bp

Bz
þ BD

Bz
� Qw: ð15Þ

This equation represents the averaged vertical dis-

placement u as a function of pressure p, averaged

normal component of the deviatoric stress D and wall

friction force per unit volume Qw, obtained from the

term BDzx

Bx
þ BDzy

By
in Eq. (14).

The relation between pressure and strain for an

attenuating medium is expressed by Stokes equation:

pðz; tÞ ¼ qc2sþ gb
Bs

Bt
; ð16Þ

where s is the variable which represents the strain in

the medium. Rarefaction and compression, associated

with the pressure wave propagation, cause a change in

the local value of density (q):

s ¼ q � qo

qo

; ð17Þ

where qo is the mean density. Considering a plane

wave and assuming small displacements producing

small density variations, the strain in the medium can

be expressed as:

s ¼ � Buðz; tÞ
Bz

; ð18Þ

where u(z,t) is the displacement of the medium.
Substituting (18) into Eq. (16), the pressure is given

by:

pðz; tÞ ¼ �qc2
Buðz; tÞ

Bz
� gb

B
2uðz; tÞ
BtBz

: ð19Þ

The deviatoric stress tensor Dij is related to the

shear viscosity and non-volumetric strain rate by:

Dij ¼ gs
B
2ui

BtBxj
þ B

2uj

BtBxi
� 2

3
dij

B
2uk

BtBxk

� �
: ð20Þ

where dij is Kronecker’s delta. According to Eq. (20):

D ¼ 4

3
gs

B
2u

BtBz
: ð21Þ

The effect of wall friction on transient one-dimen-

sional laminar pipe flow has been formulated by

Achard and Lespinard (1981), who obtained the fol-

lowing relation between the wall friction force per unit

volume (Qw) and mean velocity (v) as a good approx-

imation for low-frequency waves:

Qw þ n
dQw

dt
¼ 8gs

a2
1þ 3

2
n
d

dt

� �
v; ð22Þ

where a is the conduit radius and n = 0.0833qa2/gs.
Although the present application is different from the

model considered by Achard and Lespinard (1981) in

that our flow is compressible and the mean velocity

varies along the conduit axis, we assume that Eq. (22)

is locally valid, so that:

Qw þ n
BQw

Bt
¼ 8gs

a2
1þ 3

2
n
B

Bt

� �
Buðz; tÞ

Bt
: ð23Þ

Using Eqs. (19), (21) and (23), and assuming a

solution of the form:

uðz; tÞ ¼ X ðzÞeixt; ð24Þ

Eq. (15) may be rewritten as:

� q � Qx

x2

� �
x2X ¼ d

dz
ðqc2 þ i

4

3
xgeff Þ

dX

dz

� �
;

ð25Þ



Fig. 3. Viscous attenuation coefficient in the volcanic conduit.

Attenuation strongly depends on the frequency of the pressure wave.

Attenuation is shown for a 1-, 2-, 5- and 10-Hz pressure wave. The

effect of conduit wall is not taken into consideration.
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where geff is the effective viscosity:

geff ¼
3

4
gb þ gs ð26Þ

and

Qx ¼ ð8gs=a2Þixð1þ 3

2
ixnÞ=ð1þ ixnÞ ð27Þ

is the wall friction force per unit length.

Because the material properties q, c, geff and gs
strongly depend on z, Eq. (25) is non-linear and can not

be solved analytically. To solve this equation, we divide

the conduit in a series of horizontal layers and assume

that themedium is homogeneous within each layer. The

following equation is valid within a single layer:

d2X

dz2
¼ � q � Qx=x2

qc2 þ ix 4
3
geff

 !
x2X : ð28Þ

Eq. (28) has a solution of the form:

X ðzÞ ¼ AeFikVz; ð29Þ

where

kV

x
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q � Qx=x2

qc2 þ ix 4
3
geff

s
: ð30Þ

Eq. (30) yields kVas a complex function of x.

Because the material properties depend on z, kValso
depends on z. Therefore, we represent kVin terms of

real functions of x and z as:

kV ¼ kðx; zÞ � iaðx; zÞ ðk > 0; a > 0Þ: ð31Þ

Then, from Eqs. (24) and (29), we obtain upgoing

(uU) and downgoing (uD) waves, whose amplitudes

decrease along the wave propagation direction. The

attenuation coefficient a is obtained from the relations:

uUðz; tÞ ¼ Aeaðx;zÞzeiðxtþkðx;zÞzÞ; ð32Þ

uDðz; tÞ ¼ Ae�aðx;zÞzeiðxt�kðx;zÞzÞ: ð33Þ

Fig. 3 shows the attenuation coefficient in the

volcanic conduit calculated from dispersion using
the parameters given in Figs. 1 and 2. The effect of

the conduit wall is not considered in the results shown

in Fig. 3. Attenuation is affected by many parameters.

To get a better idea of the effects of each parameters,

we neglect the wall friction term and transform Eq.

(30) into the following approximate form:

kV ¼ x
c

1þ ix
4geff
3qc2

� ��1=2

f
x
c
� ix2 2geff

3qc3
: ð34Þ

This approximation holds for low-frequency

waves. Eq. (34) shows that attenuation efficiently

increases when the velocity of the acoustic wave

decreases. Viscous damping increases from the exso-

lution depth to the surface of the conduit because the

velocity of the pressure wave and the mixture density

both decrease, while the viscosity increases. The

presence of gas bubbles causes a net increase in the

viscous attenuation of the magma–gas mixture even

for low void fraction. This behavior is linked to the

sharp increase in bulk viscosity (see Fig. 2). Eq. (34)

also shows that the attenuation coefficient depends on
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the frequency of the acoustic wave. Viscous attenua-

tion is larger for higher-frequency waves. An acoustic

wave at a frequency of 1 Hz undergoes viscous

attenuation two orders of magnitude lower than a

10-Hz acoustic wave (Fig. 3). Our present work is

focused mainly on frequencies between 1 and 10 Hz,

typical of the frequency content of the infrasonic

wavefield associated with strombolian explosions

(Vergniolle et al., 1996; Buckingham and Garces,

1996; Ripepe and Marchetti, 2002; Johnson et al.,

2003). At depths below the nucleation depth, where

the dense basaltic magma is without bubbles, the

attenuation of a 5-Hz acoustic wave is very low

(f 10� 8 m� 1). Attenuation increases with decreasing

depth, and reaches its maximum value >10� 1 m� 1

near the free surface. At the free surface, the two-

phase system is rich in gas (44%), highly viscous (105

Pa s), and has a low density (f 1500 kg m� 3) and

low sound speed (20 m/s) (Fig. 1).

The contribution of wall friction to the attenuation

coefficient is calculated from Eq. (30) for several
Fig. 4. Attenuation coefficient due to the friction at the wall of the

volcanic conduit. The attenuation is evaluated for a 5-Hz pressure

wave for different values of the conduit radius (2, 5, 10 and 20 m).

Attenuation strongly decreases with the increase of conduit radius

and becomes trivial for radii >20 m. The absence of friction, which

corresponds to body wave propagation in an infinite half-space, is

simulated assuming infinite radius of the volcanic conduit.
conduit radii and for an acoustic wave at a frequency

of 5 Hz. These results are illustrated in Fig. 4.

Comparison between Figs. 3 and 4 indicates that the

effect of wall friction is indeed important for small

conduit radii (< 2 m), but becomes trivial for conduit

radii larger than 20 m.

Our model is developed by taking into consider-

ation a conduit with cylindrical geometry in the last

200 m, with a radius ranging between 2 and 10 m.
6. Acoustic scattering

The presence of gas bubbles in the melt introduces

an additional component of attenuation in the bubbly

fluid in the form of acoustic wave scattering. The

scattering efficiency depends on the ratio of the

frequency of the acoustic wave to the eigenfrequency

of the bubbles. When the ratio is f 1, the acoustic

wave scattering (as) is the most efficient and is given

by (Kinsler and Frey, 1962):

as ¼
103pNR2

2
; ð35Þ

where N is the number of bubbles per unit volume and

R is the mean bubble radius. The eigenfrequency of

bubble oscillation is a function of the bubble radius.

An eigenfrequency of 5–10 Hz requires a bubble

radius of f 1 cm. This bubble size is larger than the

bubble size (1–2 mm) usually observed in scorias at

Stromboli. As a consequence, the effect of scattering is

probably not so severe and this effect is neglected in

the present model. Therefore, we conclude that atten-

uation is mainly controlled by the viscosity of the

medium and by the size of the conduit.
7. Acoustic wave propagation in a layered

two-phase medium

We analyze the propagation of an acoustic wave in

the volcanic conduit by assuming that the fluid

column consists of horizontal layers of magma–gas

mixture. The acoustic properties within the i-th layer

at depth zi� 1 < z < zi are assumed to be uniform and

are represented by the values obtained at z = zi (Figs. 1

and 2). The 0-th layer is the atmosphere and is

represented by an infinite half space. The boundary
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between the atmosphere and the magma is at z = z0 = 0.

An upward incident pressure wave is assumed at the

bottom of the s-th layer at a depth z = zs. The model is

shown in Fig. 5.

To calculate wave propagation in this layered

medium, we take in account the reflection and trans-

mission coefficients at the boundaries between adja-

cent layers. We apply the mathematical method of

Kennet and Kerry (1979). The original theory treats

three-dimensional wave propagation in elastic layers

with an elastic attenuation. For one-dimensional wave

propagation in a viscous liquid, the theory is much

simplified and is described in Appendix A.

The presence of gas bubbles changes the rheology

of the melt, increasing the attenuation in the two-

phase mixture. Many studies analyzed the attenuation

of pressure waves in a bubbly liquid with low viscos-

ity (Commander and Prosperetti, 1989; Prosperetti,

1984). Using the model of Commander and Prosper-

etti (1989), for example, Chouet (1996) predicts

attenuation f 10� 5–10� 7 dB/cm for a basaltic mag-

ma, assuming a temperature of 1100 jC, depths of

100–1000 m, magma viscosity of 10 Pa s and a 1%

void fraction of bubbles with radii 0.3–3 mm. These

analyses take account attenuation due only to effective
Fig. 5. Sketch of the magma–gas mixture layers used in our

analysis of acoustic wave propagation.
bulk viscosity. However, laboratory experiments per-

formed on high-viscosity liquids show different

results, mainly because the contribution of shear

viscosity on the attenuation of viscoelastic waves is

considerable (Fig. 2). Laboratory experiments point to

severe attenuation of shock and pressure waves in

high-viscosity liquids (gf 103 Pa s) containing bub-

bles (Ichihara et al., 2004), even for a void fraction as

low as 1%. In this case, velocity and attenuation of

pressure wave strongly depend on shear modulus and

shear viscosity (Ichihara et al., 2004; Ichihara and

Kameda, 2004-this issue).

Strombolian explosions (e.g., at Stromboli, Etna,

Erebus, Karymsky) produce pressure perturbations in

the atmosphere on the order of 105 Pa at the vent

(Vergniolle and Brandeis, 1996; Ripepe et al.,

2001a,b; Johnson et al., 2003). Considering this value,

we calculate which pressure drop we should need at

different depth of the source in the magma column to

generate a pressure of 105 Pa in the atmosphere.

Based on the frequency content of the recorded

acoustic signal, we consider a pressure wave at a

frequency of 5 Hz. Fig. 6 shows that higher frequen-

cies and narrower conduits require larger pressures at

the source in order to produce a pressure of 105 Pa at

the surface. For a 5-Hz pressure wave and a conduit

radius of 5 m, a pressure pulse of 105 Pa at the free

surface requires (1) a very shallow (< 2 m) position of

the source with source pressure of < 107 Pa or (2) a

deeper more energetic pressure source >3� 107 Pa

(Fig. 6). The attenuation effect is more severe if we

consider a narrower (< 5 m) conduit. For a larger

conduit radius (>10 m), the attenuation due to fric-

tional effects at the conduit wall is weak (Fig. 4);

however, the source still needs to be shallower than

10–15 m to produce the observed pressure amplitude

at the free surface unless this source is extremely

strong, with a pressure larger than 109 Pa (Fig. 6).

Buckingham and Garces (1996) modelled the acoustic

wave associated with explosions at Stromboli in terms

of pressure wave propagation induced by a strong

pressure source (109 Pa) deep embedded in the

magma (80 m) conduit and explained the observed

acoustic spectrum in terms of wave resonance in the

conduit. According to our model, a deep (80 m)

source can produce a 105 Pa infrasonic wave in the

atmosphere only assuming a pressure drop at the

source of 1013 Pa, which is much stronger than what



Fig. 6. Amplitude of the pressure perturbation (expressed as Psource/Patm) in the conduit. The pressure at the source is evaluated in order to

produce a pressure onset similar to explosions at Stromboli ( Pf 105 Pa). Pressure source as a function of depth in the conduit taking into

consideration a pressure wave at frequencies of 1, 3 and 5 Hz, which propagates in a 5-m radius volcanic conduit (a), and a 5-Hz pressure wave,

which propagates in a volcanic conduit with radii of 3, 5, 10 and 20 m (b).
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predicted by Buckingham and Garces (1996). More-

over, the strong viscoelastic attenuation, in the shal-

lowest portion of the volcanic conduit, will prevent

the wave to travel downward the magma column and

will not allow the resonance of the body wave in the

conduit.

In our model, infrasonic waves with Pf 105 Pa

and resonance of the magma column can be possible

only by reducing of several orders of magnitude the

effective viscosity geff in the uppermost part of the

fluid column (Garces et al., 2000). The relaxation time

in a viscoelastic medium such as a vesicular magma is

given by s=(4/3)geff/(qc
2) (Garces, 1997). When s is

larger than the time scale of the propagating acoustic

wave (x� 1), the medium behaves like an elastic solid

and the effective viscosity decrease with sx>1. Our

relaxation time (f 0.8 s) is larger than the time scale

(0.2 s) of a 5-Hz acoustic signal, suggesting that our

medium may behave like an elastic solid. However,

the reduced viscosity is accompanied by an increase

of the elastic modulus and associated increase in the

sound speed (Bagdassarov and Dingwell, 1993; Gar-

ces et al., 2000). The increase of the sound speed

increases the magma–air acoustic impedance contrast,

effectively reducing the amount of acoustic energy
transmitted in the atmosphere. Such effect further

decreases the amplitude of the infrasonic wave to

the value of f 10� 3 Pa, which is below the sensitiv-

ity of any infrasonic instrument.

In conclusion, the large attenuation of the viscoelas-

tic gas-rich magma indicates that the infrasonic wave-

field propagating in the atmosphere associated with

strombolian explosions can not be produced by the

resonance of a pressure wave in the volcanic conduit.
8. Conclusions

The seismo-acoustic wavefield recorded during

volcanic activity is generated inside the magma con-

duit. The large seismo-acoustic energy measured on

active volcanoes indicates that source is well coupled

with the atmosphere as well as with the ground. The

origin of both wavefields is still debated. Independent-

ly from the dynamics of the source, it is obvious that

the source within the magma generates a pressure front

that excites the magma column. Several models have

suggested that the seismic and acoustic wavefields

may be strongly controlled by acoustic resonance in

the conduit (e.g., Chouet, 1985; Julian, 1994; Buck-
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ingham and Garces, 1996). Longitudinal and radial

resonance requires that acoustic waves, freely propa-

gating along the magma column, are reflected by sharp

vertical and horizontal boundaries. Vertical boundaries

are identified as the free surface at the top and the

nucleation depth at the bottom of the magma column,

while the conduit wall provides the horizontal bound-

ary. It is clear that resonance models require a detailed

analysis of the wave propagation in the magma to

explain both seismic (e.g., Chouet, 1985) and acoustic

(Garces et al., 2000) waves. However, previous stud-

ies, aware of the importance of the viscous properties

of the magma–gas mixture (e.g., Chouet, 1985; Gar-

ces et al., 2000; Neuberg et al., 2000), have mainly

focused their analysis on the elastic properties of

medium.

The contribution of our work is to analyze the

propagation of the acoustic wavefield considering the

viscoelasticity of the two-phase magma–gas mixture.

At shallow depths the volatiles are no more stable as

dissolved species in the melt. Gas bubbles nucleate at

some depth and the void fraction increases toward the

surface. The gas bubbles change the acoustic proper-

ties of the magma–gas mixture. The increase in void

fraction causes a decrease in the density, bulk modu-

lus and sound velocity of the mixture, and increases

the viscosity of the two-phase fluid. These processes

are non-linear with depth and lead to a strong damp-

ing of the waves near the surface (depth < 20 m).

In order to understand if the acoustic wavefield in

the atmosphere associated with volcanic explosions

can be explained in terms of pressure wave propaga-

tion in the conduit induced by an embedded pressure

source (Buckingham and Garces, 1996), we have

quantified the transmission of a pressure wavefield in

a stratified viscoelastic magma–gas mixture for dif-

ferent source depths. Considering that explosions

generally release a pressure perturbation on the order

of 105 Pa in the atmosphere, we calculated the required

pressure at the source (Psource) as function of depth.

The Psource/Patm ratio rapidly increases with increasing

source depth in the magma column (Fig. 6). At a depth

of 10 m, this ratio suggests a pressure at the source

>108–109 Pa, taking into account a 5-Hz pressure

wave and a conduit radius of 5 m. Acoustic wave

amplitude is strongly reduced by the high effective

viscosity (f 105 Pa s) of the void-rich fraction

(f 0.44) in the top few meters of the magma–gas
mixture. We demonstrated that attenuation also

depends on the conduit wall friction and increases

with decreasing conduit radius. For conduit radii larger

than 10 m, attenuation by wall friction is low. Visco-

elasticity has a large effect on the attenuation of

acoustic waves at frequencies above 1 Hz. For a high-

viscosity magma–gas mixture (gefff 105 Pa s for

/f 0.44), we infer that wave propagation becomes

effective only when the conduit is larger than 10 m, the

source is shallower than 20 m and the frequency of the

acoustic wave is lower than 2 Hz. Under these con-

ditions, an acoustic wave can travel a significant

distance along the conduit. However, taking into

account the frequency content of the infrasonic wave-

field commonly recorded on open conduit explosive

volcanoes (1–10 Hz), viscous attenuation in the mag-

ma–gas medium strongly prevents the propagation of

acoustic waves in the magma conduit. According to

our model, the infrasonic wavefield in the atmosphere

produced by strombolian explosions can be explained

in terms of conduit resonance only if the source is

located near the surface (in the last 10 m of the magma

column). Sources embedded in the magma column at

depth larger than 50 m will require pressure drop larger

than 1013 Pa. This pressure drop is by far too large.

Recent seismological evidence (Chouet et al., 2003)

that explosions at Stromboli are triggered by a pressure

drop of 107 Pa at 220–260 m depth below the crater

terrace. As a consequence, resonance models, based on

body-wave propagation in the conduit and transmis-

sion to the atmosphere, cannot explain the infrasonic

wavefield recorded at Stromboli. Moreover, resonance

properties of the magma column is inferred to be

responsible not only for the infrasonic waves but also

for the seismic wavefield generated by volcanic activ-

ity within a frequency range between 1 and 10 Hz,

such as tremor. Our results point out that a strong

attenuation effect is induced by the bulk and shear

viscosity of the gas-rich magma on the acoustic waves

just in this frequency range. Our theoretical result on

this strong attenuation effect induced by the shear

viscosity is partially supported by laboratory experi-

ments on the propagation of shock and pressure waves

in high-viscosity liquids (Ichihara et al., 2004). Acous-

tic resonance in volcanic conduit may occur only when

a segment of conduit is dynamically and acoustically

stable over at least for few cycles of resonance at the

frequency of interest (Lane et al., 2001).
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Therefore, we conclude that viscosity changes have

a strong attenuation effect on the propagation of

viscoelastic waves along a gas-rich magma column

and should be more thoroughly considered when

resonance is assumed to be a possible mechanisms

for the observed acoustic wavefield.
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Appendix A

A.1. Formulation of a propagator matrix

Considering a harmonic field with an angular fre-

quency x, the displacement n and the normal stress rzz:

rzz ¼ �pþ D; ðA:1Þ

can both be expressed as:

nðz; tÞ ¼ X ðzÞeixt; ðA:2Þ

rzz ¼ SðzÞeixt: ðA:3Þ

The stress–strain vector is defined as:

BðzÞ ¼ ½X ;x�1S	T : ðA:4Þ

According to Eqs. (19), (21) and (15):

BBðzÞ
Bz

¼ xAðzÞBðzÞ; ðA:5Þ

AðzÞ ¼
0 ðqc2 þ ix 4

3
geff Þ�1

�q þ Qx=x2 0

0
@

1
A:

ðA:6Þ
To relate the stress–displacement vector (Eq. (A.4))

more directly to the elastic wavefield, the following

transformation is made:

B ¼ DV; ðA:7Þ
where D is the eigenvector matrix for A, that is:

AD ¼ iDL; ðA:8Þ

L ¼
k V=x 0

0 �k V=x

0
@

1
A; ðA:9Þ

where kV is given by Eq. (30) and F ikV/x are

the eigenvalues of A. The explicit form for the matrix

D is:

D¼
1 1

i k Vx ðqc2 þ ix 4
3
geff Þ �i k Vx ðqc2 þ ix 4

3
geff Þ

0
@

1
A:

ðA:10Þ

Within a single uniform layer the new wave vector

V then satisfies:

BV

Bz
¼ ixLV: ðA:11Þ

From Eq. (A.11), one obtains:

Vðzþi�1Þ ¼ Eðzþi�1; z
�
i ÞVðz�i Þ; ðA:12Þ

where the superscripts + and � indicate just beneath

and above the boundaries at the depth, respectively.

E(zi� 1
+, zi

�) is a propagator matrix from the bottom to

the top of the i-th layer (zi� 1 < z< zi) and given as:

Eðzþi�1; z
�
i Þ ¼

eikVðz
þ
i�1

;�z�i Þ 0

0 e�ikVðzþ
i�1

;�z�i Þ

0
@

1
A:

ðA:13Þ

Then the elements of V may be identified as the

amplitudes of upward and downward traveling waves:

V ¼ ½VU;VD	T : ðA:14Þ

Continuity of displacement and stress at z = zi,

which is the boundary between i-th and (i + 1)-th

boundary requires:

Bðz�i Þ ¼ Bðzþi Þ: ðA:15Þ
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Eq. (A.15) is rewritten using Eq. (A.7) as:

Vðz�i Þ ¼ D�1ðz�i ÞDðzþi ÞVðzþi Þ; ðA:16Þ

where D� 1(zi
�)D(zi

+) is the propagator matrix across

the boundary.

Propagation of wavefield from z = zj
� to zi

� (zj>zi) is

represented by:

V ðz�i Þ ¼D�1ðz�i ÞDðzþi ÞEðzþi ; z�iþ1ÞD�1ðz�iþ1ÞDðzþiþ1Þ

�Eðzþiþ1; z
�
iþ2Þ . . .Eðzþj�1; z

�
j ÞVðz�j Þ;

ðA:17Þ

¼ Qðz�i ; z�j ÞVðz�j Þ;

where Q(zi
�, zj

�) is defined as a propagator matrix from

z= zj
� to zi

�. In the same way, a propagator matrix from

beneath the boundary at z= zj, that is z = zj
+, to zi

� is

represented by:

Qðz�i ; zþj Þ ¼ Qðz�i ; z�j ÞD�1ðz�i ÞDðzþi Þ: ðA:18Þ

A.2. Reflection–transmission coefficients

Reflection and transmission coefficients of a whole

layers between zi
m and zj

m (zi < zj) are denoted by

RU,D(zi
p, zj

q) and TU,D(zi
p, zj

q), respectively. The super-

scripts p and q indicate either + or � , which is

omitted in the following equations. Wavefield across

the boundary is represented in terms of these coef-

ficients as:

VUðziÞ ¼ RDðzi; zjÞVDðziÞ þ TUðzi; zjÞVUðzjÞ; ðA:19Þ

VDðzjÞ ¼ TDðzi; zjÞVDðziÞ þ RUðzi; zjÞVUðzjÞ; ðA:20Þ

While Eq. (A.17) is expanded representing ele-

ments of Q by qij:

VUðziÞ ¼ q11ðzi; zjÞVUðzjÞ þ q12ðzi; zjÞVDðzjÞ;
ðA:21Þ

VDðziÞ ¼ q21ðzi; zjÞVUðzjÞ þ q22ðzi; zjÞVDðzjÞ;
ðA:22Þ
Comparing Eqs. (A.19), (A.20) and (A.21), (A.22),

the following relations are obtained:

TD ¼ q�1
22

RD ¼ q12q
�1
22

TU ¼ q11 � q12q
�1
22 q21

RU ¼ �q�1
22 q21

9>>>>>>>>=
>>>>>>>>;

ðA:23Þ

A.3. Wave transmission into a half space

We are interested in wave transmission from a

source in the magma (z = zs
�) to the air (z = z0

�).

Because the air is regarded as an infinite half space

and we do not assume pressure source in the air, there

is no downward wave in the air (VD(z0
�) = 0). From

Eq. (A.19) with zi= z0
� and zj = zs

�, we have:

VUðz�0 Þ ¼ TUðz�0 ; z�s ÞVUðz�s Þ: ðA:24Þ

The stress–displacement vector in the air (z0
�) and

in the magma at zs
� associated with the upward waves,

VU(z0
�) and VU(zs

�) are then calculated by:

Bðz�0 Þ ¼ Dðz�0 Þ
VUðz�0 Þ

0

0
@

1
A

¼
1

iq0c0

0
@

1
ATUðz�0 ; z�s ÞVUðz�s Þ; ðA:25Þ

Bðz�s Þ ¼ Dðz�s Þ
VUðz�s Þ

0

0
@

1
A

¼
1

iksVx�1ðqsc
2
s þ ix 4

3
geff ;sÞ

0
@

1
AVUðz�s Þ;

ðA:26Þ
where material parameters for air and in the s-th layer

are indicated by subscripts 0 and s, respectively.
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From Eqs. (A.3) and (A.4), the corresponding

normal stresses are:

rzzðz�0 Þ ¼ ixq0c0TUðz�0 ; z�s ÞVUðz�s Þeixt; ðA:27Þ

rzzðz�s Þ ¼ iksV qsc
2
s þ ix

4

3
geff ;s

� �
VUðz�s Þeixt;

ðA:28Þ

According to Eqs. (19), (21) and (A.1), the relation

between the pressure ( p) and the normal stress (szz) is:

p

rzz

¼ qc2 þ ixgb
qc2 þ ix 4

3
geff

ðA:29Þ

The ratio of pressure amplitude at zs
� to that at z0

� is

then given as:

psource

p

����
���� ¼ ksV

x
qsc

2
s þ ixgb

q c T ðz�; z�Þ

����
����: ðA:30Þ
air 0 0 U 0 s
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