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S U M M A R Y
The first results on the modelling of magnetic signals induced by transient equatorial ring
currents in the magnetosphere with a timescale of the order of days and recorded at satellite
altitudes are presented. The input of modelling consists of the X -component of the time-series
recorded by the CHAMP vector magnetometer along individual night-time, mid-latitude satel-
lite tracks. We have not considered the magnetic signals measured along day-time tracks
and above polar regions because they are disturbed by signals with sources different from
magnetospheric ring currents. The modelling procedure is divided into two parts. First, the
X -components of satellite magnetic signals are processed by a two-step least-squares analysis.
As a result, the X -data are represented in terms of series of Legendre polynomial derivatives.
Four examples of the two-step analysis of the signals recorded by the CHAMP vector magne-
tometer are presented. Second, forward modelling of the electromagnetic induction response
of a 2-D heterogeneous conducting sphere to a transient external current excitation is carried
out in the time domain using a recently developed spectral finite-element technique (Martinec
et al. 2003), which has been modified to include satellite magnetic data. The modified ap-
proach has been verified against a semi-analytical solution for a 2-D geometry: a spherical
inclusion eccentrically nested in a homogeneous sphere. The output of the forward modelling
of electromagnetic induction, that is, the predicted Z-component at satellite altitude, can then
be compared with the satellite observations to obtain data to be minimized when adjusting
electrical conductivity models in future inversion modelling. To outline such a procedure, we
use a 5-layer spherically symmetric model of electrical conductivity and compare the predicted
and observed Z-data for the magnetic storm recorded by the CHAMP satellite between 2001
September 25 and 2001 October 7. The agreement between observations and predictions is
quantitatively satisfactory. The main advantage of the present method is its ability to use the
satellite magnetic data directly, without the need to continue them from the satellite altitude to
the ground or to decompose them into the inducing and induced parts by spherical harmonic
analysis.
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1 I N T RO D U C T I O N

The traditional approach to determining the electrical conductivity of the upper to mid mantle is based on the interpretation of land-based
observatory recordings of geomagnetic time variations of external origin in the time range from several hours to several days (e.g. Eckhardt
et al. 1963; Schultz & Larsen 1987, 1990, Banks & Ainsworth 1992). There are several problems with this approach: the global distribution
of magnetic observatories is sparse and irregular; the quality of the magnetic time-series is variable; and assumptions about the spatial and
time variability of external magnetic sources must often be introduced to enable electromagnetic induction modelling to be carried out (e.g.
Langel & Estes 1985a). The recent high-precision magnetic missions, Ørsted and CHAMP, may have the ability to help these problems to
be overcome. They provide a global coverage of high-precision vector and scalar measurements of the geomagnetic field with a significant
reduction of a need to make assumptions on the spatio-temporal variability of external magnetic sources. On the other hand, however, the
combined spatial and temporal character of satellite signals makes their analysis more difficult than that of their terrestrial counterparts, which
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manifest only temporal variations. Significant progress has already been made in separating the signals due to electromagnetic induction in
the Earth from satellite magnetic data (Didwall 1984; Oraevsky et al. 1993; Olsen 1999a; Tarits & Grammatica 2000; Constable & Constable
2004; Korte et al. 2003).

In order to model 3-D electromagnetic induction effects in the geomagnetic field at satellite altitudes quantitatively, a transient 3-D
electromagnetic induction in a heterogeneous sphere needs to be simulated. Several techniques are available to model the geomagnetic
response of a 3-D heterogeneous sphere in the Fourier frequency domain, each based on a different numerical method: the spherical thin-
sheet method (Fainberg & Singer 1980; Kuvshinov et al. 1999), finite-element method (Everett & Schultz 1996; Weiss & Everett 1998),
integral-equation method (Kuvshinov et al. 2002), finite-difference method (Uyeshima & Schultz 2000) and spectral finite-element method
(Martinec 1999). It is, however, inconvenient to study the geomagnetic induction response to a transient excitation, such as a magnetic storm,
in the Fourier frequency domain. Moreover, the complicated spatial and temporal variability of satellite data favours a time-domain approach.
Several time-domain methods for computing the geomagnetic induction response to a transient external source have recently been developed
(Hamano 2002; Everett & Martinec 2003; Martinec et al. 2003).

In this paper, we will modify the existing time-domain 2-D hybrid spectral finite-element approach for electromagnetic induction
modelling (Martinec et al. 2003) such that satellite magnetic signals are directly applied as boundary-value data at satellite altitudes. First
the modified theory for implementing satellite magnetic data is presented, and the associated numerical code is verified by comparing the
numerical results with a semi-analytical solution to 2-D forward modelling of transient electromagnetic induction in an axially symmetric
configuration of nested spheres. Since the approach assumes that the X -component of the magnetic induction vector is prescribed at satellite
altitudes as a series of derivatives of Legendre functions, a two-step least-squares analysis is designed to derive the expansion coefficients
of this series from mid-latitude satellite data. Having excited a conducting earth by the X -component of the magnetic induction vector, the
time-domain, spectral finite-element approach provides, among other field variables, the Z-component of the magnetic induction vector at
satellite altitudes. We then compare this component with the CHAMP magnetic data and evaluate the acceptability of the electrical conductivity
model considered.

2 B A S I C A S S U M P T I O N S O N C H A M P M A G N E T I C T R A C K S I G N A L S

Throughout this paper, the magnetic signals induced by equatorial ring currents in the magnetosphere and measured by a satellite vector
magnetometer are considered. To obtain these signals, we used the CHAMP model of the main magnetic field (Olsen 2002) and of the
lithospheric magnetic field (Maus et al. 2002) and subtracted these static models from the CHAMP vector magnetic data. The residual
magnetic time-series contain the contributions from the ionosphere and magnetosphere and their induced counterparts. We have confined
ourselves to the residual magnetic time-series along night-time satellite tracks at mid-latitudes and have assumed that the contribution of
ionospheric currents can be neglected. We have analysed only those periods during magnetic storms with timescales of the order of days,
because the induced signal is most intense for these periods. A 25-min long magnetic signal along a night-time, mid-latitude track is considered
as the instantaneous value of the residual magnetic field along the track at the time when the satellite crosses the magnetic equator. Consequently,
at a given time instant, i.e. for a given night-time satellite track, an analysis of the CHAMP residual magnetic time-series can be carried out
along latitude, which provides zonal spherical harmonic expansion coefficients of the data. Thus, the analysis of CHAMP magnetic data for
an individual satellite track requires the assumption that the inducing and induced magnetic fields possess the axisymmetric property,

G(e)
jm(t) = G(i)

jm(t) = 0 for m �= 0, (1)

where G(e)
jm(t) and G(i)

jm(t) are the time-dependent, spherical harmonic expansion coefficients of the external electromagnetic sources and the
magnetic field generated by the induced eddy currents in the Earth, respectively.

Since the CHAMP satellite orbit is nearly polar (the inclination is approximately 87.3◦), electromagnetic signals sampled along a track
by the onboard magnetometer are influenced mainly by changes in the electrical conductivity of the Earth’s mantle along latitude. We will not
consider the effect of longitudinal variations in electrical conductivity on the signal measured along a track. That is, the electrical conductivity
σ of the Earth is assumed to be axisymmetric:

σ = σ (r, ϑ) in G, (2)

where G is a conducting sphere approximating a heterogeneous earth, r is the radial distance from the centre of G, and ϑ is the colatitude.

3 F O R M U L AT I O N O F E L E C T RO M A G N E T I C I N D U C T I O N F O R S AT E L L I T E DATA

Our intention is to use the CHAMP vector magnetic data and study the response of a conducting spherical earth with an axisymmetric
electrical conductivity distribution to an axisymmetric external electromagnetic excitation. This problem can be formulated mathematically as
an initial boundary-value problem for the magnetic diffusion equation. Martinec (1997) solved this problem in the Fourier frequency domain
by the spectral finite-element approach. Recently, Martinec et al. (2003) modified this approach by the implementation of a time-stepping
algorithm and solved the problem in the time domain. The modified approach, called the time-domain, spectral finite-element approach,
assumes that magnetic data are prescribed on the Earth’s surface. For satellite measurements, this requires the continuation of magnetic data
from satellite-orbit altitudes down to the Earth’s surface. Since the downward continuation of satellite magnetic data poses a fundamental
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problem, a modification of the time-domain, spectral finite-element approach such that satellite magnetic data can be used directly as boundary
values at satellite altitudes will be given in the following sections.

Assuming an axisymmetric geometry for external sources and the conductivity model, it is convenient to formulate the initial, boundary-
value problem of the global-scale electromagnetic induction in the Earth in terms of the toroidal vector potential. The classical mathematical
formulation is as follows. Find the toroidal vector potential A inside the Earth G such that the magnetic induction vector B = curl A and

1

µ
curl curl A + σ

∂ A

∂t
= 0

divA = 0


 in G, (3)

(4)

with the boundary condition,

n × curl A = b0 on ∂G, (5)

where µ is the constant permittivity of vacuum, n is the unit normal to ∂G, and b0(ϑ , t) is the tangential component of the magnetic induction
vector B measured on the Earth’s surface ∂G at time t ≥ 0. The mathematical assumptions on A, σ and b0 ensuring that the problem is
formulated in a correct mathematical sense can be found in Křı́žek & Neittaanmäki (1990) or Martinec et al. (2003). Note that, owing to the
assumption on the axisymmetric geometry of electrical conductivity and external sources, Ampére’s law (3) does not contain the gradient of
a scalar potential (e.g. section 3 in Martinec 1997).

The initial boundary-value problem (3)–(5) is formulated for ground magnetic data. In order to use satellite magnetic data without
their downward continuation from satellite orbits to the Earth’s surface, we extend the solution domain by the atmosphere A surrounding the
conducting sphere G. Since we consider the magnetic signals from night-time, mid-latitude tracks only, we assume that there are no electrical
currents in the atmosphere A. This assumption is not completely correct, but it is still a good approximation (Langel & Estes 1985b). Moreover,
the atmosphere A is considered as a non-conducting spherical layer with the inner boundary coinciding with the surface ∂G of the conducting
sphere with radius r = a, and the outer boundary coinciding with the mean-orbit sphere ∂A of radius r = b. The toroidal vector potential A0

in the atmosphere satisfies the following differential equations:

1

µ
curl curl A0 = 0

div A0 = 0


 in A, (6)

(7)

with the continuity condition

A = A0 on ∂G, (8)

and the boundary condition

n × curl A0 = b1 on ∂ A, (9)

where b1 is the is the tangential component of the magnetic induction vector B measured by a satellite magnetometer. In eqs (6) and (7), the
magnetic induction vector B0 in a non-conducting atmosphere is expressed in the form B0 = curl A0 rather than in the more standard form
B0 = −grad U , where U is a magnetic scalar potential. The former expression allows the formulation of the interface condition between two
solution domains in the Dirichlet form (8), while the latter expression would lead to a less convenient, namely Neumann, form of the interface
condition.

In summary, the initial, boundary-value problem for the determination of the toroidal vector potential A in a conducting sphere G and
the toroidal vector potential A0 in a non-conducting spherical layer A is governed by the partial differential equations (3) and (6) constrained
by eqs (4) and (7), which are valid in G and A, respectively, at times t ≥ 0; by the continuity condition (8), which is applied at the interface
∂G; and by the boundary condition (9), which is applied at the external surface ∂A at times t ≥ 0.

4 W E A K F O R M U L AT I O N

The initial, boundary-value problem (3)–(5) for the ground magnetic data b0 has been formulated in a weak sense by Martinec et al. (2003).
We will modify this formulation for the case when the solution domain is extended by a non-conducting atmosphere, and magnetic data b1

are measured at satellite altitudes.
Since we intend to apply different parametrizations of the potentials A and A0, we introduce the solution spaces V and V 0 for the

conducting sphere G and the non-conducting atmosphere A, respectively, as follows:

V := {A | A ∈ L2(G), curl A ∈ L2(G), divA = 0 in G}, (10)

V0 := {A0|A0 ∈ C2(A), divA0 = 0 in A, A = A0 on ∂G}, (11)

where L 2(G) is the space of square-integrable functions in the domain G, and C 2(A) is the space of the functions whose derivatives up to second
order are continuous in the domain A. Following the considerations of Martinec (1997), the weak formulation of the initial, boundary-value
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problem described by eqs (3), (4), (6), (7) and (9) consists of finding the potentials A ∈ V and A0 ∈ V 0 such that, at a fixed time, they satisfy
the following variational equality:

a(A, δA) + b(A, δA) + a0(A0, δA0) = F(b1, δA0) ∀δA ∈ V, ∀δA0 ∈ V0. (12)

The sesquilinear forms a(·, ·), b(·, ·), a0(·, ·) and the functional F(·, ·) are defined as follows:

a(A, δA) := 1

µ

∫
G

(curl A · curl δA) dV, (13)

b(A, δA) :=
∫

G
σ (r, ϑ)

(
∂ A

∂t
· δA

)
dV, (14)

a0(A0, δA0) := 1

µ

∫
A
(curl A0 · curl δA0) dV, (15)

F(b1, δA0) := − 1

µ

∫
∂ A

(b1 · δA0) d S, (16)

where A = ReA − iImA and i = √−1.
Note that the continuity condition A = A0 on ∂G can be implemented in the weak formulation in three different ways. Here, it is

considered in the construction of the solution space V0, see eq. (11). Alternatively, it may constrain the construction of the solution space V .
However, the former choice is more convenient for later algebraic manipulations. The third possibility is to include this condition in the
variational eq. (12) by means of the Lagrange multiplier method. Although this method is the most general way to apply a constraint to a
solution, it is not used here because, as will be shown later, the continuity condition has a simple algebraic form which allows the construction
of the solution space V0 in a simple way.

5 T I M E D I S C R E T I Z AT I O N

We approximate the partial time derivative of A in the sesquilinear form b(·, ·) by the differences of A at two subsequent time levels:

∂ A

∂t
≈ A(r, ϑ, ti+1) − A(r, ϑ, ti )

ti+1 − ti
=:

i+1 A − i A

	ti
, (17)

where i A denotes the values of A at discrete time levels 0 = t 0 < t 1 < · · · < t i+1 < · · ·. The variational equation (12), which is now solved
at each time level ti, i = 0, 1, . . . , has the form

a(i+1 A, δA) + 1

	ti
b1

(i+1
A, δA

) + a0

(
i+1 A0, δA0

) = 1

	ti
b1(i A, δA) + F

(
i+1b1, δA0

) ∀δA ∈ V, ∀δA0 ∈ V0, (18)

where the new sesquilinear form b1(·, ·) is defined by

b1(A, δA) :=
∫

G
σ (r, ϑ)(A · δA) dV . (19)

The method used to discretize the variational equation (12) in time is called the implicit Euler method (Křı́žek & Neittaanmäki 1990; Press
et al. 1992). It can be shown that this time discretization scheme is unconditionally stable. The size of the time steps 	ti is restricted only by
the accuracy of the solution required or by the time discretization of the magnetic data b1.

6 S P H E R I C A L H A R M O N I C F I N I T E - E L E M E N T PA R A M E T R I Z AT I O N O F A

The representation of the toroidal vector potential A and the test functions δA inside the conducting sphere G in terms of vector spherical
harmonics and finite elements is described in detail by Martinec (1997) and Martinec et al. (2003). Here, we only introduce the final form of
the representations of A and δA:{

A(r, ϑ, t)
δA(r, ϑ)

}
=

∞∑
j=1

∞∑
k=1

{
A j,k

j (t)
δA j,k

j

}
ψk(r )Y j

j (ϑ), (20)

where ψ k(r ) are piecewise-linear finite elements on the interval 0 ≤ r ≤ a, and Y j
j (ϑ) are zonal toroidal vector spherical harmonics. Their

explicit forms are as follows (Varshalovich et al. 1989):

Y j
j (ϑ) := −i Pj1(cos ϑ)eϕ, (21)

where P j1(cos ϑ) is the associated Legendre function of degree j and order m = 1, and eϕ is the spherical base vector in the ϕ-direction. The
axisymmetric geometry allows us to simplify the notation and drop the azimuthal index m = 0 for spherical harmonics. Note that functions
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Y j
j (ϑ) are divergence-free, which ensures that both the toroidal vector potential A and the test functions δA are divergence-free. Therefore,

the parametrization (20) of the potentials A and δA automatically satisfies the requirement on the functions from the solution space V to be
divergence-free.

7 S O L I D S P H E R I C A L H A R M O N I C S PA R A M E T R I Z AT I O N O F A 0

The magnetic induction vector B0 in the non-conducting atmosphere A may be expressed in terms of a magnetic scalar potential as B0 =
−grad U , where U satisfies the Laplace equation. Because of the axisymmetric geometry of the inducing and induced magnetic fields, U is
an axisymmetric scalar and can be represented in terms of zonal scalar solid spherical harmonics rjYj(ϑ) and r− j−1Yj(ϑ) as follows:

U (r, ϑ, t) = a
∞∑
j=1

[(
r

a

) j

G(e)
j (t) +

(
a

r

) j+1

G(i)
j (t)

]
Y j (ϑ) in A, (22)

where Yj(ϑ) are zonal scalar spherical harmonics and the mean radius of the Earth, a, is introduced for scaling. Making use of the gradient
and rotation formulae for spherical harmonics, the toroidal vector potential A0 in the non-conducting atmosphere that generates B0, that is
B0 = curl A0, can be expressed as a series of zonal vector solid spherical harmonics (Martinec 1997). Thus, an unknown toroidal vector
potential A0 and test functions δA0 can be parametrized in a non-conducting atmosphere A in the form{

A0(r, ϑ, t)
δA0(r, ϑ)

}
= ia

∞∑
j=1

[√
j

j + 1

(
r

a

) j
{

G(e)
j (t)

δG(e)
j

}
−

√
j + 1

j

(
a

r

) j+1
{

G(i)
j (t)

δG(i)
j

}]
Y j

j (ϑ). (23)

In view of this, the spherical harmonic parametrization of the sesquilinear form a0(·, ·) defined in eq. (15) can be rearranged, after some
algebraic manipulation, into the form

a0(A0, δA0) = a3

µ

∞∑
j=1

{
j

[ (
b

a

)2 j+1

− 1

]
G

(e)
j (t)δG(e)

j − ( j + 1)

[(
a

b

)2 j+1

− 1

]
G

(i)
j (t)δG(i)

j

}
, (24)

where a and b are the radii of the spheres ∂G and ∂A, respectively.
We now express the continuity condition (8), that is, A = A0 on ∂G, in terms of spherical harmonics. Substituting for the spherical

harmonic representation of A from eq. (20) and for A0 from eq. (23) into eq. (8) results in the constraint between the external coefficients
G(e)

j (t), the internal coefficients G(i)
j (t) of the toroidal vector potential A0 in the atmosphere, and the coefficients Aj

j(a, t) of the toroidal vector

potential A in the Earth. This constraint is used to express the coefficients G(i)
j (t) in terms of the coefficients G(e)

j (t) and Aj
j(a, t). The same

procedure is applied to the test functions δA and δA0. In summary,{
G(i)

j (t)

δG(i)
j

}
= j

j + 1

{
G(e)

j (t)

δG(e)
j

}
+ i

a

√
j

j + 1

{
A j

j (a, t)
δA j

j (a)

}
. (25)

The last relation enables the elimination of the coefficients G(i)
j (t) and δG(i)

j from the sesquilinear form a0(·, ·):

a0(A0, δA0) = a3

µ

∞∑
j=1

{
j

[ (
b

a

)2 j+1

− 1

]
G

(e)
j (t)δG(e)

j − j

[(
a

b

)2 j+1

− 1

]

×
[

j

j + 1
G

(e)
j (t)δG(e)

j + i

a

√
j

j + 1
G

(e)
j (t)δA j

j (a) − i

a

√
j

j + 1
A

j

j (a, t)δG(e)
j + 1

a2
A

j

j (a, t)δA j
j (a)

]}
. (26)

8 S P H E R I C A L H A R M O N I C PA R A M E T R I Z AT I O N O F S AT E L L I T E M A G N E T I C DATA

The spherical harmonic representation of magnetic data b1 at satellite altitudes can be obtained by applying the differential operator rotation
on eq. (23) and substituting the result into eq. (9):

b1(b, ϑ, t) = −i
∞∑
j=1

√
j( j + 1)G(X )

j (b, t)Y j
j (ϑ), (27)

where

G(X )
j (b, t) :=

(
b

a

) j−1

G(e)
j (t) +

(
a

b

) j+2

G(i)
j (t) (28)

are the spherical harmonic coefficients of the X -component of the magnetic induction vector B0 measured at satellite altitude r = b, namely

X (b, ϑ) := 1

r

∂U

∂ϑ

∣∣∣∣
r=b

=
∞∑
j=1

G(X )
j (b, t)

∂Y j (ϑ)

∂ϑ
. (29)
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Making use of eqs (23) and (27), the functional F(·, ·) defined by eq. (16) can be expressed in the form

F(b1, δA0) = − ib2

µ

∞∑
j=1

√
j( j + 1)G(X )

j (b, t)δA j
0, j (b), (30)

where the spherical harmonic coefficients δA j
0, j (b) of the test functions δA0(b, ϑ) are given by eq. (23) for r = b:

δA j
0, j (b) = ia

[√
j

j + 1

(
b

a

) j

δG(e)
j −

√
j + 1

j

(
a

b

) j+1

δG(i)
j

]
. (31)

The test function coefficients δG(i)
j can again be eliminated from δAj

0, j (b) by considering the constraint (23):

δA j
0, j (b) = ia

√
j

j + 1

[ (
b

a

) j

−
(

a

b

) j+1
]
δG(e)

j +
(

a

b

) j+1

δA j
j (a). (32)

9 S P E C T R A L F I N I T E - E L E M E N T S O L U T I O N

Finally, we are ready to introduce the spectral finite-element solution to the initial boundary-value problem of electromagnetic induction for
satellite magnetic data. The finite-dimensional functional spaces are constructed such that

Vh :=
{

δA =
jmax∑
j=1

P+1∑
k=1

δA j,k
j ψk(r )Y j

j (ϑ)

}
, (33)

V0,h :=
{

δA0 =
jmax∑
j=1

δA j
0, j (r )Y j

j (ϑ); δA j
0, j (r ) = ia

√
j

j + 1

[(
r

a

) j

−
(

a

r

) j+1]
δG(e)

j +
(

a

r

) j+1

δA j,P+1
j

}
, (34)

where j max and P are finite cut-off degrees. The Galerkin method for approximating the solution of the variational equation (12) at a fixed
time t i+1 consists in finding i+1 Ah ∈ Vh and i+1 A0,h ∈ V 0,h satisfying the equation

a
(

i+1 Ah, δAh

) + 1

	ti
b1

(
i+1 Ah, δAh

) + a0

(
i+1 A0,h, δA0,h

) = 1

	ti
b1

(
i Ah, δAh

) + F
(

i+1b1, δA0,h

)∀δAh ∈ Vh, ∀δA0,h ∈ V0,h . (35)

The discrete solutions i+1 Ah and i+1 A0,h of this system of equations are called the time-domain, spectral finite-element solution. For a given
angular degree j (and a fixed time t i+1), the unknowns in eq. (35) consist of P + 1 coefficients i+1 A j,k

j describing the solution in the conducting

sphere G, and the coefficient i+1G(e)
j describing the solution in a non-conducting spherical layer A. In total, there are P + 2 unknowns in

the system for a given j. Once this system is solved, the coefficient i+1G(i)
j of the induced magnetic field in A is computed by means of the

continuity condition (25).
Inspection of eq. (30) shows that the right-hand sides of the system (35) contain the spherical harmonic expansion coefficients of the

X -component of the magnetic induction vector B0 measured at satellite altitudes. This means that as a first step it is necessary to carry out
the spherical harmonic analysis of the X -component of the satellite magnetic data (see Section 11). There is no need, however, to perform a
spherical harmonic analysis of the Z-component of the satellite magnetic data. This additional analysis would enable the separation of the
spherical harmonic coefficients of the external and internal magnetic fields. However, the spherical harmonic analysis of the Z-component of
magnetic data is, in general, less reliable than the analysis of the X -component (Pr◦uša & Martinec 1999). This fact motivated us to design the
time-domain spectral finite-element approach to the modelling of satellite magnetic data such that it avoids the requirement of carrying out a
spherical harmonic analysis of the Z-component of the magnetic induction vector B0.

1 0 V E R I F I C AT I O N

Martinec et al. (2003) developed the time-domain spectral finite-element method (the TISFEM method) for ground magnetic data. This
method is governed by the variational equation

a1

(
i+1 Ah, δAh

) + 1

	ti
b1

(
i+1 Ah, δAh

) = 1

	ti
b1

(
i Ah, δAh

) + F1

(
i+1G(e)

j , δAh

) ∀δAh ∈ Vh, (36)

where the sesquilinear form a1(·, ·) and the functional F 1(·, ·) are specified in Martinec et al. (2003). They tested the TISFEM method
by comparison with the analytical and semi-analytical solutions to electromagnetic induction in two concentrically and eccentrically nested
spheres of different but constant electrical conductivities. They also showed that the numerical code implementing the TISFEM method for
ground magnetic data performs correctly, and that the TISFEM method is particularly appropriate when the external current excitation is
transient. We now use this code to verify the modification of the TISFEM method for satellite magnetic data.

The complex structure of a magnetic storm will be described by a simple mathematical model that simulates the basic features of a storm.
The storm ring current is considered axisymmetric with a P10(cos ϑ) spatial structure. Consequently, all spherical harmonics of the external
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scalar magnetic potential are equal to zero except for the first-degree coefficient G(e)
1 (t). After the onset of a magnetic storm at t = 0, the ring

current quickly peaks and then decays exponentially. This time evolution is modelled by the function (Martinec et al. 2003)

G(e)
1 (t) =

√
4π

3
Ate−t/τ , (37)

where
√

4π/3 is the inverse norm of P 10(cos ϑ), A the amplitude, and τ the relaxation time describing the recovery phase of the storm. We
will use τ = 3 days and A = 0.003 nT s−1 in the following test example.

Consider a conducting sphere G, consisting of two eccentrically nested spheres of which the inner sphere has a radius of 3500 km and a
conductivity of 10 S m−1, and the outer sphere ∂G has a radius of a = 6371 km and a conductivity of 0.1 S m−1. The inner sphere is translated
along the z-axis by 2700 km. The radius of the mean-orbit sphere ∂A is b = a + 500 km.

The strategy for verifying the TISFEM method for satellite magnetic data consists of three steps. First, the conducting sphere G is excited
by a source field with the time evolution (37) applied as the boundary-value data on the surface ∂G, and the numerical code implementing the
TISFEM method for ground magnetic data, which is governed by the variational eq. (36), computes the electromagnetic induction response
of G. Among other outputs, it provides the coefficients G(i)

j (t), j = 1, 2, . . . , of the induced magnetic field. Second, the external and internal
coefficients are used to generate the boundary-value data at satellite altitudes according to eq. (28). These data are applied on the mean-orbit
sphere ∂A and excite an electromagnetic field in the model consisting of the conducting sphere G and non-conducting atmosphere A. The
numerical code implementing the TISFEM method for satellite magnetic data, which is governed by the variational equation (35), computes
the electromagnetic induction response of the model G ⊕ A. Finally, the two methods are compared for the toroidal vector potential A and
magnetic induction vector B inside the conducting sphere G.

In Fig. 1, the longitudinal component Aϕ of the toroidal vector potential A, the radial component Br, and the colatitudinal component Bϑ

of the magnetic induction vector B at the surface ∂G and geomagnetic colatitude ϑ = 30◦ are plotted as a function of time after the onset of a
magnetic storm of the time history (37). In addition, the components Aϕ , Br and Bϑ at geomagnetic colatitude ϑ = 30◦ and time t = 15 days
are plotted as a function of the radial distance from the centre of the sphere G. The solution by the TISFEM method for satellite magnetic data
was checked by comparing it with the solution by the TISFEM method for ground magnetic data. Fig. 1 shows that the agreement between
the numerical results of the two methods is excellent.

1 1 T W O - S T E P L E A S T - S Q UA R E S A N A LY S I S O F S AT E L L I T E - T R A C K
M A G N E T I C DATA

For a given satellite night-time track, the X -component of signals derived from the CHAMP magnetic measurements was considered. In the
first step, the main magnetic field (Olsen 2002) and the lithospheric magnetic field (Maus et al. 2002), both represented by the spherical
harmonic series up to degree and order 65, were subtracted from the CHAMP vector magnetic measurements. The residual magnetic time-
series were assumed to contain the ionospheric and magnetospheric contributions and their induced counterparts. Only the residual magnetic
time-series obtained from night-time satellite tracks were considered, because the contribution of ionospheric currents can be neglected for
nightsides (e.g. Olsen 1999a). The input data of the least-squares analysis are the samples of the X -component of the residual magnetic signal
for an individual satellite track, that is, data set (ϑ i , Xi), i = 1, . . . , D, where ϑ i is the geomagnetic colatitude of measurement side, and
D is the number of data points. Polar regions were excluded from the analysed series because the field due to polar currents obfuscates the
equatorial ring current signals. In the following numerical examples, the magnetic data are considered at mid-latitudes within the interval
from ϑ 1 = 40◦ to ϑ D = 140◦. The satellite track data (ϑ i , Xi) are referenced to the time when CHAMP passes the magnetic equator.

Consider D observational equations for data Xi in the form

N∑
j=1

G(X )
j (t)

∂Y j (ϑi )

∂ϑ
+ ei = Xi , i = 1, . . . , D, (38)

where G(X )
j (t) are the expansion coefficients to be determined by a least-squares analysis and N is the cut-off degree. We have assumed that

the measurement errors ei have zero means, uniform variances σ 2 and are uncorrelated:

Eei = 0,

var ei = σ 2,

cov(ei , e j ) = 0 for i �= j,
(39)

where E, var and cov are the statistical expectancy, the variance and the covariance operator, respectively. The least-squares analysis of
satellite-track magnetic measurements of the X -component of the magnetic induction vector is performed in two steps.

11.1 Change of the interval of orthogonality

In the first step, the data Xi were mapped from the mid-latitude interval ϑ ∈ (ϑ 1, ϑ D) onto the half-circle interval ϑ ′ ∈ (0, π ) by the linear
transformation

ϑ ′ = αϑ + β, (40)
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Figure 1. Left: surface electromagnetic induction response functions Aϕ (a, ϑ , t) (in nT m), and Br(a, ϑ , t) and Bϑ (a, ϑ , t) (in nT) of the eccentrically nested
spheres model at the geomagnetic colatitude ϑ = 30◦ as a function of time after the onset of a magnetic storm. Right: electromagnetic induction response
functions Aϕ (r , ϑ , t), Br(a, ϑ , t) and Bϑ (a, ϑ , t) of the eccentrically nested spheres model at the geomagnetic colatitude ϑ = 30◦ and the time t = 15 days as
a function of the radial distance from the centre of the conducting sphere G. The response functions are computed by the TISFEM method for ground magnetic
data described by eq. (37) (thick dashed lines), and by the TISFEM method for satellite magnetic data described by eq. (28) (thin solid lines). The cut-off degree
of the spherical harmonic representations (33) and (34) is j max = 40, the number of finite elements P = 100, and the time step is 	t = 0.1 d. The arrows mark
the position of the interface between the spherical inclusion with a radius of 3500 km and a conductivity of 10 S m−1, translated along the z-axis by 2700 km,
and the outer sphere with a radius of 6371 km and a conductivity of 0.1 S m−1.

where

α = π

ϑD − ϑ1
, β = − πϑ1

ϑD − ϑ1
, (41)

and then adjusted by a series of Legendre polynomials:

X (ϑ ′)
∣∣
ϑ ′=αϑ+β

=
N ′∑
j=0

A′
j Y j (ϑ

′), ϑ ′ ∈ (0, π ) (42)

The expansion coefficients A′
j were determined by fitting the model (42) to mid-latitude magnetic data Xi. Since the accuracy of CHAMP

magnetic measurements is high, both long-wavelength and short-wavelength features of mid-latitude data were adjusted. That is why the
cut-off degree N ′ was chosen to be large. In the following numerical examples, N ′ = 25, while the number of data points is D = 1550. Because
of data errors, the observational equations based on the model (42) are inconsistent and an exact solution to this system does not exist. The
solution was estimated by the method of least squares. Since this method is well documented in the literature (e.g. Bevington 1969), no details
are given.
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11.2 Extrapolation of magnetic data from mid-latitudes to the half-circle

When the analysis of mid-latitude data Xi is complete, the signal that best fits the mid-latitude data is extrapolated to the polar regions. The
extrapolation is based on the original parametrization (38) of the X -component of the magnetic induction vector; thus, the requirement is

N∑
j=1

G(X )
j (t)

∂Y j (ϑ)

∂ϑ

∣∣∣∣∣
ϑ=(ϑ ′−β)/α

!=
N ′∑

k=0

A′
kYk(ϑ ′), (43)

where A′
k are the coefficients determined in the previous step and G(X )

j (t) are now to be determined; the symbol ‘
!= ’ abbreviates ‘it is required

that’. Making use of the orthonormality property of Yk(ϑ ′), the extrapolation condition (43) can be written as a system of linear algebraic
equations:

2π

N∑
j=1

G(X )
j (t)

∫ π

ϑ ′=0

∂Y j (ϑ)

∂ϑ

∣∣∣∣
ϑ=(ϑ ′−β)/α

Yk(ϑ ′) sin ϑ ′dϑ ′ = A′
k (44)

for k = 0, 1, . . . , N ′. In contrast to the previous step, only long-wavelength features of mid-latitude data were extrapolated to the polar regions;
thus, N � N ′. In the following numerical examples, only the range 2 ≤ N ≤ 6 was considered, depending on the character of the mid-latitude
data. The system of equations (44) is overdetermined, and a solution for G(X )

j (t) can be estimated by the method of least squares.

11.3 Examples of least-squares analysis of the CHAMP magnetic data

Presented here are four examples of the least-squares analysis of the CHAMP magnetic data recorded in the period from 2001 September 25
to 2001 October 7. This period was chosen because it included a magnetic storm followed by a magnetic substorm, as seen from the behaviour
of the Dst index (see Fig. 2). For demonstration purposes, four CHAMP track data sets were chosen: the data recorded along track No. 6732
provides an example of data analysis before a magnetic storm occurs; track No. 6755 represents a magnetic storm reaching its main phase;
track No. 6780 represents the recovery phase of a storm; and track No. 6830 represents the appearance of a substorm.

In Fig. 3, the X -component of the original CHAMP magnetic data reduced by the main magnetic field and the lithospheric magnetic
field is shown. The top panels show the residual magnetic signals for the night-time mid-latitudes and the filtered signals after the first step
of the least-squares analysis has been performed. The mid-latitude data Xi are adjusted by the model (42) rather well by choosing N ′ = 25.
For the sake of completeness, the second-row panels of Fig. 3 show the degree-power spectrum of the coefficients A′

j.

As far as the choice of the cut-off degree N of coefficients G(X )
j (t) is concerned, we proceed as follows. We begin with degree

N = 2, increase it by one and plot the degree-power spectrum of the coefficients G(X )
j (t). While the degree-power spectrum is a monotonically

decreasing function of angular degree j, we continue increasing the cut-off degree N . Once the degree-power spectrum of G(X )
j (t) no longer

decreases monotonically, the actual cut-off degree is taken from the previous step for which the degree-power spectrum was still monotonically
decreasing. The degree-power spectrum of coefficients G(X )

j (t) for the final choice of cut-off degree N is shown in the third-row panels of
Fig. 3.

The criterion for choosing N can be interpreted as follows. The largest energy of magnetospheric ring-current excitation is located at the
angular degree j = 1. The leakage of the electromagnetic energy from degree j = 1 to higher degrees is caused by lateral heterogeneities of
electrical conductivity in the Earth’s mantle. The more pronounced the lateral heterogeneities, the larger the transport of energy from degree
j = 1 to higher degrees. Accepting the criterion of a monotonically decreasing degree-power spectrum as a criterion of choosing the cut-off
degree N , means that we regard the Earth’s mantle as only weakly laterally heterogeneous.

The bottom panels of Fig. 3 show the residual signals over the whole night-time track derived from the CHAMP observations and the
signals extrapolated from mid-latitude data. First, we can see the well-known fact that the original magnetic data are disturbed at the polar
regions by sources other than equatorial ring currents. Second, since there is no objective criterion for evaluating the quality of the extrapolation
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Figure 2. Provisional Dst index for the magnetic storm between 2001 September 25 and 2001 October 7. The arrows mark the satellite tracks chosen to
demonstrate the least-squares analysis of satellite magnetic data.
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Figure 3. Examples of the two-step least-squares analysis of magnetic signals along four satellite tracks. The top panels show the X -component of the residual
magnetic signals at the night-time mid-latitudes derived from the CHAMP magnetic observations (thin lines) and the predicted signals after the first step of
the least-squares analysis has been completed (thick lines). The number of samples of the original signals is D = 1550. The second-row and third-row panels
show the degree-power spectrum of the coefficients A′

j and G(X )
j (t), respectively. The cut-off degree of the coefficients A′

j is fixed to N ′ = 25, while the cut-off
degree N of the coefficients G(X )

j (t) is found by the criterion discussed in the text. The bottom panels show the X -component of the residual magnetic signals
over the whole night-time tracks (thin lines) and the signals extrapolated from mid-latitude data according to the second step of the least-squares analysis (thick
lines). As expected, both steps of the analysis represent smoothing and filtering of the original signals. The longitude when the CHAMP satellite crosses the
equator of the geocentric coordinate system is −55.19◦, 127.19◦, −97.15◦ and 174.23◦ for track Nos 6732, 6755, 6780 and 6830, respectively.

of the X -component to the polar regions, it is regarded subjectively. For the track data shown here, but also for the other data for the magnetic
storm considered, the extrapolation of the X -component from mid-latitudes to the polar regions works reasonably well provided that the cut-off
degree N is chosen according to the criterion we introduced.

1 2 E X A M P L E O F F O RWA R D E L E C T RO M A G N E T I C I N D U C T I O N M O D E L L I N G
B A S E D O N T H E C H A M P V E C T O R DATA

After completing the least-squares analysis of magnetic data for all night-time, mid-latitude CHAMP tracks during the period of the magnetic
storm (2001 September 25 to 2001 October 7), the time evolution of the coefficients G(X )

j (t) of the X -component of the magnetic induction

vector at satellite altitude was obtained. The first panel of Fig. 4 shows the time evolution of the coefficient G(X )
1 (t) for this period. A comparison

with the Dst index for this period (Fig. 2) demonstrates the well-known fact (e.g. Olsen 1999a) that there is a high correlation between the
time evolution of the Dst index and the coefficient G(X )

1 (t). This correlation is significantly reduced for higher-degree coefficients, as shown,
for instance, by the second-degree spherical harmonic coefficient G(X )

2 (t) in Fig. 5.
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Figure 3. (Continued.)

Table 1. The 5-layer conductivity earth model.

Region Radius Conductivity
(km) (S m−1)

Core 0–3480 10.
Lower mantle 3480–5701 1.
Upper mantle 5701–5951 0.1

5951–6301 0.01
Lithosphere 6301–6371 0.001

The spherical harmonic coefficients G(X )
j (t) were applied on the mean-orbit sphere ∂A as the boundary-value data, and excite the

electromagnetic field in the model consisting of the conducting sphere G and the non-conducting atmosphere A. The geometrical parameters
and the electrical conductivity of G are given in Table 1. This model simplifies the results of a number of investigations on the electrical
conductivity of the mantle (e.g. Pěčová et al. 1987; Schultz & Larsen 1987, 1990; Olsen 1999b; Xu et al. 2000). It is taken to demonstrate the
forward modelling process. There is no particular expectation that this model will be a final global conductivity earth model.

The electromagnetic induction response of the extended model G ⊕ A was computed by the TISFEM method modified for the use of
satellite magnetic data. There are several outputs of this method that may be used to describe the electromagnetic induction response. As
a first result, the solution was specified inside the atmosphere A for a point on the Earth’s surface ∂G from the external side, that is, for
r = a+, and this solution was subtracted from the boundary-value data at the mean-orbit sphere ∂A. The difference, which corresponds to the
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Figure 4. Example of forward electromagnetic induction modelling for all night-time, mid-latitude CHAMP magnetic track data over the period of the
magnetic storm between 2001 September 25 and 2001 October 7. The first panel shows the time evolution of the spherical harmonic coefficient G(X )

1 (t) for
this period derived from the CHAMP magnetic observations, the second panel shows the downward continuation of G(X )

1 (t) from the satellite altitude to the
ground, and the third panel shows the jump of G(X )

1 (t) on the Earth’s surface. The results in the last two panels are based on computations performed by the
TISFEM method modified for satellite magnetic data. These results are applied to the 5-layer conductivity model given in Table 1. The altitude of the CHAMP
satellite above the reference geoid for the period of the magnetic storm considered is 430 km.

downward continuation of spherical harmonics of the X -component of the magnetic induction vector from the satellite altitude to the ground,
is shown in the second panels of Figs 4 and 5 for degrees j = 1 and j = 2, respectively. It is shown that the downward continuation can
reach tens of nanoteslas for degree j = 1 and a few nanoteslas for degree j = 2. For higher degrees (not shown here), the magnitude of the
downward continuation of G(X )

j (t) does not exceed 1 nT.
The second result concerns the question of how the change in parametrization of the toroidal vector potential A inside G by the spherical

harmonics and linear finite elements, see eq. (20), and of the toroidal vector potential A0 inside A by the solid spherical harmonics, see eq. (23),
influences the continuity of the X -component of the magnetic induction vector B on the Earth’s surface. In the third panels of Figs 4 and 5,
the jump of the X -component of the magnetic induction vector B on the Earth’s surface is plotted. A small, but non-zero, jump appears as a
result of the change in parametrization of the toroidal vector potential along the radial distance at the point of the Earth’s surface. Increasing
the number of finite elements in the uppermost part of the conducting sphere G reduces the magnitude of the jump. For instance, in Figs 4
and 5, 36 finite elements were used to parametrize A in the 70 km thick lithosphere. By a finer parametrization, with 72 finite elements, the
jump in G(X )

1 (t) is reduced from 1 nT to 0.2 nT.
Inspection of eq. (28) clarifies that the coefficients G(X )

j (t) are composed from a linear combination of the spherical harmonics G(e)
j (t)

of the external electromagnetic sources and the spherical harmonics G(i)
j (t) of the induced magnetic field inside the Earth. There is no need

to specify these coefficients separately when G(X )
j (t) are used as the boundary-value data for the forward modelling of the electromagnetic

induction by the TISFEM method. However, as discussed after eq. (35), this approach allows the separation of the external and internal
coefficients, G(e)

j (t) and G(i)
j (t), from the boundary-data coefficients, G(X )

j (t). In Fig. 6, the time evolution of the coefficients G(e)
j (t) and
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Figure 5. As Fig. 4, but for the second-degree coefficient G(X )
2 (t).

G(i)
j (t), j = 1, 2, 3, for the period of the magnetic storm is plotted. The ratio G(i)

j (t)/G(e)
j (t) depends on the electrical conductivity of the

Earth’s mantle. For the conductivity model given in Table 1, the largest ratio is for degree j = 1.

1 3 D I S C U S S I O N

The TISFEM method for satellite magnetic data also allows us to model the time evolution of the Z-component of the magnetic induction
vector on the mean-orbit sphere ∂A along the satellite tracks. These predicted data can be compared with the measurements of the Z-component
of the magnetic induction vector by the CHAMP onboard magnetometer. This comparison is plotted in Fig. 7 for the track data analysed
in Fig. 3. There are differences between measured and predicted values. These differences can be used as a misfit function for the inverse
electromagnetic induction modelling. Its task is to vary the conductivity structure of the Earth’s mantle, such that the differences between
measured and predicted values of the Z-component of the satellite magnetic data are minimized.

The model results shown in Fig. 7 apply to the radially symmetric earth structure given in Table 1. The procedures for the analysis of the
X data, and the use of them in predicting the Z data for an earth conductivity model based on present generally accepted models, recreate the
Z data, judged by visual inspection, generally satisfactorily. However, for the tracks above the South Pacific (e.g. track No. 6830) the observed
Z data are always more positive then the predictions. Possible reasons for the differences between the observed and predicted Z data over the
Pacific region may include the exclusion of ionospheric currents from the model. The ionospheric currents in the day are well known and
have wavelengths comparable with the Dst-effect currents. Little is understood about the night-time ionospheric currents. At ground level the
contributions from these currents are considered insignificant, but this might not be the case at satellite altitudes. In addition, the upper mantle
conductivity structure below the South Pacific may be more complex than modelled here.

1 4 C O N C L U S I O N

The purpose of this paper has been to demonstrate the forward modelling of the electromagnetic induction in a spherical heterogeneous earth
excited by transient external currents. The achievement of this paper has been to demonstrate how the values derived from the X -component
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Figure 6. Time evolution of the coefficients G(e)
j (t) (thick lines) and G(i)

j (t) (thin lines) for degree j = 1 (top panel), j = 2 (middle panel) and j = 3 (bottom
panel). The results apply to the magnetic storm considered in Fig. 3 and the 5-layer conductivity model given in Table 1.

data in Fig. 4 reflect the Dst index in Fig. 2, and can then be used to predict the Z-component data, with the agreement between prediction and
observation as shown in Fig. 7. In future work, the misfits between the observed and predicted Z-data as in Fig. 7 (and also for all the other
tracks not shown) become data to minimize, when adjusting models in an inversion process. In the present case, adjustment of the 1-D model
of Table 1 might be considered, in order to obtain the best fit. In addition, the present paper has shown how a model of eccentrically nested
spheres can be investigated. Further stages in interpretation will require full 3-D model capability.

The achievement of the present approach is its ability to use satellite data directly without continuing them from satellite altitude to
ground level or without decomposing them into the exciting and induced parts by spherical harmonic analysis. We demonstrate this fact for
a 2-D configuration, for which the electrical conductivity and the external sources of the electromagnetic variations are axisymmetrically
distributed and for which the external current excitation is transient, as for a magnetic storm. The 2-D case corresponds to the situation when
electromagnetic induction studies are carried out using vector magnetic data along each orbit of a satellite, such as the CHAMP satellite.
The present approach can be extended to the transient electromagnetic induction in a 3-D heterogeneous sphere if the signals from multiple
satellites simultaneously supplemented by ground-based magnetic observations become available in the future. Clearly, this is only the initial
stage of electromagnetic induction studies based on satellite data.
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Figure 7. Residual magnetic signals for the Z-component of the magnetic induction vector derived from the CHAMP magnetic observations for the four
tracks considered in Fig. 3 (thin lines), compared with the predicted counterparts computed for the conductivity model given in Table 1 (thick lines).
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