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S U M M A R Y
A data assimilation approach is demonstrated whereby seismic inversion is both automated and
enhanced using a comprehensive numerical sedimentary basin simulator to study the physics
and chemistry of sedimentary basin processes in response to geothermal gradient in much
greater detail than previously attempted. The approach not only reduces costs by integrating
the basin analysis and seismic inversion activities to understand the sedimentary basin evolution
with respect to geodynamic parameters—but the technique also has the potential for serving as
a geoinfomatics platform for understanding various physical and chemical processes operating
at different scales within a sedimentary basin.

Tectonic history has a first-order effect on the physical and chemical processes that govern
the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be
estimated by minimizing the difference between observed seismic reflection data and synthetic
ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We
demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly
affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal
gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics
and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity
and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary
basin is imaged by reflection seismology data to a high degree of resolution, but it does not
give any indication of the processes that contributed to the evolution of the basin or causes
for heterogeneities within the basin that are being imaged. Using texture and fluid properties
predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation
using power spectra as an error measure and an efficient quadratic optimization technique
are found to be most effective in determining the optimal value of the tectonic parameters.
Preliminary 1-D studies indicate that one can determine the geothermal gradient even in the
presence of observation and numerical uncertainties. The algorithm succeeds even when the
synthetic data has detailed information only in a limited depth interval and has a different
dominant frequency in the synthetic and observed seismograms. The methodology presented
here even works when the basin input data contains only 75 per cent of the stratigraphic layering
information compared with the actual basin in a limited depth interval.
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mentary basin modelling.
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1 I N T RO D U C T I O N

One of the challenges for understanding a complex system that
evolves over millions of years, such as a sedimentary basin is the
very poor constraint on parameters that govern or significantly af-
fect the physical and chemical processes operating in a sedimentary
basin. In a typical approach studying the physics and chemistry
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involved in the formation of sedimentary basins either in an aca-
demic or industrial setting, seismic inversion and basin modelling
are essentially carried out as independent activities. Even when in-
formation from seismic inversion is used, it is only a small part
of the basin modelling effort and it does not attempt to capture the
richness and diversity of processes involved. However, a comprehen-
sive basin reaction, transport, mechanical (RTM) numerical model
makes predictions concerning fluid and rock property distributions
that could, in principal be used to enhance the quality of seismic in-
version. It is the objective of this study to integrate and automate the
seismic inversion and basin modelling efforts into a cost-effective
technology that enhances the quality and general information con-
tent of both. Also, one of the fundamental problems in performing
inversion in earth sciences is the lack of enough detailed informa-
tion concerning the Earth to make predictions that can be tested
with confidence using various data sets. Therefore, it is an impor-
tant issue to lay down the theoretical framework for methodology
for detailed predictions for the evolution of the outermost veneer of
the Earth’s crust, the sedimentary basins, and approaches for basin
data assimilation.

Evolution of a sedimentary basin depends on the strong coupling
among many processes (hydrocarbon generation, fracturing, com-
paction, etc.). Tectonic parameters (such as geothermal gradient and
extension/compression histories) strongly affect these physical and
chemical processes. Uncertainties in the input parameters needed to
run a basin model, therefore, lead to uncertainties in the predictions.
Here, a method is presented to constrain these uncertain tectonic pa-
rameters to arrive at a higher resolution geophysical imaging tool by
integrating reflection seismology data and RTM basin modelling. In
Fig. 1, we suggest how this approach can be automated in a highly
parallelizable, automated computational approach.

Reflection seismic data are commonly used to delineate the
sedimentary basin architecture, structural evolution and sedimen-
tary process as it is a very high-resolution, geophysical sub-
surface imaging technique (McQuillin et al. 1984). However,
seismic reflection data alone cannot discriminate amongst many
factors that cause the acoustic impedance contrast (e.g. gas satura-
tion, finely laminated sediments and gouge) imaged by reflection
seismology. A limitation of many conventional geophysical tech-
niques is that they are not robust and are fraught with subjective
interpretation.

Seismic inversion is often used to determine rock and fluid prop-
erties (composition, fracture intensity and orientation, fluid satu-
ration and overpressure). Most seismic inversion techniques limit
their analysis to a small set of variables to allow invertibility of the
seismic reflection data. For example, Mallick et al. (1998) used the
amplitude variation with offset technique to predict fracture ori-
entations. Ramos & Davis (1997) studied the detection of fracture
density variations by delineating zones of large Poisson ratio con-
trasts. These and other studies (Cabrera 1996; Boadu 1998) show
that predictions using reflection seismology are limited to a few
rock properties. We suggest that seismic interpretation and our un-
derstanding of sedimentary basins can be greatly enhanced through
the integration of comprehensive basin modelling (Tuncay et al.
2000a,b; Tuncay & Ortoleva 2001, 2003) and reflection seismic
data. We have no knowledge of a previous attempt to study the
complex evolution of heterogeneities that act as acoustic impedance
contrasts and the interaction of tectonics from a comprehensive
basin modelling approach. Our objective is to develop a tech-
nology that will enable us to estimate a set of basin param-
eters constrained by the observed reflection seismic data. This
could allow us to aid the remote detection of economically impor-
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Figure 1. A flow chart for estimating the tectonic parameters automatically
through our seismic inversion-basin modelling algorithm. This technique has
been implemented in a parallel fashion through a common error database,
as shown.

tant fractured compartments and conventional reservoirs as well
as the estimation of tectonic conditions to which the basin was
subjected.

As a demonstration of our technique, the geothermal gradient
is estimated using a comprehensive simulator, Basin RTM (Tuncay
et al. 2000a,b; Tuncay & Ortoleva 2001, 2003) and reflection seismic
data. In this study we use a Basin RTM simulated synthetic seismo-
gram at 30 ◦C km−1 geothermal gradient as the ‘observed’ data to
evaluate the vulnerability of the approach to noise and incomplete
data (Fig. 2). The following issues are investigated.

(1) The choice of error measure and its robustness to noisy ob-
served data.

(2) The performance of the technique when a complete, detailed
description of the stratigraphy is only available within a limited
interval of the rock column. Usually over all the basins in the world,
only a limited part of the sedimentary column in that basin is very
well studied and understood so that it can be used as an input to a
comprehensive basin simulator with confidence.

(3) The effect of the difference of the dominant frequency be-
tween observed and synthetic data.

(4) The influence of missed lithologies in the sediment column
used as input for the basin simulator. Any input to a basin mod-
elling effort will always be fraught with uncertainties and missed
lithologies.
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Figure 2. A synthetic profile of porosity, sediment bulk density and P-wave
velocity generated by a Basin RTM simulation for a geothermal gradient
of 30 ◦C km−1 with more than 3 km thick basin interbedded with shales,
sandstone and carbonates. These profiles are pseudo-well logs made through
complex interaction of various reaction, transport, mechanical processes
defined in Section 2 via Basin RTM. The 30 ◦C km−1 simulation is used
as ‘observed’ data for the experiments conducted in this study. The use of
parentheses is to distinguish our discussion pertaining to real data sets.

2 A P P ROA C H

2.1 Comprehensive basin modelling

In order to generate the synthetic response, a comprehensive RTM
model is required. The advantage of a comprehensive RTM basin
model is not only its potential for reliable predictions, but also its
ability to predict a fuller suite of the parameters needed to calculate
the synthetic response to be compared with a variety of observed
data types (for example, seismic and well logs). Predictions include
the pressure and composition of the various pore fluid phases; the
shape, size, packing and abundance of the minerals; fracture network
statistics; and in situ stress. These rock and fluid parameters can help
one estimate oil and gas reserves in place and the hydrologic and
mechanical properties of reservoirs and other sedimentary units.
There are two types of quantitative physico-chemical basin models
presently in use.

(1) Conventional basin models that have the capability to simu-
late multiphase flow, but use empirical laws for compaction (Ungerer
et al. 1990; Forbes et al. 1992; Person & Garven 1992; Maubeuge
& Lerche 1993, 1994; Bour & Lerche 1994; Luo & Vasseur
1995, 1996; Person et al. 1995; Roberts & Nunn 1995; Wieck et al.
1995; Yu et al. 1995; Gordon & Flemings 1998; Wang & Xie 1998;
McPherson & Garven 1999; McPherson & Bredehoeft 2001). Some
of these models include petroleum generation (Ungerer et al. 1990;

Maubeuge & Lerche 1993, 1994; Luo & Vasseur 1996). Fracturing,
however, which is an important factor in tight reservoirs, is only con-
sidered by a few research groups (Maubeuge & Lerche 1993, 1994;
Roberts & Nunn 1995; Wang & Xie 1998; McPherson & Brede-
hoeft 2001) and is accounted for by assuming that rocks fracture
when pore pressure exceeds a certain fraction of the overburden
stress. This assumption essentially eliminates the dependence of
fracturing on lithologic properties, a fact that is in contradiction to
observations from sedimentary basins all over the world. In other
approaches, empirical laws are used to relate porosity to effective
stress, temperature and other variables to model compaction driven
flow in sedimentary basins; this assumption also ignores the depen-
dence of rock properties on lithology.

(2) Basin models with a stress/deformation module (Schneider
et al. 1996; Luo et al. 1998; Suetnova & Vasseur 2000): these mod-
els have a better accounting of stress and deformation evolution.
However, they ignore multiphase flow and petroleum generation
processes that significantly affect the stress and the deformation of
a sedimentary basin.

To capture the essence of coupled processes operating in sedi-
mentary basins, a numerical basin model should at least include the
following:

(1) A deformation model that accounts for poroelasticity and
irreversible deformation mechanisms such as pressure solution and
fracturing.

(2) A fracture network dynamics model that is capable of being
extended to 3-D.

(3) Rheologic and multiphase parameters co-evolved with dia-
genesis, compaction and fracturing.

(4) Multiphase flow and petroleum generation.
(5) Inorganic fluid and mineral reactions.
(6) Heat transfer.
(7) Reconstruction of sedimentation/erosion history.

Recently, Tuncay et al. (2000a) developed an incremental stress
rheology approach for sedimentary basins, which integrates many
types of processes that affect rock properties (including, for ex-
ample, poroelasticity, non-linear viscosity and pressure solution).
The statistical treatment of fracture network dynamics provides a
significant improvement over existing basin models (Tuncay et al.
2000b) as it allows the quantification of anisotropy created dynami-
cally by fracturing and its effects on the total rate of strain and rock
mechanical and fluid transport properties. Rocks fracture due to
the difference between the fluid pressure and the least compressive
stress. However, as fractures open, overall rock volume increases
and fluid pressure in the fractures compresses the rock, increasing
the compressive stress normal to the fracture plane. Thus, fractur-
ing is a self-limiting process: first, as fractures open, they provide
a pathway for fluid escape/depressuring and secondly, the volumet-
ric strain caused by fractures increases the confining stress that re-
duces the rate of fracture growth. Payne et al. (2000) and Tuncay &
Ortoleva (2001) have applied this comprehensive approach to the
Piceance basin (1-D) and in salt tectonic regimes (2-D).

In this study, we account for fracture network dynamics; in-
cremental stress rheology (with poroelasticity and irreversible
temperature-dependent viscous deformation) and single-phase fluid
flow for a 1-D approach. The input for Basin RTM is mostly
from published literature, public domain data, well logs, etc., and
sometimes site specific oil industry propriety data. The input for
Basin RTM includes sedimentation composition and grain size,
sedimentation/erosion rate, subsidence rate, sea level history, and a
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Figure 3. A comparison of synthetic seismograms generated from Basin RTM output at 30 and 45 ◦C km−1 illustrates the strong dependence of the seismic
signal on the tectonic history. This interesting observation caused by temperature dependence for fluid and rock properties underlies the viability of the approach
suggested in Fig. 1.

number of phenomenological parameters. This all evaluates the rock
and fluid transport properties, such as permeability, bulk and shear
viscosity (Tuncay et al. 2000a,b, 2001). Basin RTM also has access
to thermodynamic and kinetic data for most water–rock interaction
phenomena. For example, gamma logs are used to determine the
percentage shaliness of a stratigraphic column (Schlumberger Log
Interpretation 1972) to be one of the inputs to Basin RTM. We assign
a standard mineralogical composition in terms of the percentage of
clay minerals, quartz, feldspar, etc. for 100 per cent shales, sand-
stones and carbonates (Blatt & Traey 1995). Using a percentage
shaliness that we calculated from the logs, we calibrate the miner-
alogical composition accordingly for different rock units when we
build our sedimentary basin for numerical simulation.

2.2 Algorithm

Although basin models require a large number of phenomenological
parameters and geologic boundary conditions, only a few studies
have focused on the utilization of observed data to constrain the
model (Lerche 1991; Maubeuge & Lerche 1993; Zhao & Lerche
1993; Yu et al. 1995). Uncertainty in basin modelling is reviewed
in detail by Tuncay & Ortoleva (2003). Here we concentrate on
data/model integration to determine tectonic parameters, notably
the temperature gradient, using reflection seismic data.

Our approach for automatically estimating the geothermal gradi-
ent based on our seismic inversion-basin modelling algorithm is as
follows. Fig. 1, (1) an optimization technique (iterative quadratic fit-
ting or simulated annealing) is used to select a geothermal gradient
for a Basin RTM simulation. (2) Using this geothermal gradient, the
basin simulator predicts the present-day rock and fluid properties.
(3) Predicted rock and fluid properties are used to construct sediment

bulk density and P-wave velocity profiles (Fig. 2), (4) a synthetic
seismogram is generated from the calculated properties (Fig. 3),
(5) the error between the synthetic and observed seismograms is
computed and used to guide the search for the error-minimizing
geothermal gradient in an iterative fashion.

2.3 Synthetic seismograms

A linear convolution approach was implemented for computing the
synthetic seismograms (Peterson et al. 1955). The reflection coef-
ficients were calculated from the Basin RTM output and convolved
with a source wavelet to produce the synthetic seismogram. The
linear convolution approach does not take into account the effects
of internal multiples, attenuation or spherical divergence. P-wave
velocity depends on pore pressure, grain size, porosity, rock compo-
sition, fracture statistics, etc. (Murphy 1982; Klimentos & McCann
1983; Nagano 1998). In this study, P-wave velocity was calculated
as a function of the porosity and texture of the unfractured rock using
the approach of Berryman (1986). Fig. 3 shows a comparison of two
synthetic seismograms obtained for different geothermal gradients.
In this particular example, higher geothermal gradient results in a
more compact rock column as a result of higher rate of compaction.
However, one should be cautious in generalizing this result. Higher
temperatures can also increase fluid pressure to lithostatic levels
and can retard/stop compaction as effective stress becomes small.
Furthermore, as mineral composition of a sedimentary layer varies,
compaction rates do not increase uniformly throughout the basin.

2.4 Error measures

Various measures of the error between the observed and syn-
thetic seismograms were used to evaluate their suitability for our
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algorithm. Measures for the error in the time-series xi (observed)
and yi (synthetic) are as follows.

Our definition for linear correlation is the same as Pearson’s linear
correlation coefficient, r (Press et al. 1993), except for a minus sign:

r = −
∑N

i=1 (xi − x̄)(yi − ȳ)√∑N
i=1 (xi − x̄)2

√∑N
i=1 (yi − ȳ)2

,

where x̄ = 1
N

∑N
j=1 x j and similarly for ȳ. A minus sign is incorpo-

rated so that a minimum in the error occurs at the observed geother-
mal gradient. According to the above formulation, a ‘perfect corre-
lation’ between two time-series is −1. If the values of r are close
to zero, then the two time-series xi and yi are uncorrelated. Alter-
natively, power spectra for the time-series xi and yi can be used to
quantify error.

The mean square error e for time-series xi and yi is defined via

e =
N∑

i=1

(xi − yi )
2.

The mean square error ena based on next same arrival time is
defined via

ena =
N∑

i=2

(
t x
i − t y

i

)2
,

where t x
i = xi − xi−1 and similarly for ty

i.

2.5 Optimization techniques

We experimented with two optimization techniques (iterative
quadratic fit and simulated annealing) for finding the global min-
imum of the various error measures. A critique of Monte Carlo,
simulated annealing, and genetic algorithms as applied to minimiza-
tion methods in geophysics is presented in Sen & Stoffa (1995). As
greedy algorithms, such as simulated annealing require many iter-
ations and as each iteration requires a computationally expensive
basin simulation in the present context, one expects that they would
not be practical. In the iterative quadratic fit method, we fit the error
to a quadratic function based on simulations for three geothermal
gradients (or 3d simulations when the number of tectonic parame-
ters to be estimated is d). Using the coefficients from the curve fit,
the geothermal gradient that minimizes the error is computed. The
location of this minimum is then used as the centre point for the next
quadratic fitting cycle to refine the location of the minimum. This
cycle is repeated until the error difference between the minima from
most recent and previous iteration is less than a specified tolerance.
The weakness of this method is that it may only find a local, and not
a global, minimum.

Simulated annealing is a minimization algorithm capable of find-
ing a global minimum despite the presence of local minima (Otten
& van Ginneken 1989; Sen & Stoffa 1995). The simulated annealing
technique implemented here is based on the Cauchy cooling algo-
rithm (Szu & Hartley 1987, Taygeta Scientific Inc.). The Cauchy
cooling algorithm is a fast annealing technique compared to the
other Boltzmann algorithms (Ingber 1993). Rothman (1985, 1986),
Basu & Frazer (1990) and Sen & Stoffa (1991) have used simulated
annealing in geophysical applications. The simulated annealing ap-
proach is quite analogous to the manner in which liquids freeze or
metals crystallize during annealing (Kirkpatrick et al. 1983). The
simulated annealing search initially is very disorderly similar to the
thermodynamic state of the melt at high temperatures (Kirkpatrick
et al. 1983). Such an approach enables one to span the entire er-
ror space and not be stuck in local minima during optimization. As

error minimization continues, the approach becomes more orderly
and enables one to find a global minimum in a similar fashion as a
system in nature achieves thermodynamic equilibrium when cooled
slowly (Kirkpatrick et al. 1983). The algorithm is set up in terms
of a thermodynamic system described in terms of temperature, en-
ergy, and with the probability of accepting a change in energy given
through Boltzmann factor (Kirkpatrick et al. 1983). Our experience
showed that the performance of simulated annealing optimatization
technique depended on the rate with which the system was cooled,
meaning thereby how quickly we proceeded in our choice of geother-
mal gradients (coarser sampling of the error space) toward the global
minimum. A slow cooling approach was expensive but was much
more robust in finding a global minimum compared with a faster
approach. The strength of simulated annealing is that the algorithm
is capable of determining a global minimum even when the error
function is very rugged in shape, full of local minima. However, the
drawback of the simulated annealing algorithm is that it is a greedy
algorithm and quite time-consuming computationally.

3 N U M E R I C A L E X P E R I M E N T S

Numerical experiments are carried out using a Basin RTM simu-
lation run with a geothermal gradient of 30 ◦C km−1 to generate
the ‘observed’ seismic data. As the present study concentrates on
the development and the robustness of the technique, we used a
seismogram from a 30 ◦C km−1 basin simulation as a proxy for
‘observed’ data rather than using actual reflection seismic data. In
an approach such as this, an actual reflection seismic data will be
a single trace taken from a multichannel, stacked, migrated, reflec-
tion seismic section intersecting a well or borehole location, as used
in many standard seismogram modelling approaches (Lorenzo &
Hesselbo 1996; Tandon et al. 1998).

For our study, we built a 3.5 km sedimentary basin that is a com-
posite made from data originally from Piceance and East Texas
basins. The results of Fig. 2 are generated from a 112 myr simula-
tion of a 3.5 km (present-day) stratigraphic column with interbedded
sand, shale and carbonate lithologies. The ‘observed’ rock record
consists of 225 layers, with thicknesses varying from 5 to 15 m. The
corresponding seismogram and the associated data used in Basin
RTM from 30 ◦C km−1 simulation is the ‘observed’ data for our
set of experiments. Different levels of random noise are added to
this ‘observed’ seismogram (see the Appendix). Seismograms from
Basin RTM simulations at different geothermal gradients are part of
the inversion technique (Fig. 1) to figure out the correct geothermal
gradient via error minimization.

We assume that the ‘observed’ seismic reflection data contains
ambient noise that is coloured in nature (Ursin et al. 1996). The
majority of the noise in an observed data is removed via higher-
fold stacking, f-k, and coherent filtering (Yilmaz 1987). Frequency
content of ambient noise typical in seismic reflection data can be
both low (0–2 Hz) and high (16–32 Hz) (Larner et al. 1983; Yilmaz
1987). However, in general, most noise in the stacked seismic data
is source generated and scattered surface waves which dominantly
have lower frequency content (Larry Brown, personal communica-
tion). The effect of incoherent noise is ignored since they are quite
low in amplitude (Sheriff & Geldart 1995).

Experimental studies in source-generated noise identify a fre-
quency bandwidth of 2–12 Hz for noise analysis (Jolly & Mifsud
1971). Similarly, experiments on surface waves display a 0.2–5 Hz
bandwidth (Douze 1964). A seismic noise experiment at Roosevelt
Hot Springs showed a bandwidth of 0.5–10 Hz and frequencies
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Figure 4. (a) A power spectrum of the ‘observed’ noise-free seismic data
(Fig. 3). (b) A power spectrum of the noise added to the ‘observed’ data. The
figure shows the noise at 50 per cent level and its dominantly low frequency
content to simulate typical noise that could be present in a stacked seismic
reflection data even after seismic data processing (Yilmaz 1987).

>10 Hz displayed no spatial coherence (Douze & Laster 1979).
Therefore, in this study the bandwidth for the random noise that is
added to the ‘observed’ data is 0.6–20 Hz. The contribution from
higher frequencies is generally considered unimportant for a stacked
trace and was thus neglected (Fig. 4b). The frequency bandwidth of
the ‘observed’ data (Fig. 4a) is much wider than that of the noise.

Experiment 1: choice of best error measure

Numerical experiments (Figs 5–7) show that linear correlation and
quadratic error yield a single minimum in the error over the range
of geothermal gradient values (15–45 ◦C km−1) typically found in
sedimentary basins (Turcotte & Schubert 1982). This character per-
sists in the presence of noisy ‘observed’ data (Figs 5–7). The linear
correlation error both using the time-series and their power spectra
displays a global minimum even when the noise level in the ‘ob-
served’ data is 75 per cent (Figs 5 and 6). If in the real reflection
seismic data, higher-frequency noise was present then the global
minimum will not be observable at 75 per cent noise level. In the
quadratic error, the global minimum is not well defined since the
presence of random noise flattens the error function at lower levels

Figure 5. The variation of linear correlation error to be part of the seismic
inversion-basin modelling scheme (Fig. 1) at different noise levels using the
entire time-series.

Figure 6. A linear correlation error based on the power spectrum of the
seismograms to be part of the seismic inversion-basin modelling scheme
(Fig. 1) at different noise levels.

than for linear correlation (Fig. 7). This implies the effect of at-
tenuation and geometric spreading in the observed seismic data can
make any error measure based on mean square amplitude difference
unreliable. Fig. 8 shows that the quadratic error based on next arrival
time does not display the global minimum at noise levels as low as
25 per cent. We conclude that linear correlation error using time-
series or power spectra was found to be the most effective measure
for our methodology.

Experiment 2: model data with detailed stratigraphic layering
in a limited depth interval

When using real basin data, it is very unlikely that one would have
detailed information on lithologies over the entire stratigraphic col-
umn that can be used as input data in a comprehensive basin simu-
lator and perform seismic inversion. We think this is an important
experiment to test the feasibility of such an approach, as the en-
tire stratigraphic column in any basin around the world is not very
well understood and studied. To study the effects of the lack of
stratigraphic data in the shallower depths, the first second out
of 1.742 s two-way traveltime is truncated in the synthetic
seismograms. With this truncation, only the last 42 per cent of the
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Figure 7. The variation of quadratic error based on the power spectrum of
the seismograms to be part of the seismic inversion-basin modelling scheme
(Fig. 1) at different noise levels. The error function is truncated to 0.0001 to
avoid minus infinity in the noise-free graph.

Figure 8. The variation of quadratic error based on the next arrival time
using the entire time-series to be part of the seismic inversion-basin mod-
elling scheme (Fig. 1). The error function is truncated to 10−7 to avoid minus
infinity in the noise-free graph.

synthetic seismograms from our inversion is representative of the
‘observed’ one to even perform error analysis. An example of de-
tailed data sets could be reservoirs from well developed oil and
gas fields, e.g. those in Gulf of Mexico or North Sea. These will
have enough wealth of data to explore the complex interaction of
physics and chemistry of the sedimentary basins and perform in-
version (Fig. 1). The physical and chemical processes are affected
most strongly by the geothermal gradient in the deeper parts of the
basin. Thus one might expect that a selected time interval from the
deeper parts of the basin would be sufficient to determine a tectonic
parameter, such as geothermal gradient. Fig. 9 shows that one can
find a global minimum even in the presence of noise at 75 per cent
level. If the linear correlation error uses the entire time-series, even
if the Basin RTM simulation is coarser in certain intervals, then the
global minimum value is lower. Experiments 3 and 4 are also per-
formed using only partial time-series (from 1.0 to 1.742 s two-way
traveltime).

Figure 9. A linear correlation error when the first second of the ‘observed’
seismogram is not used in the error calculation. This is to highlight that error
analysis is being done in a limited part, as there might not be enough detailed
data for the shallower section of the sedimentary basin.

Figure 10. A linear correlation error based on the power spectrum using
frequencies above 20 Hz and partial time-series. Error analysis in a limited
frequency bandwidth can always be used to exclude noisy part of the data in
the power spectrum.

As the noise level increases, the global minimum becomes shal-
lower if linear correlation error is used (Fig. 9). In the case demon-
strated here, the majority of noise added to the ‘observed’ data is less
than 20 Hz (Fig. 4). If the linear correlation error is calculated using
power spectra with only frequencies above 20 Hz, then the algorithm
yields a deeper global minimum even in the presence of appreciable
noise (Fig. 10). Therefore, using power spectra for error analysis
within a selective frequency bandwidth seems to enhance the re-
sults of our approach. Excluding frequencies from error analysis is
beneficial only if the stacked noise has distinctly different frequency
content than does the frequency bandwidth from the majority of the
reflectors. Noise analysis is always carried out in seismic surveys
that will enable us to determine power spectra of the noise and help
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in our technique when implemented on real data. When the power
spectra of the noise and data are not clearly distinct (Fig. 4), then the
linear correlation error using time-series (Fig. 5) along with power
spectra (Fig. 6) should be used with care.

In real sedimentary basin examples, one can also use the existing
the biostratigraphic information to calibrate the top horizon between
the real seismogram data and modelled synthetic seismograms
for the limited stratigraphic column that is being used in our in-
version technique via time correction (Tandon et al. 1998) (Fig. 1).
A time correction can also be used to correct for mismatch that might
be caused by missing details from a shallower part of the basin as
an input to the basin simulator.

Experiment 3: observations and synthetic seismograms
with different frequencies

Attenuation and spherical divergence cause a loss of higher fre-
quencies in the seismic reflection data. Attenuation and spherical
divergence were not incorporated in the generation of synthetic seis-
mograms used in this study. Even if these effects were included, it is
likely that there always will be some difference in frequency content
between the observed and synthetic data. To investigate these effects,
the ‘observed’ and synthetic seismograms are constructed using 40
and 80 Hz Ricker wavelets, respectively. A 40 Hz difference be-
tween the ‘observed’ and synthetic seismograms approximates the
loss of higher frequencies in a sedimentary basin due to attenuation
and spherical divergence in the observed data. Fig. 11 shows that
one can still find the global minimum at 75 per cent noise levels.
Note that a 80 Hz Ricker wavelet is used for both ‘observed’ and
synthetic seismograms in experiments 1, 2 and 4.

The range of frequencies for exploration seismology is generally
2–120 Hz (Sheriff & Geldart 1995). Use of an 80 Hz Ricker wavelet
constitutes a high-resolution, basin scale reflection seismic reflec-
tion survey. In shallow seismic reflection exploration (100–200 m),
the dominant frequency can be as high as 1000 Hz (Buhnemann &
Holliger 1998), but we are more concerned in surveys that image
even the deeper parts of the basin. A 40 Hz Ricker wavelet for the
‘observed’ data is chosen to mimic the effect of attenuation on the

Figure 11. A linear correlation error based on the partial time-series. The
‘observed’ and synthetic seismograms are calculated using 40 and 80 Hz
Ricker wavelets, respectively, to demonstrate the effect of attenuation.

dominant frequency content. Typically, dominant frequencies ob-
served in reflection seismic data lie between 5–50 Hz (Sheriff &
Geldart 1995).

Experiment 4: basin data with missing lithologies

In this section, we investigate the effects of resolution in the basin
model and observed seismic reflection data. In general, resolution
of the seismic reflection data is 1/4–1/8 of the dominant wavelength
of the source wavelet (Sheriff 1977). Deviations in the description
of layering in the model on a similar or higher scale are expected
to affect the algorithm. The purpose of this experiment is to de-
termine whether the algorithm fails when the model response does
not correspond exactly to the layering of the stratigraphic column
sampled by the mechanical waves as in the ‘observed’ seismic data.
It is unlikely that the sediment density and P-wave profiles from
the basin simulator exactly correspond to the layering of the actual
rock. Most likely, the basin model will not be able to simulate all the
heterogeneities sampled by the seismic waves in a controlled source
experiment.

To generate an incomplete basin model input, we removed every
eighth layer from the entire model input data and the thickness of the
seventh layer was increased to compensate for the removed layer.
Such missing layers not only result in the absence of reflectors in the
synthetic seismogram, but also lead to a perturbed velocity/depth
curve. It was found that a global minimum can be determined using
linear correlation error based on power spectra (with only frequen-
cies above 20 Hz) in the presence of 75 per cent noise level (Fig. 12).

In a similar experiment, every fourth layer from the basin input
was removed from the basin input data. Fig. 13 shows that the cor-
rect global minimum can approximately be determined using the
linear correlation error of power spectra (frequencies above 20 Hz).
Therefore, the layering, the bulk density, and P-wave velocity pro-
files generated by Basin RTM need not be perfectly matched even
in a limited stratigraphic column for our algorithm to work.

Figure 12. A linear correlation error based on the power spectrum using
the partial time-series and frequencies above 20 Hz. Every eighth lithologic
layer was missed in the basin simulator input to test the robustness of the
procedure to insufficient lithologic delineation.
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Figure 13. The same as Fig. 12 except that every fourth layer was missed
in the basin simulator input.

4 C O N C L U S I O N S

The basin simulation-enhanced seismic inversion method has been
shown to be a viable approach to delineating the state of the sub-
surface and the heterogeneities formed in the sedimentary basin.
The method has the potential for greatly reducing the cost and ac-
curacy of seismic exploration and understanding of the rheological
evolution of sedimentary basins in response to varying tectonic pa-
rameters. However, the present study has even wider implications.
We suggest that it provides an approach for integrating many types
of basin data (well logs, geochemical, core analysis and thermal
data) in addition to seismic data to yield one integrated approach
by generalizing the algorithm of Fig. 1. Thereby, basin modelling
enhances the quality of data analysis and enhances the results of
basin simulation all in one unified, automatable and parallelizable
computational approach for data assimilation.

The present study is only preliminary and presents a new method-
ology being developed. This study lays down the theoretical frame-
work for future work where basin modelling and multiple data
sets are fully integrated. Further studies will include actual ex-
amples from sedimentary basins in different parts of the world.
The basin simulation was carried out in one, and not three, spa-
tial dimensions—limiting the level of reliability. The basin model
used, Basin RTM, while arguably the most comprehensive model
available at this writing, still could benefit from the addition of
other processes and the refinement of its rheological, hydrologic,
and reaction rate laws. Furthermore, limitations due to the intensive
computational demands of our procedure will place some restric-
tions on its widespread use for the next several years. However,
this is a first step in understanding a detailed, complex evolution
of heterogeneities in sedimentary basins that are capable of being
imaged by reflection seismic data and can be used for geoinfomatics
of sedimentary basins.

Another concern that should be addressed in future research per-
taining to our method or similar methods is the uniqueness of the
inversion/prediction. Can there be other geothermal histories that
give the same seismic data? Also, do the predictions reflect the true
content of the data or is the latter masked by an incomplete model or
one based on an erroneous rheological or other rate laws? One must

also remember that even the most comprehensive model is never a
complete description of the complexity that is present in a sedimen-
tary basin. Finally, methods that simultaneously provide an estimate
of uncertainty in the inversion and risk in the strategy based on the
predictions should be used (Tuncay & Ortoleva 2003).

Our algorithm works even when the model has a detailed strati-
graphic description in a limited region with incomplete stratigraphic
data (12.5–25 per cent absent). As a result of the shape of the geother-
mal gradient-linear correlation error measure, the iterative quadratic
fitting is a more efficient optimization technique than simulated an-
nealing. Of all the error measures used, linear correlation error of the
power spectrum between the observed and synthetic seismograms is
the most ideal choice. If the power spectrum of noise and dominant
reflectivity in the observed data are different, then the error analysis
in a selected frequency bandwidth makes our algorithm even more
robust.

Our methodology is viable even (1) in the presence of large
amounts of low-frequency noise in the seismic data, (2) when in-
formation concerning detailed stratigraphic layering is confined to
a limited region and (3) frequency content of the observed and
predicted seismograms differ. The necessary requirement for the
methodology to succeed is the availability of detailed geological in-
formation in a sedimentary basin. In earth sciences, the maximum
wealth of geological, geochemical and geophysical data for sedi-
mentary basins has been collected by academic, oil and gas, mining
industry endeavours for centuries. Therefore, approaches that at-
tempt to put all these data sets together in a rigorous fashion and
their potential for prediction should be fully explored.
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A P P E N D I X

Let s(t) be the synthetic seismogram generated by the basin simulator
at a geothermal gradient of 30 ◦C km−1, n(t) is the random noise
generated and swn(t) is the seismogram with random noise added
to s(t) [swn(t) = s(t) + n(t)]. The random noise n(t) is generated

as follows:

n(t) = B
Nmax∑
n=N0

ξn

1 + m
sin

(
2πnt

T
+ φn

)
,

where m determines the harmonic order ranging from N0 to Nmax,
T is the total time period for the time-series, B scales the amplitude
of the random noise generator according to the signal s(t) and is
the randomly generated phase for each Fourier component using
random numbers. The parameter B is used to determine the noise
level (NL). NL is related to B via

N L2 =
∫

n2(t) dt∫
swn2(t) dt

.
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