
GEOPHYSICS, VOL. 69, NO. 3 (MAY-JUNE 2004); P. 752–761, 6 FIGS.
10.1190/1.1759461

Layered and laterally constrained 2D inversion of resistivity data

Esben Auken∗ and Anders Vest Christiansen∗

ABSTRACT
In a sedimentary environment, quasi-layered models of-

ten can represent the actual geology more accurately than
smooth minimum-structure models. We present a 2D inver-
sion scheme with lateral constraints and sharp boundaries
(LCI) for continuous resistivity data. All data and mod-
els are inverted as one system, producing layered solutions
with laterally smooth transitions. The models are regular-
ized through lateral constraints that tie interface depths or
thicknesses and resistivities of adjacent layers. A priori in-
formation, used to resolve ambiguities and to add, for ex-
ample, geological information, can be added at any point
of the profile and migrates through the lateral constraints
to parameters at adjacent sites. Similarly, information from
areas with well-resolved parameters migrates through the
constraints to help resolve areas with poorly constrained
parameters. The estimated model is complemented by a

full sensitivity analysis of the model parameters support-
ing quantitative evaluation of the inversion result.

A simple synthetic model proves the need for a quasi-
layered, 2D inversion when compared with a traditional
2D minimum-structure inversion. A 2D minimum-structure
inversion produces models with spatially smooth resistiv-
ity transitions, making identification of layer boundaries
difficult.

A continuous vertical electrical sounding field example
from Sweden with a depression in the depth to bedrock sup-
ports the conclusions drawn from the synthetic example. A
till layer on top of the bedrock, hidden in the traditional
inversion result, is identified using the 2D LCI scheme. Fur-
thermore, the depth to the bedrock surface is easily identi-
fied for most of the profile with the 2D LCI model, which is
not the case with the model from the traditional minimum-
structure inversion.

INTRODUCTION

Standard electrical methods allow for a detailed mapping by
gathering profile-oriented data continuously using either mul-
tiple electrode systems (Dahlin, 1996; Bernstone and Dahlin,
1999) or various pulled systems (Sørensen, 1996; Panissod et al.,
1997). These systems provide a dense profile-oriented data cov-
erage with large sensitivity overlaps between individual sound-
ings. This naturally invites 2D interpretations. Since 1994, in-
version algorithms have been presented by Oldenburg and Li
(1994) and Loke and Barker (1996). These algorithms produce
smooth minimum-structure models in which sharp formation
boundaries are often hard to recognize. A robust inversion
scheme (L1 norm) tends to give a more blocky appearance of
the model section (Loke et al., 2001), but layer boundaries are
still smeared.

In many instances the investigator may suspect a predomi-
nantly layered subsurface, as is most often the case in sedimen-
tary environments or for most hydrogeological investigations
(Christensen and Sørensen, 1998). The situation is often as
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presented in Figure 1. An interpreter has an inversion result as
presented in Figure 1a and needs to make a geological interpre-
tation. The geology is layered in some sense, but the formation
boundaries must be visualized based on the rather smooth and
smeared inversion result. A possible interpretation might look
like Figure 1b. Later we will return to this example and show
that it is preferable to use an inversion scheme utilizing a lay-
ered model description.

Often a 1D solution with lateral constraints is sufficient in
quasi-layered sedimentary environments (Auken et al., 2002).
However, neotectonics, glaciotectonics, or other geological
phenomena may disturb the subhorizontal layering, disqualify-
ing the 1D formulation to describe the geophysical model. So,
a 2D formulation is needed to enable a more complex layered-
earth solution.

Olayinka and Yaramanci (2000) present a 2D block inver-
sion scheme using polygons of equal resistivity. They invert for
positions of polygon vertices and for the polygon resistivities.
As is the case for most 2D programs, no sensitivity analysis on
model parameters accompanies the inversion output. Smith
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et al. (1999) present a sharp boundary inversion for MT data
using a 2D formulation. They use a layered earth discretized
along a profile with lateral interpolation between neighboring
nodes. The model is regularized using lateral constraints on
layer conductivities and depths.

We have adapted the model description used by Smith et al.
(1999) to be used in a 2D inversion program for resistivity
data. The inversion is based on an algorithm developed for
a 1D inversion scheme using lateral constraints on resistivi-
ties, depths, or thicknesses (LCI). The 1D LCI approach pro-
duces pseudo 2D models when lateral resistivity variations are
smooth (Auken et al., 2002). A priori information can be added
at any point of the profile; information migrates through the
lateral constraints to the adjacent nodes. The inversion result
is supported by a full sensitivity analysis of the model param-
eters that is essential to ascertain the quality of the inversion
result. The inversion scheme is tested and compared to a stan-
dard 2D smooth inversion on both synthetic data and field
data.

DATA ACQUISITION SYSTEMS

Field examples given in this paper are based on data acquired
with the continuous vertical electrical sounding (CVES) system
and the pulled array continuous electrical sounding (PACES)
systems.

The CVES system consists of a number of steel electrodes
manually forced into the ground at regular electrode spacing,
typically from 2 to 12 m (Van Overmeeren and Ritsema, 1988;
Dahlin, 1996). The electrodes function as both current and po-
tential electrodes and can measure in any configuration desired
by the user. The data collecting is semicontinuous using a roll-
along technique.

The PACES system consists of a small tractor, equipped with
processing electronics, pulling the electrodes mounted on a

Figure 1. (a) An L2 norm inversion (Oldenburg and Li, 1994)
of a continuous resistivity data set. (b) A possible geological
interpretation drawn on top of the inversion result. The inter-
preter assumed the subsurface to be layered.

tail (Sørensen, 1996). The electrodes are cylindrical steel tubes
weighing about 15 kg. Two electrodes are maintained as current
electrodes; the remaining electrodes serve as potential elec-
trodes in eight different configurations. The data collection is
continuous at approximately 1.5 m/s, with one full sounding
saved each second and later processed to one sounding for
every 5.0 m.

INVERSION METHODOLOGY

Data and model

Consider a data set consisting of ρa, apparent resistivity data
collected along the profile assembled in a data vector:

d′obs= (ρa1, ρa2, . . . , ρaN)T , (1)

where T indicates the vector transpose and N is the number of
data points. Thus, dobs is a column vector. To minimize nonlin-
earity and to impose positivity, we apply logarithmic data and
logarithmic parameters as in Johansen (1977) and Ward and
Hohmann (1987). Hence,

dobs= (log(ρa1), log(ρa2), . . . , log(ρaN))T . (2)

The data vector has an observational error eobs which we
suppose is unbiased, meaning that the expectation value is zero.
Then the covariance matrix, Cobs, has the elements

Cobs,st= cov(eobs,s, eobs,t ) (3)

for the sth and tth data error.
The derivation of the inversion formalism applies for the gen-

eral case. However, in this paper we assume the observational
errors to be uncorrelated so that Cobs is a diagonal matrix. The
model has nx reference node points xi in the horizontal direc-
tion corresponding to the data profile. At each surface node
xi , the subsurface model is represented by a logarithmic model
with nl layers:

mi = (log(ρi 1), log(ρi 2), . . . , log
(
ρinl

)
, log(ti 1),

log(ti 2), . . . , log
(
ti (nl−1)

)T
, (4)

where ρ denotes interval resistivity and t denotes interval layer
thickness. The full model

m =


m1

m2
...

mnx

 (5)

to be determined has M = nx ∗ (2nl − 1) parameters. The pa-
rameters from neighboring nodes are interpolated linearly to
produce a 2D model as illustrated in Figure 2.

Forward modeling

The 2D forward modeling in the inversion routine is per-
formed using the finite-difference code from the University
of British Columbia (McGillivray, 1992), similar to the one
described by Dey and Morrison (1979). We superimpose
the finite-difference grid on the layered model as shown in
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Figure 3a. Then we assigne a resistivity value to each cell based
on an area weighted average of the contributing elements in
the underlying layered 2D model (Figure 3b).

Electrodes are placed on node points in the grid. For ir-
regular electrode configurations, we implement a linear inter-
polation on the electrode positions to the two nearest nodes
to avoid rounding odd positions. Systems with irregular elec-
trode configurations inevitably mean dense finite-difference
grids. This, in combination with profiles of the order of kilo-
meters, makes it practically impossible to calculate all forward
responses with one large grid. Instead, we divide the profile
into pieces and calculate for each piece on its own, afterward
combining them to create the full profile. The choice of the
subgrid sizes can reduce the computation time drastically. The
choice is based on the total size of the profile and the small-
est and largest electrode spreads. Because of computational
costs, the grid size should be limited to 10 000 cells, keeping in

Figure 2. The model is described with thicknesses and resis-
tivities at a number of nodes along a profile. The parameters
between neighboring nodes are linearly interpolated to pro-
duce a 2D model.

Figure 3. The layered model in (a) is translated to the model su-
perimposed on the finite-difference grid in (b) using weighted
averages.

mind that the overlap between neighboring pieces needs to be
sufficiently large to ensure continuous forward data along the
profile.

Forward mapping

The dependence of apparent resistivities on subsurface pa-
rameters is in general described as nonlinear differentiable for-
ward mapping. We follow the established practice of linearized
approximation by the first term of the Taylor expansion:

dobs
∼= g(mref)+G(mtrue −mref)+ eobs, (6)

where g is the nonlinear mapping of the model to the data
space. The true model mtrue has to be sufficiently close to some
arbitrary reference model mre f for the linear approximation to
be good. In short, we write

δdobs = Gδmtrue + eobs. (7)

The Jacobian G contains all of the partial derivatives of the
mapping

Gst = ∂ds

∂mt
= ∂ log(ρas)
∂ log(mt )

= mt

ρas

∂ρas

∂mt
, (8)

for the sth apparent resistivity in the data vector and the tth
parameter in the model vector.

A priori and lateral constraints on primary parameters

The inclusion of lateral constraints is based on an approach
used for 1D LCI. Because the methodology builds on the
1D case, we distinguish between primary parameters (thick-
nesses and resistivities) and secondary parameters (in this case,
depths). A priori information helps resolve the nonuniqueness
of the model and is a way to include information not originat-
ing from the resistivity data itself. Following Jackson (1979),
a priori information on primary parameters is included as an
extra data set mprior:

Iδmtrue = δmprior + eprior, (9)

where δmprior=mprior−mre f . Effectively,

Imtrue = mprior + eprior, (10)

where eprior is the error on the a priori model with zero as
the expected value and I is the identity matrix with the dimen-
sion of the model vector. The variance in the a priori model is
described in the covariance matrix Cprior.

Next, we add roughening constraints to the solution. For-
mally, the constraints are connected to the true model as

Rpδmtrue = δrp + erp, (11)

where, subscript p denotes primary parameters, erp is the error
on the constraints with zero as expected values, and

δrp = −Rpmref, (12)

making the effective roughening

Rpmtrue + erp = 0. (13)
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The roughening matrix Rp contains 1 and −1 for the con-
strained parameters and zero in all other places, such that

Rp =


1 0 · · · 0 −1 0 · · · 0 0 0

0 1 0 · · · 0 −1 0 · · · 0 0
...

...
...

0 0 0 · · · 0 1 0 · · · 0 −1

 .
(14)

The variance, or strength of the constraints, is described in the
covariance matrix CRp. In this study CRp is taken to be a di-
agonal matrix. For most applications only constraints between
neighboring models are used but can be between any two sub-
models. Normally we use only lateral constrains, but vertical
constraints (Farquharson and Oldenburg, 1998) can be applied
as well. Applying both vertical and horizontal constraints re-
sults in a minimum structure model.

A priori depth values and lateral constraints

For many applications, lateral constraints on depths are ad-
vantageous to constraints on thicknesses. Constraints on thick-
nesses are favorable whenever there is a possibility of discon-
tinuous layer boundaries but continuous thicknesses, such as
across a fault. Constraints on depths are preferred in cases
where we have a demand for continuity of layer boundaries, as
in a Quaternary sequence with sand and clay layers on top of
a relatively smooth pre-Quaternary surface.

The inverse solution is formulated in terms of the pri-
mary model parameters. This means that a priori information
on depths is added with respect to the primary parameters
in mtrue:

Phδmtrue = δmh−prior + eh−prior, (15)

where

δmh−prior = hprior − Phmref, (16)

so that effectively

Phmtrue = hprior + eh−prior. (17)

The matrix Ph is derived in Appendix A. The vector hprior con-
tains the values to which we constrain individual depths:

hprior =
(

log(h1,1), . . . , log
(
hnx ,nl−1

))T (18)

in which hi j is the a priori depth number j in the model number
i . The error on the a priori data is eh−prior, with zero as the
expected value. The variance in the a priori data is described in
the covariance matrix Ch−prior, where Ch−prior is taken to be a
diagonal matrix.

For the lateral constraints on depths, we need to derive
the equations with respect to the primary parameters in
mtrue:

Rhδmtrue = δrh + erh, (19)

where erh is the error on the depth constraints with zero as the
expected value and

δrh = −Rhmref, (20)

making the effective roughening

Rhmtrue + erh = 0. (21)

The derivation of the Rh can be found in Appendix A.

Inversion

By joining equations (7), (9), (11), (15), and (19), we can
write the inversion problem as

G

I

Ph

Rp

Rh

 · δmtrue =


δdobs

δmprior

δmh−prior

δrp

δrh

+


eobs

eprior

eh−prior

erp

erh

 . (22)

We write this more compactly as

G′ · δmtrue = δd+ e′. (23)

The covariance matrix C′ for the joint observation error e′

becomes

C′ =


Cobs

Cprior 0

Ch−prior

0 CRp

CRh

 . (24)

The model estimate (Menke, 1989)

δmest = [G′T C′−1G′]−1G′T C′−1δd′ (25)

minimizes

Q =
(

1
N + M + A

N+M+A∑
i=1

[(δd′T C′−1δd′)]

) 1
2

, (26)

where N is the number of data points, A is the number of con-
straints, and M is the number of model parameters, including
depths. When only diagonal error covariances are used, as in
this paper, the misfit criterion simplifies to

Q =
(

1
N + M + A

N+M+A∑
i=1

[
δd2

i

var(e′i )

]) 1
2

. (27)

The target misfit for the 2D LCI is in principle zero, which in
practice means as low as possible within the computational lim-
its. This would be considered huge overfitting for an underde-
termined smooth inversion problem. But for a parameterized
and overdetermined problem as the 2D LCI, we have found
that this is not the case. On account of the restricted num-
ber of parameters, the inversion scheme cannot make models
arbitrarily complex. This is furthermore restricted by the lat-
eral constraints. The full iterative inversion scheme is given in
Appendix B.
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Analysis of model estimation uncertainty

The parameter sensitivity analysis of the final model is the
linearized approximation to the covariance of the estimation
error Cest (Tarantola and Valette, 1982) given by

Cest = (G′T C′−1G′)−1. (28)

Including all subterms, this becomes

Cest =
(
GT C−1

obsG+ C−1
prior + PT

h C−1
h−priorPh

+RT
pC−1

RpRp +RT
h C−1

RhRh
)−1
. (29)

Standard deviations on model parameters are calculated as
the square root of the diagonal elements in Cest. For mildly
nonlinear problems this is a good approximation. Because the
model parameters are represented as logarithms, the analysis
gives a standard deviation factor (STDF) on the parameter qs,
defined by

STDF(qs) = exp(
√

Cest(s,s)). (30)

Figure 4. (a) The true model, with a clay layer of 30 ohm-m interbedded in a sandy layer of 300 ohm-m. (b) The minimum structure
L2 norm inversion result. (c) The corresponding L1 norm inversion result. (d) The 2D LCI result. (e) An analysis of the model
parameters (resistivities, RES1–RES4; thicknesses, THK1–THK3; and depths, DPH3-DPH4). The analysis uses a six-graded color
code ranging from red (well determined) to blue (undetermined).

Hence, under a lognormal assumption, it is 68% likely that a
given model parameter q falls in the interval

q

STDFq
< q < q · STDFq. (31)

Thus, the impossible case of perfect resolution has an STDF of
one. An STDF of 1.1 is approximately equivalent to an error
of 10%. Moderate to well-resolved parameters have an STDF
less than 1.5, poorly resolved parameters an STDF less than 2,
and mainly unresolved parameters an STDF greater than 2.

SYNTHETIC EXAMPLE

To demonstrate the need for a 2D inversion code utilizing
layered models, we compare results from a simple synthetic
model. The data set is generated using the PACES electrode
configuration, with one sounding per meter, each comprising
eight data points. These data points then have had 3% noise
added and processed to one sounding for each 5 m. The pro-
cessing steps are identical to those taken for real data.

The model in Figure 4a is a three-layer earth representing
a typical sedimentary environment with clay interbedded in
sand. The model scenario is typical for groundwater surveys
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where we wish to map protective clay layers. The layer bound-
aries and internal resistivity variations are set using the re-
sult of stationary stochastic processes characterized by the von
Karman covariance functions (Møller et al., 2001). Mean layer
resistivities are 300 ohm-m, 30 ohm-m, and 300 ohm-m for the
three layers, respectively. The internal standard deviation on
resistivities is 0.5 times the logarithm to the resistivity. Mean
interval thicknesses of the first and second layers are 5 and
10 m, respectively. The standard deviation on the thicknesses
is equal to the mean value.

We use the code by Oldenburg and Li (1994) for comparison.
It can perform strict L1 norm and L2 norm inversions.

The L2 norm inversion in Figure 4b finds the basic near-
surface features but has difficulties in tracking the deeper parts
of the low-resistivity layer. Also, it fails to recognize the resis-
tivity transitions as sharp boundaries between the layers in the
true model. This is most pronounced in the deeper parts of the
model where the resolution capabilities are modest.

When applying an L1 norm misfit criterion as in Figure 4c
instead of the usual L2 norm misfit criterion, the model appear-
ance becomes more blocky, with sharp resistivity transitions
both laterally and vertically (Loke et al., 2001; Farquharson
and Oldenburg, 2003). However, these sharp transitions do not
reproduce the actual boundary transitions in the true model.

The 2D LCI inversion in Figure 4d is carried out with equal
size constraints on layer resistivities and on the layer bound-
aries, i.e., depths to layers. The constraint on resistivities is a
factor of 1.1 (matrix Cp), and on depths it is a factor of 1.3 (ma-
trix CRh). These values are fairly general and have been tested
on a wide variety of models (initially established by trial and
error). With these settings we find both the correct geometry
and the layered nature of the model for the near surface and
the deeper parts of the model. The model sections presented
produce data that fit the observed data to an acceptable level
according to the relevant inversion scheme.

The four-layer analysis in Figure 4e presents analyses of re-
sistivities, thicknesses, and depths along the profile. DPH3 is
the depth to the third layer, and DPH4 is the depth to the fourth
layer. The depth to the second layer is equal to the thickness of
the first layer. We see that the resistivity of the top two layers
is well determined for most of the profile. The resistivity of the
third and fourth layers is well determined when they are close
to the surface (coordinate, 100–400 m). The thickness of the
first layer is well determined for parts of the profile (e.g., coor-
dinate, 250–400 m), whereas the thicknesses of the second and
third layer are poorly resolved for most of the profile. Although
the thicknesses of layers two and three are poorly determined
for xk < 500 m, given an undoubtably strong anticorrelation we
see that the depth to the fourth layer is fairly well determined
for that part of the profile.

The strength of the lateral constraints, matrices CRh and Cp

in equation (24), helps resolve the layer boundaries by con-
straining the depths and resistivities along the profile. Loose
constraints allow model complexity only bounded by the data.
Tight constraints make for a very smooth model with slow
variations. Thus, determining the constraint values is a trade-
off between fitting the data (complex models, no constraints)
and fitting the lateral constraints (smooth models, tight con-
straints). One might argue that we are cheating because in
this case we know the actual geological variations and thus
choose the constraints accordingly. However, numerous exper-

iments on far more complex synthetic models (not shown here)
show these settings to be appropriate for a large fraction of the
models.

Finally, the starting model is in all cases a layered half-space
(in this case, a four-layer model with the same resistivity in
all of the layers), making the inversion scheme robust. Four
layers were used in the LCI section as an inversion because
three layers had a poorer data fit and five layers did not result
in a significantly better data fit (models not shown here).

Based on this synthetic model, we conclude that the lay-
ered solution has clear advantages over the smooth minimum-
structure solution when the geological model is quasi-layered.
The result can be evaluated using the sensitivity analysis and
the straightforward identification of layered units.

FIELD EXAMPLE, CVES, SWEDEN

Figure 5 is a CVES field example from Sweden. The profile
is approximately 300 m. The resistivity survey was carried out
as part of a geotechnical investigation for road construction in
connection with a filled basin structure in bedrock. The data
set is presented by Dahlin (1996). The data pseudosection in
Figure 5a shows relatively smooth transitions but with clear in-
dications of 2D structures. The data are collected using Wenner
arrays, with a-spacing between 2 and 48 m.

Figure 5. (a) The data pseudosection. (b) The minimum struc-
ture L2 norm inversion result. (c) The corresponding L1 norm
inversion result. (d) The 2D LCI result with the parameter
analyses in (e). The color-coding of the analyses ranges from
well resolved (red) to poorly resolved (blue). Lithological logs
from drillings are located every 20 m from coordinate 20 to 200
m. The colors of the drillholes indicate, from the bottom, rock
(dark gray), till (light gray), and clay (white).
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The L2 norm model in Figure 5b picks up a basin structure,
thickest around coordinate 120–130 m. The identification of all
three layers depicted in the drillholes is impossible, and the
depth to bedrock is not easily identified, although the overall
model geometry reflects the drill data to some degree. For the
left half of the profile, it seems that the rock identified in the
drillholes is of a different character from the rock detected on
the right half of the profile based on prominent differences
in resistivity. This is most likely from 3D structures (Dahlin,
1996). The L1 norm model of Figure 5c is more blocky than
the L2 norm model, but still the formations depicted by the
drillholes are not picked up.

Figure 5d presents a 2D LCI section with four layers. No
a priori information is added. The basin unit is now clearly
separated from the bedrock, and for the right half of the profile
(coordinates 100–230 m) the till unit is easily identified on top
of the bedrock. The thicknesses of the clay layer and the till–
clay layer are fairly consistent with those found in the drillholes.
For the left half of the profile there are inconsistencies, as was
the case for the L2 norm model of Figure 5b. We pick up the
till layer at coordinate 40 m, but it is not possible to track the
layer between coordinates 40 and 100 m.

The analyses in Figure 5d show mainly well-determined re-
sistivities for the entire profile for layers 1 and 2, whereas the
bottom two layers have only moderately resolved resistivities.
The thicknesses of the till layer (THK3, coordinates 100–230 m)
is poorly resolved, but the depth to the top of the till (DPH3),
i.e., the basin depth, is well determined. The model sections
produce data that fit the observed data to an acceptable level
according to the relevant inversion scheme.

CVES FIELD EXAMPLE WITH A PRIORI
INFORMATION, SWEDEN

Figure 6 is a CVES field example from a geotechnical slope
stability investigation in Sweden (Wisen et al., 2003). The full
profile is approximately 200 m. The geological environment
consists of crystalline bedrock overlain by a layer of sand and
silt till with a thickness from zero up to a few meters. On top
of the sand–silt till are several meters of unconsolidated clay.
The depth to the surface of the bedrock was established from
a refraction seismic survey.

In Figure 6a the data are presented, showing rela-
tively smooth transitions. A combination of Wenner and
Schlumberger electrode configurations was used with a min-
imum electrode distance of 2 m.

The L2 norm model in Figure 6b picks up the overall
downward-ascending resistivity structures but fails to identify a
separate sand unit. The depth to the bedrock as indicated by the
refraction seismic data is much deeper than the high-resistivity
contrast of the smooth L2 norm inversion. This suggests that
the sand–silt till is a hidden layer on top of the bedrock. The
L1 norm model (Figure 6c) is much more blocky than the L2
norm model, but still the sand–silt till is not detected.

Figure 6d is the 2D LCI section with four layers and no a
priori information. A thin unit is seen on top of the bedrock that
could correspond to the sand–silt till, but it is quite far from the
boundary, as suggested by the refraction seismic. In Figure 6e
the depth to the bedrock has been added as a priori information
in the 2D LCI algorithm. This reveals a relatively thick unit on
top of the bedrock with a slightly lower resistivity than that of

the bedrock. Figures 6d and 6e fit the data to the same degree,
which means that the refraction seismic and resistivity data
do not in any way contain contradicting information, as one
might think by looking at Figures 6b–6d. Also, by including
the a priori information on the depth to the bedrock, we are
able to retrieve supplementary information on the thickness
and resistivity of the sand–silt layer.

DISCUSSION

Smooth minimum structure or discrete layers?

As seen from the examples, a smooth minimum-structure L2
norm inversion produces smooth models even for geological
models, which are overall layered. For an L1 norm solution
the models are more blocky but still fail to identify quasi-
layered units. The question is when to use a smooth minimum-
structure solution and when to use a solution with discrete

Figure 6. (a) The data pseudosection. (b) The minimum-
structure L2 norm inversion result. (c) The corresponding L1
norm inversion result. (d) The 2D LCI result without a priori
information. (e) Includes depth to the bedrock as a priori infor-
mation. The depth to the bedrock from the refraction seismic
data is drawn as a black line.
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layers. Often an interpreter has some background knowledge
on the area in terms of distinct units with different electrical
properties. We suggest the use of the 2D LCI whenever these
units take the form of a quasi-layered environment. When they
are not quasi-layered, a minimum-structure solution should be
used.

Code optimizing

The 2D forward solution is significantly slower to use than
the 1D forward solution. For long profiles this difference be-
comes even more pronounced. Therefore, it is preferable to
use the 2D code only when the subsurface geometry is not ap-
proximately one dimensional. The 2D LCI as presented here is
implemented in an inversion kernel developed for 1D LCI by
adding the 2D resistivity forward routine to the other forward
routines in the program. This feature enables us to examine
hybrid forms in which parts of the calculations are one dimensi-
nal and others are two dimensional. One possible hybrid is to
do 1D calculations for the first few iterations and then shift
to 2D calculations when the basic structures have been built
(Christiansen and Auken, 2003).

Other considerations to make a faster code include the
dual grid method of Torres-Verdin et al. (2000) or a form
of Broyden’s update (quasi-Newton) for Jacobian calculation
(Loke and Barker, 1996). Also, one could use a fast approxi-
mate 2D inversion to get a suitable starting model for the full
nonlinear inversion (Møller et al., 2001).

CONCLUSION

The 2D LCI inversion of continuous resistivity data has
proven to be a robust tool to obtain reliable inversion results in
quasi-layered environments. The layered model parameteriza-
tion allows easy identification of formation boundaries, com-
pared to a standard minimum-structure 2D program which
produces a more smeared picture of the geological model.
The inclusion of lateral constraints improves the resolution of
poorly resolved parameters. We have demonstrated this on a
synthetic data set, comparing inverted sections from the 2D
LCI method with 2D minimum-structure models. In a field ex-
ample from Sweden, a till layer hidden in the smooth minimum-
structure section was identified using the 2D LCI method and
confirmed by drillholes.

A priori knowledge can be added at any point along the
model profile, and the results are supported by a full sensi-
tivity analysis of the model parameters entering the inversion
scheme. Thus, the interpreter is given a chance to evaluate the
inversion result.
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APPENDIX A

DERIVATIVES ON A PRIORI DEPTHS
AND DEPTH CONSTRAINTS

In equation (15) we added a priori information on depths
to the inverse formulation. With the a priori depths added to
the system, we must also add the derivatives of the depths
from the primary model parameters to build the matrix Ph. The
derivatives with respect to resistivities are all zero. The deriva-
tives with respect to layer thicknesses at horizontal position xk

are

∂ log(hk,l )
∂ log(ti, j )

= ti, j
hk,l
· ∂hk,l

∂ti, j
= ti, j

hk,l
· ∂
∑l

s=1 tk,s
∂ti, j

=


ti, j
hi, j

for i = k and j ≤ l

0 otherwise
(A-1)

for the l th depth with respect to the j th thickness. Now, we
write out the elements of the Ph matrix with respect to the
submodel at xk:

Ph =

· · · 0 · · · 0 1 0 0 · · · 0 · · ·
· · · 0 · · · 0

tk,1
hk,2

tk,2
hk,2

0 · · · 0 · · ·
...

...
...

...
...

· · · 0 · · · 0
tk,1
hk,n

tk,2
hk,n

tk,3
hk,n

· · · tk,n
hk,n

· · ·


(A-2)

for the n a priori depths using the identity t1,1= h1,1. The first nl

columns of zeroes are the derivatives with respect to resistivi-
ties. The variance on the a priori depths will enter as Ch−prior ,
which we take to be a diagonal matrix.

Next, we need to find the derivatives with respect to depths to
build the matrix Rh. Similar to equation (A-1), the constraints
on submodels at xk and xk+1 have derivatives with respect to
thicknesses given as

∂(log(hk,l )− log(hk+1,l ))
∂ log(ti, j )

= ∂ log(hk,l )
∂ log(ti, j )

− ∂ log(hk+1,l )
∂ log(ti, j )

= ti, j
hk,l
· ∂
∑l

s=1 tk,s
∂ti, j

− ti, j
hk+1,l

· ∂
∑l

s=1 tk+1,s

∂ti, j

=


ti, j
hi, j
− ti+1, j

hi+1, j
for i = k and j ≤ l

0 otherwise
(A-3)

for the l th depth with respect to the j th thickness in submodels
k and k+ 1. The full matrix with derivatives of depth constraints
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then becomes

Rh =



· · · 0 · · · 0 1 0 0 · · · 0 · · ·
· · · 0 · · · 0

tk,1
hk,2

tk,2
hk,2

0 · · · 0 · · ·
...

...
...

...
...

· · · 0 · · · 0
tk,1
hk,n

tk,2
hk,n

tk,3
hk,n

· · · tk,n
hk,n

· · ·

· · · 0 · · · 0 −1 0 0 · · · 0 · · ·
· · · 0 · · · 0 − tk+1,1

hk+1,2
− tk+1,2

hk+1,2
0 · · · 0 · · ·

...
...

...
...

...

· · · 0 · · · 0 − tk+1,1

hk+1,n
− tk+1,2

hk+1,n
− tk+1,3

hk+1,n
· · · − tk+1,n

hk+1,n
· · ·


. (A-4)

Again, the first columns with zeroes are derivatives with respect
to resistivities. The variances on the lateral constraints are given
in CRh.

APPENDIX B

THE FULL ITERATIVE INVERSION SCHEME

In equation (25) we wrote the solution to the inverse problem
as

δmest = [G′T C′−1G′]−1G′T C′−1δd′, (B-1)

with respect to some reference model mre f . Writing this as
the model update at the nth iteration in an iterative inversion
scheme, we get

mn+1 = mn +
([

G′Tn C′−1G′n + λnI
]−1 · [G′Tn C′−1δd′n

])
,

(B-2)

where λ, is a Marquart damping parameter (Marquart, 1963).
Expanding equation (B-2) with respect to equations (22) and
(24), we end up with

mn+1 = mn +
([

GT C−1
obsG+ C−1

prior + PT
h C−1

h−prior Ph

+RT
pC−1

RpRp +RT
h C−1

RhRh + λnI
]−1

· [GT C−1
obs(dobs− g(mn))+ C−1

prior (mprior −mn)

+PhC−1
h−prior (hprior − Phmn)+RT

pC−1
Rp(−Rpmn)

+RT
h C−1

Rh(−Rhmn)
])
, (B-3)

where g(mn) is the nonlinear forward response of the nth
model. The convergence of the inversion process is stabilized
by two processes: (1) the Marquart modification via the pa-
rameter λn and (2) an adaptive damping on the step size for the
model update based on the success of the previous iteration.
These two factors make the inversion process very robust. In
practice, we achieve safe convergence by starting the iteration

from horizontal layers with equal resistivities, i.e., a layered
homogeneous half-space.
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