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Abstract

Dense profile-oriented resistivity data allows for 2D and 3D inversions. However, huge amounts of data make it practically

impossible to do full 2D or 3D inversions on a routine basis. Therefore, a number of approximations have been suggested over

the years to speed up computations. We suggest using a combination of Broyden’s update on the Jacobian matrix with

derivatives calculated using a 1D formulation on a parameterized 2D model of locally 1D layered models. The approximations

bring down the effective number of 2D forward responses to a minimum, which again gives us the ability to invert very large

sections. Broyden’s update is not as useful with a parameterized problem as is the case with a smooth minimum structure

problem that has been the usual application. 1D derivatives, however, seem to be very effective when initiating a full 2D

solution with Broyden’s update. We compare the different methods using two different kinds of data on two synthetic models

and on two field examples. The most effective and reliable optimization combines 1D derivatives with a full 2D solution and

Broyden’s update. When using Broyden’s update the Jacobian matrix needs to be reset every once in a while. We do this

whenever the difference in data residual from the previous iteration is less than 5%. This combined inversion method reduces

the computation time approximately a factor of 3 without losing model resolution.
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1. Introduction

Standard electrical methods allow for a detailed

mapping of the subsurface by gathering profile-

oriented data continuously with large sensitivity

overlaps between individual data points (e.g. Dahlin,

1996; Bernstone and Dahlin, 1999; Sørensen, 1996;

Panissod et al., 1997). Some of the systems in use

produce huge amounts of data in a field day (more

than 20,000 data points). With the dense data cover-

age provided, 2D and 3D interpretations are of course

desirable. However, most 2D and certainly any 3D

inversion code utilizing full forward and inverse
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solutions become increasingly slower with larger data

sets.

Standard 2D inversion algorithms have been pre-

sented by, e.g., Oldenburg and Li (1994) and Loke and

Barker (1996), both producing smooth minimum

structure models in which sharp formation boundaries

are hard to recognize. A few inversion programs have

been suggested that produce blocky or layered models.

Olayinka and Yaramanci (2000) presented a 2D block-

type inversion scheme using polygons of equal

resistivity. Smith et al. (1999) presented a layered

inversion scheme with lateral constraints on resistiv-

ities and depths applied to magnetotelluric (MT) data.

Auken and Christiansen (2004) have adapted the model

description of Smith et al. (1999) and used it in a 2D

inversion scheme for resistivity data which produces

laterally smooth models with discrete layers.

Approximations to a full solution for an inversion

algorithm can be done on several stages in the forward

solution, in the calculation of derivatives or in the

inverse matrix manipulations. However, the savings in

computation time is obtained at the expense of the

loss of accuracy which is the inevitable consequence

of numerical approximations. Thus, there is a trade-of

between the savings in computation time and the

required accuracy.

Loke and Barker (1996) suggested a quasi-Newton

formulation which gave major time reductions using

Broyden’s update formula (Broyden, 1965). The

quasi-Newton method has been widely used with

success in smooth minimum structure 2D resistivity

inversions. Oldenburg and Ellis (1991) introduced

approximate inverse mappings in both the model space

(AIM-MS) and in the data space (AIM-DS). They

exemplified the AIM-DS with the 2D MT problem

using a 1D formulation as an approximate inverse.

This proved powerful with MT data. The Rapid

Relaxation Inverse (RRI) by Smith and Booker

(1991) also combined 2D and 1D formulations for

the MT problem. In the RRI, the derivatives are 1D

except for the fact that they comply with the 2D fields.

An extremely fast multichannel deconvolution (MCD)

on resistivity data was suggested by Møller et al.

(2001), where the output is a smooth picture of the

subsurface resistivity distribution obtained without

direct computation of the 2D fields. Torres-Verdı́n et

al. (2000) used a smaller grid as an approximate 2D

finite-difference forward, incorporated in an auxiliary

inversion scheme. This inversion method is in many

ways similar to the AIM-DS presented by Oldenburg

and Ellis (1991) only the approximate inverse is not a

1D formulation but a 2D formulation using a smaller

grid.

This paper combines Broyden’s update formula

with derivatives calculated using a composite 1D

formulation along the profile taking advantage of a

piecewise 1D model description. The 1D derivatives

are used for the first few iterations while the model is

still in is infant stages without too much 2D structure.

Later, a full 2D iteration is computed followed by ite-

rations taking advantage of Broyden’s update formula.

For the resistivity problem, 1D calculations are

magnitudes of order faster than 2D calculations. Thus,

introducing 1D calculations reduces computation times

compared to solutions using only 2D calculations.

2. Inversion methodology

The inversion is based on an algorithm developed

for a laterally constrained 1D inversion scheme (1D-

LCI) (Sørensen et al., 2004). The 1D-LCI was

expanded to cover the 2D case as well by including

a 2D forward response in the inversion algorithm

(Auken and Christiansen, 2004). A detailed descrip-

tion of the basics of the inversion methodology is

found in Auken and Christiansen (2004) from which

we in this section will give a brief summary

presenting the key concepts and basic equations.

2.1. Data and model

Consider a resistivity profile with nx reference node

points, xi, in the horizontal direction. For each node

point, we have an ordinary data vector, di, of apparent

resistivity observations for several different electrode

spreads. The whole profile section shall be modelled as

one inverse problem, and hence the relevant data vector

is the concatenation of the data at each node:

dobs ¼ d1; d2; N ; dnxð ÞT ; ð1Þ

here T indicates the vector transpose. For a simple

continuous vertical electrical sounding (CVES) pro-

file, the grouping of the data vector is sketched in

Fig. 1.
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To minimize non-linearity and to impose positivity,

we apply logarithmic data and logarithmic parameters

(e.g. Johansen, 1977; Ward and Hohmann, 1988).

Hence

di ¼
�

logðqa1Þ; logðqa2Þ; N ; logðqaNi
Þ
�T

; ð2Þ

where qa denotes apparent resistivity and Ni is the

number of electrode configurations measured at xi.

At each surface node, xi, the subsurface model is

represented by a logarithmic 1D model with nl layers

mi ¼
�

log qi1ð Þ; log qi2ð Þ; N ; log qinl

� �

;

log ti1ð Þ; log ti2ð Þ; N ; log ti nl�1ð Þ

� �

�T

; ð3Þ

where q denotes interval resistivity and t denotes

interval thickness. The total number of submodels is

nx corresponding to the number of individual 1D

soundings. Each submodel is described by nl layers,

so the full model

m ¼

m1

m2

v

mnx

1

C

C

A

;

0

B

B

@

ð4Þ

to be determined has M=nx*(2nl�1) parameters.

To produce the 2D model from the composite 1D

profile, parameters from neighbouring nodes are

interpolated linearly as illustrated in Fig. 2.

Thus, locally we have a 1D model description

which in combination builds the full 2D profile.

Grouping the data vector according to the model setup

enables mixing of 1D and 2D calculations.

2.2. Forward modeling

The 2D resistivity forward modeling in the

inversion routine is performed using the finite differ-

ence code from University of British Columbia

(McGillivray, 1992). The code uses a finite difference

approach similar to the one described by Dey and

Morrison (1979).

The layered 2D model is translated to the finite

difference grid by superimposing the grid on the

model and assigning a resistivity value to each cell

based on an area weighted average of the contributing

elements in the underlying layered 2D model, see

Fig. 3.

Electrodes are placed on node points in the grid.

For electrodes not on node points, we have imple-

mented a linear interpolation to the electrode positions

involving the two nearest nodes.

2.3. Forward mapping

The dependence of apparent resistivities on subsur-

face parameters is in general described as a non-linear

differentiable forward mapping. We follow the estab-

lished practice of linearized approximation by the first

term of the Taylor expansion

dobsgg mref Þ þG mtrue �mref Þ þ eobs;ðð ð5Þ

where g is the nonlinear forward mapping of the

model to the data space and eobs is the error on the

Fig. 1. Data grouping. The individual four-pole configurations are grouped into soundings based on the lateral position of their focus point.

Fig. 2. Model description. The model is described with thicknesses

and resistivities at a number of nodes along a profile. The

parameters between neighboring nodes are linearly interpolated to

produce a 2D model.
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observed data. The true model, mtrue, has to be

sufficiently close to some arbitrary reference model,

mref, for the linear approximation to be a good one. In

short, we write:

ydobs ¼ Gymtrue þ eobs; ð6Þ

where ydobs=dobs�g(mref). The Jacobian, G, contains

all the partial derivatives of the mapping

Gst ¼
Bds

Bmt

¼
Blog qas

� �

Blog mtð Þ
¼

mt

qas

Bqas

Bmt

; ð7Þ

for the s-th apparent resistivity in the data vector and

the t-th parameter in the model vector.

2.4. Prior information and lateral constraints

Prior information, which is used to resolve

ambiguities and to add, e.g., geological information,

can be added at any point of the profile and migrates

through the lateral constraints to adjacent models. The

models are tied together laterally by introducing

lateral constraints between neighboring parameters.

This means that information from models with a small

variance migrates through the lateral bands to models

with higher variance. The code utilizes lateral

constraints on resistivities, thicknesses and depths.

For most applications, lateral constraints on depths are

advantageous to constraints on thicknesses. Con-

straints on depths are preferred in cases where there

is a demand for continuity of layer boundaries, e.g., a

Quaternary sequence with sand and clay layers on top

of a relatively smooth pre-Quaternary surface. Con-

straints on thicknesses are favourable whenever there

is a possibility of discontinuous layer boundaries, but

continuous thicknesses, e.g., across a fault. In this

paper, constraints are applied to resistivities and

depths.

The lateral constraints and prior information enters

the vector with observed data, and derivatives are

calculated to enter the Jacobian matrix, G. The

practical implementation of prior information and

lateral constraints can be reviewed in Auken and

Christiansen (2004).

2.5. Inversion

With the prior information and the lateral con-

straints added to the data vector, dV, and the

corresponding derivatives added to the Jacobian

matrix, GV, we write Eq. (6) compactly as:

GVymtrue ¼ ydVþ eV ð8Þ

The joint observation error is eV, with covariance

matrix CV.

The model estimate (Menke, 1989)

ymest ¼ GV
TCV�1GV

��1
GV

TCV�1
ydV;

�

ð9Þ

minimizes

Q ¼
1

N þ AþM

X

NþAþM

i¼1

ydV2i
var eVið Þ

� 

 !1
2

ð10Þ

where N is the number of data, A is the number of

constraints and M is the number of model parameters,

including depths.

Currently, the matrix operations in Eq. (9) is solved

using a Cholesky decomposition (Press et al., 1992),

which implies that for very large models (more than

about 5000 model parameters) the matrix calculations

can be very time consuming because the computations

Fig. 3. Model translation. The layered model in (a) is translated to

the model superimposed on the finite difference grid in (b) using

weighted averages.
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are proportional to M3, where M is the number of

model parameters. For such big systems, it is

beneficial to use a sparse solution as, e.g., described

in Akin (1982).

2.6. Data acquisition systems

The examples given later are based on two differ-

ent resistivity systems. The CVES consists of a

number of steel electrodes manually forced into the

ground at regular electrode spacing, typically from 2

to 12 m (Van Overmeeren and Ritsema, 1988; Dahlin,

1996). The electrodes function as both current and

potential electrodes and can measure in any config-

uration desired by the user. The data collecting is

semi-continuous using a roll-along technique.

The pulled array continuous electrical sounding

(PACES) system consists of a small tractor, equipped

with processing electronics, pulling the electrodes

mounted on a tail (Sørensen, 1996). The electrodes

are cylindrical steel tubes with a weight of about 15 kg.

Two electrodes are maintained as current electrodes,

while the remaining electrodes serve as potential

electrodes in eight different configurations. The data

collecting is continuous at a speed of approximately 1.5

m/s with one full sounding saved each second. The data

are later processed to one sounding for every 5.0 m.

3. Optimizations

3.1. Forward calculations with a sliding model

window

Long profiles or systems with irregular electrode

configurations inevitably mean large finite difference

grids. This can make it practically impossible to

calculate full forward responses with one large grid.

Instead, we split up the profile in model windows and

do calculations for one window at the time sliding it

along the profile. Afterwards, the responses from the

windows (dark gray) are concatenated to create the

full profile, as illustrated in Fig. 4a.

Experimentally, we found the computation time to

depend linearly on n2log2(n) for n cells, when the

number of vertical nodes has be chosen appropriately.

This is an approximation, because the computation

time depends differently on the number of cells in the

two directions. Also, the number of current electrodes

needs to be taken into account, but for profiles up to

3 km the correlation is very good. Thus, an optimal

choice of the size of the sliding model window can

reduce the computation time drastically. A large

sliding model window means fewer but computation-

ally more expensive computations, whereas a small

sliding model window means more but faster compu-

tations. The overlap between neighboring model

windows (light gray) always needs to be sufficiently

large in order to ensure continuous forward data along

the profile. The sizes of the overlap, the padding

zones (white) and the number of vertical nodes are

fixed when appropriate values have been determined

for the actual configuration. The sizes of these fixed

grid values depend primarily on the configurations

used, but also on the geology of the survey area.

Ideally, the fixed sizes are therefore determined from

scratch for each survey, based on forward calculations

of an expected geophysical model, ensuring continu-

ous forward data along the concatenated profile. The

overlap should be at least 0.5 times the maximum

layout, but a subsurface with strong 2D features

would most likely require overlaps of more than 1

times the maximum layouts. In this paper, the required

overlap has been established from forward calcula-

tions and it is between 0.65 and 0.9 times the

maximum layouts. The accuracy using the sliding

model window is in these case better that 1%

Fig. 4. Sliding model window. (a) shows the sliding model windows

for forward responses, whereas (b) is for derivatives. Light gray and

dark gray are the fine parts of the grid. Electrodes need to be within

the fine parts of the grid with the lateral focus point in the dark gray.

The light gray are overlaps between the sliding model windows and

have to be sufficiently large to ensure continuous forward responses

when concatenating the full response of the dark gray sections.

White areas are padding.
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compared to the response calculated without the

sliding model window.

However, besides these fixed configuration

dependent parameters the grid can be optimized in

terms of the size of the central sliding window (SW)

(dark gray in Figs. 4 and 5). Fig. 5 shows the relative

timing of two different configurations on a 1100-m

profile, assuming a n2log2(n) dependence.

Fig. 5a shows the relative timing of a 400-m CVES

layout with 5 m between horizontal grid points in the

fine part. In this case, the layout is quite large

compared to the profile length and there is no time

gained using the slider. The shortest computation time

is achieved when choosing the SW to be 400 m

bringing the total size of the fine grid to 1100 m (400

m+2*70*5 m) equal to the profile length.

In Fig. 5b, the same profile is measured with the

PACES system (Sørensen, 1996), which has approx-

imately 90-m layout and the horizontal grid size is

1 m. For the PACES system, the optimal size of the

SW is 140 m (i.e. 140 cells), which is almost three

times as fast as if the full profile where computed with

just one grid. A longer profile would have made the

time saving even larger.

The sliding model window can also be used to

speed up calculations of derivatives taking advantage

of the fact that derivatives for a certain parameter

have the highest values for configurations close to

the parameter itself. Thus, we calculate derivatives

with only one window, centering this at the lateral

position of the parameter in question as depicted in

Fig. 4b. Doing this we need to take special care

designing the grid for the sliding window. If it is too

small we leave out derivatives that would have

contributed to the 2D description. Making the grid

very large only enhances accuracy, but might bring

unnecessary computations since the derivatives for

data far away from the parameter is close to zero

anyway.

In this paper, we have used the slider throughout,

with the same sizes of the sliding model window used

for calculation of derivatives and for forward calcu-

lations. Though, we will use the name bfull 2DQ when

both the forward calculations and the calculations of

derivatives are performed using a 2D formulation

even though the sliding model window have been

used.

3.2. Broyden’s update

Broyden’s update formula (Broyden, 1965) has

been used widely for 2D resistivity inversion. The

update formula approximates the Jacobian matrix,

Gn+1, of iteration n+1 using the Jacobian matrix of

iteration n:

Gnþ1Bnþ1 ¼ Bn þ Ddn � BnDmn½ �
DmT

n

DmT
nDmn

; ð11Þ

where B is referred to as the Broyden matrix and

Ddn ¼ dn � dn�1;

Dmn ¼ mn �mn�1: ð12Þ

The update formula is based on an assumption that

the difference in forward mappings, Dd(mn), changes

Fig. 5. Optimizing the sliding model window. (a) shows a 1100-m CVES profile with a 400-m layout (largest electrode separation) and 5-m

horizontal grid size. (b) shows a 1100-m PACES profile (approx. 90-m layout) with 1-m grid. Numbers in the boxes are the number of

horizontal grid points in each separate part. The thick solid line is the normalized computation time, relative to the time using just one grid, for

varying sizes of the central SW. The line is jagged because only a whole number of sliding windows is possible. The thin solid line is the

underlying function permitting fractions of sliding windows.
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linearly with respect to mn, in the direction of Dmn.

This is most likely to be the case close to the

maximum of the least squares cost-function.

Most of the previous implementations have been

in smooth minimum structure programs (e.g., Loke

and Barker, 1996). The cell based finite-difference

or finite-element implementation of the forward

problem in these programs imply that only resistiv-

ities are inverted for. When parameterizing the

problem into, for example, thicknesses and resistiv-

ities of discrete layers we introduce a mixture of

physical parameters and structure. Several authors

have noted that the forward mapping in this case is

more linearly dependent on the physical parameters

than on the structure. Torres-Verdı́n et al. (2000),

implemented Broyden’s update formula on a para-

meterized cross-borehole problem. They experienced

a need to reset the entries in the Jacobian matrix

after a few iterations, doing the full, time consum-

ing solution. Otherwise the problem did not con-

verge. This is not the case with the minimum

structure solutions. Loke and Dahlin (2002) found

that if the Jacobian matrix is initiated and perhaps

fully recalculated for the first two or three iterations

the final model will be very close to the full Gauss–

Newton model.

Based on these considerations, we have imple-

mented Broyden’s update formula with an option to

reset and recalculate the Jacobian if necessary. As the

criterion to recalculate the full Jacobian matrix, we

use the change in data residual between the latest two

iterations. The value is defined by the user, but to our

experience 5–10% seems to be suitable.

3.3. 1D derivatives

The derivatives in the Jacobian matrix of Eq. (7)

are approximated by a first-order forward-difference

formula:

Bds

Bmt

¼
gs mt þ Dmtð Þ � gs mtð Þ

Dmt

; ð13Þ

where Dmt is chosen as small as possible (1–2% of

m). This implementation requires at least one forward

calculation per model parameter and one forward per

model. In the parameterized 2D case this means M+1

forward calculations, which is very time consuming

for large problems. Instead, we suggest calculating the

entries to the Jacobian matrix with a 1D forward

mapping (1D derivatives). For the 1D resistivity case,

a forward calculation is extremely fast, practically

eliminating the Jacobian calculation as a time factor.

Only the data from individual soundings correspond-

ing to the grouping of the model vector now

contribute to the total G-matrix making this a block-

diagonal:

G ¼

@d
@m
jx¼x1

� �

0
¼

@d
@m
jx¼x2

� �

O

0
¼

@d
@m
jx¼xnx

n o

2

6

6

6

4

3

7

7

7

5

ð14Þ

for the nx models with nx data sets.

For one iteration, we now need to do only one full

2D calculation on the model from the previous

iteration and nx 1D calculations to fill the Jacobian

matrix, G. For a subsurface resistivity structure close

to a 1D model, this will work fine. For very complex

2D structures, the approximation will be poor, since

the off-diagonal elements in the 2D G-matrix will

have non-negligible values compared to the bloc-

diagonal elements.

The first-order forward-difference formula in Eq.

(13) is crude, but an easy way to calculate derivatives.

Faster solutions could be implemented, such as the

adjoint method (McGillivray and Oldenburg, 1990),

which has been widely used for smooth minimum

structure inversion of resistivity data.

3.4. Combining Broyden’s update and 1D derivatives

Since we now have the full 1D solution, the full 2D

solution, 1D derivatives with 2D forward and Broy-

den’s update incorporated in the inversion scheme an

obvious solution is to do a combination to make an

optimal solution in terms of speed and accuracy.

Normally, the iterative solution is started with a

homogeneous halfspace. This means that very little

2D information is present in the beginning. Based on

this fact, we have chosen to start the inversion

procedure with 1D derivatives in conjunction with

2D forward, at some point switching to doing a few

full 2D iterations to initiate the entries of the 2D
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Fig. 6. Synthetic PACES example. Panel (a) is the true model. Panel (b) is a pseudo-section of the data. Panel (c) is the model from a full 1D

inversion; (d) is the result using a full 2D solution. Panel (e) presents an inversion using Broyden’s update formula for all iterations except the

.rst two. Panel (f) also uses Broyden’s update formula, but the full Jacobian is recalculated when the residual change is less than 5%. The model

in panel (g) is the result of 1D derivatives throughout. Panel (h) combines 1D derivatives with the full 2D solution and Broyden’s update

formula. Finally, the data residuals are presented in (i) as a function of iteration number. Filled markers (for Broyden 5% and 1D

derivatives+Broyden 5%) indicate full 2D iteration.
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Jacobian matrix, finally switching to Broyden’s

update. If the subsurface is thought to be fairly 1D,

the 1D derivatives can be exchanged with the full 1D

solution, i.e. exchanging the 2D forward with a 1D

forward. Generally, this iteration scheme should

minimize the number of full 2D solutions while

keeping as much 2D information as possible. Also,

the Broyden solution should be stabilized because the

model misfit will be closer to the desired misfit

minimum, minimizing nonlinearity errors.

4. Synthetic examples

4.1. Simple dip-model, PACES data

The first example in Fig. 6a is a very simple two-

layer model with a 458 descending slope on the lower

layer. The data set is generated using the PACES

electrode configuration (Sørensen, 1996), with one

sounding per meter, each comprising 8 data points.

The synthetic forward data were produced using the

DCIP2D software, from University of British Colom-

bia (McGillivray, 1992). The 5% noise was added to

the data, which were then processed to one sounding

per 5 m as if they were field data. The profile is 600 m

long with 960 data points in 120 models (660 model

parameters).

The panels on the left side of Fig. 6 (panels a–g)

presents various inversions using 1D, 2D, Broyden’s

update, 1D derivatives and a combination of Broy-

den’s update and 1D derivatives. The plots on the

right side (Fig. 6i) are the corresponding data

residuals for each iteration. Panel (c) presents a full

1D inversion which clearly does not resolve the 2D

slope. Panel (d) is the full 2D solution, which finds

the correct geometry except for the wiggles on the

deep parts of the conductive layer due to noisy data

and decreasing resolution. Panel (e) presents the

solution using Broyden’s update for all iterations

after initiating the inversion with two full 2D

iterations. From the model section and the residual

plot on the right, it is clear that Broyden’s update as

stand-alone does not converge to a satisfactory

model. Panel (f) is Broyden’s update with full 2D

recalculation of the Jacobian whenever the change in

data residual is less than 5%. The model now

converges towards the true model, but more iterations

are needed compared to the full 2D solution. Panel

(g) is the solution using 1D derivatives for all

iterations. Iteration for iteration the residual of this

method follows the residual of the 1D solution

(Fig. 6i) except for the last two iterations, indicating

that the 2D structures are found at the very last

iterations. The final model is in between the model

from the full 2D solution (Fig. 6d) and the model from

the full 1D solution (Fig. 6c). Finally, panel (h)

presents the combination of 1D derivatives with a

Broyden’s update on successive iterations. 1D deriv-

atives were carried out for the first four iterations, then

one full 2D solution and finally Broyden’s update

with the 5% criterion.

The timing of the examples in Fig. 6 is summar-

ized in Table 1. The total CPU time is given in

column 1, with the number of full 2D iterations in

column 2. All inversions are tested on a 2.8-GHz

Pentium4 processor.

The primary time consumer in this case is clearly

the 2D iterations. For larger problems, the time taken

to do the matrix calculations can be significant as

well, although it can be minimized taking advantage

of fairly sparse matrices.

From this simple synthetic example, we conclude

that Broyden’s update by itself is not applicable for

parameterized problems. If combined with full 2D

updates of the Jacobian matrix convergence is assured.

Using 1D derivatives works quite well with this simple

geometry and combining them with a full 2D solution

using Broyden’s update speeds up the computation

time without losing 2D information. However, for

more complex structures, the 1D derivatives as stand-

alone is insufficient and we will not show these results

in the following examples. Results from the full 1D

solution will not be shown either.

Table 1

Summary of computation times and number of full 2D iterations for

the inversions presented in Fig. 6

Method Computation

time (s)

Number of

iterations

Number of full

2D iterations

(c) Full 1D 5 6 0

(d) Full 2D 8779 11 11

(e) Broyden 1627 13 2

(f) Broyden 5% 4397 18 5

(g) 1D derivatives 284 6 0

(h) 1D derivatives

and Broyden 5%

2415 9 3
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Fig. 7. Von-Karman synthetic model. Panel (a) is the true model, panel (b) is the pseudo-section, panel (c) is the full 2D solution, and panel (d)

uses Broyden’s update formula with a 5% recalculation criteria. Panel (e) combines 1D derivatives with a 5% Broyden’s update. Panel (f) shows

the result from the Res2dinv program for comparison and, finally, the data residuals versus iteration number are displayed in (g). Filled markers

(for Broyden 5% and 1D derivatives+Broyden 5%) indicate full 2D solution.
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4.2. Von-Karman model, CVES, continuous gradient

array

The three-layered model (Fig. 7a) is made from

a stationary stochastic process. The degree of

spatial correlation is parameterized in terms of the

fractal dimension of a self-affine process, which is

characterized by the von Karman covariance

functions (Møller et al., 2001; Serban and Jacob-

sen, 2001). The synthetic model is made in a

bsedimentaryQ way, i.e., first layer (bottom layer) is

deposited as a homogeneous halfspace; first layer is

eroded; second layer is deposited (draped) on top

of the eroded surface of the first layer; erosion of

first and second layer unit; third layer (top layer)

deposited on top of eroded surface. Average

resistivities are 300 V m (top layer), 30 V m

(middle layer) and 100 V m. The standard

deviation on the layer resistivities is 0.3 times the

logarithm to the average values.

The data are generated using the CVES system in a

continuous gradient array configuration. The number

of data is approximately twice the number of data

collected with traditional Wenner arrays, and it has

proven to be superior in resolving non-horizontal

earth structures (Dahlin and Zhou, 2002). The 3555

data points are collected for a profile 1 km long with a

minimum electrode distance of 5 m. The model has

215 surface node points each described by 3 layers,

totally 1075 model parameters.

More complex models would have needed four

layers to produce a satisfying model, but in this case

three layers are sufficient.

Both the full 2D (Fig. 7c), the 2D and Broyden 5%

(Fig. 7d) and the combination of 1D, 2D and Broyden

5% (Fig. 7e) identifies the major units and structures

in the true model, but differs in the details. For some

parts of the model, more layers are present than is

needed to describe the true model (e.g., around

coordinate 200–300 m). This causes soft transitions

in both resistivities and layer boundaries. If any

information on the prior geological appearance of

the measuring site is present, these transitions can be

controlled by the settings of the lateral constraints.

Thus, if the lateral constraints on depths are tighter

than the constraints on resistivities, transitions will

mostly take place as changes in resistivity with

constant layer boundaries and vice versa. In these

examples, we have tried to maintain average settings

allowing both changes in resistivity and layer boun-

daries. The result from Res2dinv (Fig. 7f) (Loke and

Barker, 1996) is rather similar to the layered results

although the lower boundary is not as accurately

resolved.

The residual curves (Fig. 7g) follow very identical

paths, but the Broyden 5% is somewhat slower to

converge, and thus needs more iterations. All models

fit the data to the same degree.

The timings of the models in Fig. 7 are summar-

ized in Table 2. This example is rather large in terms

of data as well as model parameters explaining the

rather large computation times. Also it is worth

noticing that more iterations are needed for conver-

gence compared to the previous simple dip model.

We timed this data set with the Res2dinv as well.

Setting recalculation of the Jacobian for the first two

iterations, this data set was inverted in 12,532 s doing

eight iterations. This is comparable to the 12,381 s we

used in the optimized solution. Christiansen and

Auken (2003) showed that for a variety of synthetic

examples the 2D-LCI performed equally well as

Res2dinv comparing the inverted models point-to-

point.

5. Field examples

5.1. PACES, groundwater survey, Denmark

The PACES system has been used widely in

Denmark for hydrogeological mapping (Sørensen et

al., 2004). The line presented here is a small part of

a 29 km2 campaign with a total of 113 km of

PACES profile. The profile is 1 km long with one

sounding containing 8 data points every 5 m. The

Table 2

Summary of computation times and number of full 2D iterations for

the inversions presented in Fig. 7

Method Computation

time (s)

Number of

iterations

Number of full

2D Iterations

(c) Full 2D 32,339 17 17

(d) Broyden 5% 20,158 23 11

(e) 1D derivatives

and Broyden 5%

12,381 16 7

(f) Res2dinv 12,532 8 2
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model is described at 201 nodes, totally 1005 model

parameters (3 layers). The data noise is assumed to

be 5%.

The resulting models (Fig. 8b,c,d) have a high

resistive layer over a more conductive layer with a

more resistive layer at the bottom. The model

responses of the Broyden 5% (Fig. 8c) and Broyden

5% combined with 1D derivatives (Fig. 8d) are very

similar and they are quite similar to the full 2D result

(Fig. 8b) as well.

The accumulated thickness of clay layers is the

primary target of most PACES surveys because they

form protective covers over potential groundwater

reservoirs. Identifying bwindowsQ in the clay layer is

also very important. In the example above, the clay

layer is the middle low-resistive layer found for the

entire profile except the very last part after profile

coordinate 950 m.

The timing of the PACES field examples is

summarized in Table 3. In this case, the 1D

Fig. 8. PACES field example. Panel (a) is the data pseudo section, panel (b) is the full 2D solution, and panel (c) uses Broyden’s update formula

with a 5% recalculation criteria. Panel (d) combines 1D derivatives with a 5% Broyden’s update. Finally, the data residuals versus iteration

number are plotted in (e). Filled markers (for Broyden 5% and 1D derivatives+Broyden 5%) indicate full 2D solution.

A.V. Christiansen, E. Auken / Journal of Applied Geophysics 56 (2004) 247–261258



derivatives+Broyden 5% reduces the computation

time by approximately a factor of 3.

5.2. CVES, road construction, Sweden

The next field example is a CVES data set from

Sweden. The profile is approximately 300 m. The

resistivity survey was carried out as part of the

geotechnical investigations for road construction in

connection with a filled basin structure in bedrock.

The data set consists of 536 data points measured with

a CVES system using Wenner configurations with a-

distances from 2 to 48 m. The data noise is assumed to

be 5%. The data set has previously been presented by

Dahlin (1996) and in Auken and Christiansen (2004).

The model has 71 horizontal nodes each with 4 layers,

totally 497 model parameters.

The model results from the different inversions are

practically the same. Minor differences are obtained

in the outer lower parts of the profile where practi-

cally no information is present, as depicted by the

pseudo section (Fig. 9a). All models correlated well

with the information from the drillings, which

identifies three distinct units in the small basin.

These units are very hard to distinguish using

traditional smooth minimum structure inversion

(Dahlin, 1996). Between coordinate 20 and 100,

Fig. 9. CVES field example. Panel (a) is the data pseudo section, panel (b) is the full 2D solution, and panel (c) uses Broyden’s update formula

with a 5% recalculation criteria. Panel (d) combines 1D derivatives with a 5% Broyden’s update. Finally, the data residuals versus iteration

number are plotted in (e). Filled markers (for Broyden 5% and 1D derivatives+Broyden 5%) indicate full 2D solution. Lithological logs from

drillings are located at every 20 m from coordinate 20 to 200 m. The colors of the drill holes indicate from the bottom: rock (dark gray), till

(light gray) and clay (white).

Table 3

Summary of computation times and number of full 2D iterations for

the inversions presented in Fig. 8

Method Computation

time (s)

Number of

iterations

Number of full

2D Iterations

(b) Full 2D 14,089 9 9

(c) Broyden 5% 8301 14 5

(d) 1D derivatives

and Broyden 5%

4760 11 3
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there is less agreement between drill information and

models, probably due to 3D effects associated with

the basin edge.

The timing in Table 4 shows that the combination

of 1D derivatives with Broyden’s update brings the

effective number of full 2D solutions down to only

three which is very acceptable compared to the 10

needed if no approximations are used.

6. Discussion

In all the examples given here, it makes good sense

to use either of the approximations suggested, but for

all cases the combination of 1D derivatives with a

Broyden’s update had the shortest computation time

and thus recommends itself. However, models with

strong 2D features would most likely be difficult to

optimize using the 1D derivatives solution in which

cases either the full 2D or the 2D with Broyden 5%

should be used.

Extremely large data sets can be practically

impossible to invert even with the approximate

solutions suggested here. Normally, a full 1D solution

would be the alternate choice, but instead we suggest

to use 1D derivatives throughout producing an

intermediate result between the 1D and the 2D

solutions.

Another way to optimize the 2D-LCI is to shortcut

the first couple of iterations by producing a suitable

starting model. This can be done with the multi-

channel deconvolution as suggested by Møller et al.

(2001). Having produced a smooth deconvolved 2D

model we only need to find the best fitting layered

models along the profile and use those as starting

models.

Finally, one could implement a dual-grid method

because the size of the grid used in the finite element

or finite difference calculations affects computation

times dramatically. Thus, applying a fine grid for

forward calculations and a coarser grid for calculation

of derivatives could speed up computations (Torres-

Verdı́n et al., 2000).

7. Conclusion

The 2D-LCI is a method utilizing a layered

model description for 2D resistivity inversion. The

models and data are grouped into pairs of sound-

ings and models along the profile. This enables

mixtures of 2D and 1D inversions. The parameters

in the 2D-LCI are regularized using lateral con-

straints on layer resistivities, thicknesses and/or

depths, producing laterally smooth models with

discrete layers.

We have presented the use of 1D derivatives and

Broyden’s update with a 2D layered inversion of

profile resistivity data. Broyden’s update as stand-

alone is not usable with this kind of problem. To

ensure convergence the Jacobian matrix needs to be

reset using a full 2D solution every once in a while.

We have used a 5% relative change in residual

between the last two iterations as a criteria to update

the Jacobian. Some of the speed gained using

Broyden’s update is lost, but it is still approximately

twice as fast as the full 2D solution.

Calculation of the Jacobian matrix using a 1D

mapping instead of a 2D forward mapping practically

eliminates the Jacobian calculation as a time factor.

However, the Jacobian becomes a block-diagonal

containing no 2D information and it is only

applicable for relatively smooth 2D earth structures.

Used as a starter for a 2D Broyden’s update

inversion scheme it proved very useful because very

little 2D information is present in the first few

iterations.

The inversions with 1D derivatives are very fast

because only one full 2D forward calculation is

needed for every iteration and they can be used as

stand-alone for extremely large data sets where 2D

solutions are not applicable. Whenever the 2D earth

structures are not too strong we suggest using the

inversion scheme combining 1D derivatives with a

full 2D solution and Broyden’s update. The compu-

tation time for this inversion scheme were reduced by

Table 4

Summary of computation times and number of full 2D iterations for

the inversions presented in Fig. 9

Method Computation

time (s)

Number of

iterations

Number of full

2D Iterations

(b) Full 2D 9891 10 10

(c) Broyden 5% 5074 13 5

(d) 1D derivatives

and Broyden 5%

3291 13 3
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approximately a factor 3 compared to the full 2D

solution.
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