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S U M M A R Y
The viscous flow in the outer core induced by inner core rotation relative to the mantle is com-
puted under the geostrophic approximation for a simple Earth model having a homogeneous,
incompressible and viscous outer core. The mantle, the inner core and their interfaces with
the outer core are taken to be axially symmetric ellipsoids and the mantle is considered to
be in uniform rotation about its symmetry axis. The inner core rotation relative to the mantle
involves, in general, both a super-rotation and an inner core wobble (ICW). In the former, the
component of the inner core angular velocity parallel to the mantle symmetry axis is higher
than the angular velocity of rotation of the mantle itself; in the ICW, the symmetry axis of the
inner core is inclined to that of the mantle and rotates around the latter. In both cases, the outer
core flow outside the cylinder circumscribing the inner core and having its axis parallel to the
mantle rotation axis is equivalent to a rigid rotation with the same angular velocity as that
of the mantle. In the bulk of the region within the cylinder, the flow relative to the mantle is
again a rotation around the mantle rotation axis, but with the angular rate varying continuously
with distance from the rotation axis: from the rate of super-rotation itself at the surface of the
cylinder, down to half that rate on the mantle rotation axis. The flows in the Ekman boundary
layers at the inner core boundary (ICB) and at the core–mantle boundary (CMB) are also
determined. The viscous torque exerted on the inner core is derived from the velocity field
in the boundary layer, and its damping effects on the inner core super-rotation and the ICW
are investigated. As various estimates found in the literature for the outer core viscosity differ
by many orders of magnitude, numerical values of the Ekman depth and the damping time of
inner core rotation are computed here for a few sample values.
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1 I N T RO D U C T I O N

The theory of Greenspan (1969) is applied to compute the viscous flow of the outer core caused by possible rotation of the inner core relative
to the mantle. Two cases of inner core rotation on which the theory may be applicable, the inner core super-rotation and the the inner core
wobble (ICW), are studied. The viscous reaction of the outer core flow on the inner core rotation is also investigated.

The problems studied in this paper are different from the coupling problem of precession–nutation theory in the magnitudes of the periods
involved. In the coupling problem of precession–nutation theory, the periods in Earth fixed frame being nearly diurnal, the flow in the bulk
of the outer core is customarily assumed to be a rotation with an angular velocity slightly different from that of the mantle (Mathews et al.
1991a,b; Buffett et al. 2002; Mathews et al. 2002). However, in the problems studied in this paper, the periods in the Earth fixed frame being
much longer than a day, the flow in the bulk of the outer core, which represents the balance between the Coriolis force and the gradient of the
disturbing pressure, is practically governed by the boundary layer—bulk interaction (Greenspan 1969).

Evidence of super-rotation of 1◦ yr−1 has been claimed on the basis of results from the inversion of seismic wave data (Song & Richards
1996). Poupinet et al. (2000) and Souriau & Poupinet (2000) have argued that the presently available seismic data do not support it, but
can neither exclude it, their estimates for the magnitude of the super-rotation being smaller than the uncertainties in the estimates. In brief,
the existence and amplitude of the inner core super-rotation is quite controversial (Poupitet & Souriau 2001; Song 2001). Buffett (1996a,b)
argued that if the inner core is rigid, it would be phase locked to the mantle by the gravitational torque arising from the density anomalies
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Impact of inner core rotation on outer core flow 373

in the inner core and in the mantle, so that no super-rotation would be possible. Buffett (1997) concluded, however, that super-rotation can
exist if the inner core is viscous and he estimated the viscosity of the inner core assuming the super-rotation rate given by Song & Richards
(1996). Although the inner core super-rotation is present in some geodynamo models, more recent investigation shows that the gravitational
coupling between the inner core and the mantle induces almost locking of the inner core with respect to the mantle (Buffett & Glatzmaier
2000).

The ICW is a rotational normal mode emerged from theoretical developments in the theory of nutations of the Earth. It is a mode in
which the figure axis of the inner core is tilted and executes a regular precession relative to the mantle with a period of 6.6 yr. It is the result
of the action of gravitation and pressure in the inner core—outer core—mantle system. Mathews et al. (1991a,b), Dehant et al. (1993) and
Mathews et al. (2002) investigated the ICW for an elastic inner core by using the linearized equations for the coupled rotational motions of
the inner core, outer core and mantle. Xu & Szeto (1998) studied the ICW by numerically integrating the equations of rotation in terms of
the Eulerien angles. Greff-Lefftz et al. (2000) investigated the influence of inner core viscosity on the ICW. Guo & Ning (2002) studied the
influence of inner core obliquity (i.e. the inclination of the symmetry axis of the inner core to the axis of the mantle, which may be understood
as the amplitude of the ICW) and that of super-rotation, on the ICW itself, for a simple Earth model in which both the inner core and mantle
are assumed to be rigid and the mantle is assumed to be rotating uniformly in the space. Dumberry & Bloxham (2002) studied another wobble
of the inner core arising from the electromagnetic coupling at the inner core boundary (ICB). In this paper, the ICW with the influence of
inner core obliquity and super-rotation is considered, as that in Guo & Ning (2002).

Busse (1970) studied the flow in a homogeneous, incompressible and inviscid outer core caused by the oscillatory rotation of the mantle
and the inner core, and computed the inertial torque acting on the inner core as a result of outer core flow. This work was followed by Kakuta
et al. (1975) and Smylie et al. (1984). In this paper, we emphasize the effect of viscosity. The influence of inner core rotation and outer core
flow on mantle rotation is neglected, because it is shown to be small by Mathews et al. (1991a,b) using the angular momentum equations of
the whole Earth, the outer core and the inner core. So the mantle is assumed to be rotating uniformly in the space.

The theory of Greenspan (1969) assumes the outer core to be homogeneous and incompressible. The real outer core is more com-
plex. Its density varies from 9.9 to 12.2 g cm−3 from the core–mantle boundary (CMB) to the ICB (Dziewonski & Anderson 1981). The
outer core viscosity is one of the most poorly determined of the geophysical parameters: estimates obtained by different methods range
over more than ten orders of magnitude, the lower values being obtained from laboratory studies of liquid metals and the higher ones
from geophysical observations. Lumb & Aldridge (1991) tried to reconcile the differences by introducing the effective or eddy viscosity,
commonly considered in atmospheric dynamics, which may have different values for different physical phenomena. It is not unlikely that
viscosity may vary to some extent in the outer core (Rutter et al. 2002), though no commonly accepted estimate is available at present.
The outer core flow is also affected by the electromagnetic field. The consideration of any of these complexities may make the problem
unsolvable analytically. So, as a first attempt, a simplified outer core is considered and the electromagnetic effect is not included. It is expected
that the analytical solution for the simplified model would be of help in testing numerical codes for more realistic models. Although the
gravitational effect was not included in the original formulation of Greenspan (1969), it is included in this paper by a suitable choice of
variables.

In Section 2, we first build an outer core flow model assuming a more general inner core rotation composed of a regular precession of the
inner core figure axis relative to the mantle and a rotation of the inner core around its own figure axis. The angular rates, relative to the mantle,
of both these components of the inner core rotation are assumed to be small compared with the rotation rate of the mantle itself. We apply the
results from this model to the inner core super-rotation and ICW. We first compute, in Section 3, the viscous torque exerted on the inner core
by the boundary layer flow obtained in Section 2, and then investigate the viscous drag effect on the ICW and the inner core super-rotation.
Finally, in Section 4, we discuss the results obtained in the preceding two sections.

In our formulation, both the ICB and the CMB are assumed to be ellipsoids of revolution. Numerical computation is performed using
the preliminary reference Earth model (PREM) (Dziewonski & Anderson 1981), with several alternative values of viscosity, estimated from
laboratory studies of liquid metals (Gans 1972) or from geophysical measurements (Lumb & Aldridge 1991; Smylie & McMillan 2000;
Molodensky & Groten 2001).

2 T H E F L O W I N T H E O U T E R C O R E

2.1 Equations of motion

We denote the obliquity of the inner core by ε and the common centre of the inner core and the mantle by O. We introduce three reference
frames: Ox0y0z0, fixed to the mantle, having z0 on the figure axis of the mantle; Oxyz, such that x is on the intersection of the equators of the
inner core and the mantle and z is on the figure axis of the mantle; and Ox′y′z′, with x′ is on the intersection line of the equators of the inner
core and the mantle, and z′ on the figure axis of the inner core. See Fig. 1. The unit vectors along the axes are denoted by: ex0 , ey0 , ez0 ; ex, ey,
ez; and ex′ , ey′ , ez′ .

We use �0 ez to denote the angular velocity of the mantle relative to inertial space, i.e. the angular velocity of the Earth. As ε is assumed
to be constant at the present stage, we can express the angular velocity of the inner core relative to the mantle as ωpez + ω0ez′ , the first term
being the angular velocity of the frame Ox′y′z′ relative to the mantle and the second term being the angular velocity of the inner core relative
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374 J. Y. Guo et al.

Figure 1. Coordinate systems.

to the frame Ox′y′z′. (It is evident that there is no relative rotation between Oxyz and Ox′y′z′.) It is clear that ωp is the angular rate of precession
of the figure axis of the inner core relative to the mantle and ω0 is the angular rate of the inner core rotation around its own figure axis
relative to the frame Oxyz or Ox′y′z′. Both ωp and ω0 are assumed constant in the theory. We can see that � = �0 + ωp is the angular rate of
precession of the figure axis of the inner core relative to inertial space and that the angular velocity of the frame Oxyz relative to inertial space is
� ez.

It is simplest to study the outer core flow in the frame Oxyz, because both the inner core and mantle axes do not move with respect to
this frame and thus both the inner core and mantle rotation with respect to this frame are around their own axes. As consequences of this fact,
the equations of both the ICB and the CMB, which are assumed to be ellipsoids of revolution, are independent of time in this frame, and the
velocity of any point at the inner core surface with respect to this frame is tangential to the ICB and the velocity of any point at the mantle
bottom with respect to this frame is tangential to the CMB.

The linearized equations of motion of an incompressible fluid in a rotating frame are well known:

ρ

(
∂v

∂t
+ 2Ω × v

)
= −∇ p − ρ∇φ + η�v, (1)

∇ · v = 0, (2)

where Ω = � ez is the angular velocity of the frame Oxyz relative to inertial space, ρ is the fluid density, v is the velocity field describing the
flow in the outer core in the frame Oxyz, p is the pressure, φ is the gravity potential and η is the dynamic viscosity. The gravity potential φ is the
sum of the gravitational potential φg and centrifugal potential φ c: φ = φ g + φ c. The outer core is assumed homogeneous and incompressible
here, i.e. ρ and η are constant. So we can separate p into two parts as in Guo & Ning (2002):

p = ps + pv, (3)

ps being independent of v and defined by

∇ ps = −ρ∇φ. (4)

Eq. (1) can then be simplified to an equation for v that involves only the part pv of the pressure:

ρ

(
∂v

∂t
+ 2Ω × v

)
= −∇ pv + η�v. (5)

The equations governing the outer core flow are now eqs (2) and (5). If the assumptions of homogeneity and incompressibility are removed,
our development from eqs (1) to (5) implies that the variations of ρ and φ apart from hydrostatic equilibrium state are neglected. Xu & Szeto
(1998) discussed the general case where variation in ρ and hence in φ are considered.

As the outer core is considered to be viscous, the boundary values of v at the ICB and CMB are just equal to the velocities of the inner
core and mantle at the respective boundaries. They are obtained from the fact that the inner core and the mantle are rotating relative to the
frame Oxyz with the angular velocities ω0 ez′ and − ω p ez :

vICB = ω0ez′ × r0, vCMB = −ωpez × r0, (6)

where r0 is the position vector of some point on the CMB or ICB (for simplicity, a common notation r0 is used for rICB and rCMB). We see
that the velocities of points at the boundaries are tangential to the boundaries themselves, as stated above.

2.2 Greenspan’s theory on contained flow

Greenspan (1969) has elegantly solved the problem of steady fluid flow in a rotating container caused by the tangential velocity of the boundary.
We give here a brief summary of his theory. Notations are chosen for our convenience. The equations of motion are eqs (2) and (5), with the
inertial term ∂v/∂t in the latter dropped because the theory deals only with steady flow. (It is presumed that the boundary velocity is kept
steady despite the viscous drag.) As both ωp and ω0 are assumed constant in our treatment, the steady flow criterion is satisfied.
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It is convenient to scale the variables in the following manner:

r → Lr, t → �−1t, v → Uv,Ω → �ez, pv → �U Lρ P. (7)

The equations of motion then reduce to

2ez × v = −∇ P + E�v, ∇ · v = 0, (8)

where E is the Ekman number defined by

E = η/(�L2ρ). (9)

We outline the solution of eq. (8) in following paragraphs, following section 2.17 of Greenspan (1969), presenting only the formulae
needed for explaining the reasoning. The details may be found in Greenspan (1969) and Guo (1989).

Any line parallel to ez intersects the boundary at two points, one on the upper boundary 	T and the other on the lower boundary 	B.
The two boundaries are characterized as follows:

z = f (x, y) on 	T; z = −g(x, y) on 	B. (10)

For expressing the results, we need the normal vectors nT to 	T and nB to 	B (pointing outwards from the fluid core) at any given (x, y):

nT = ez − ∇ f = [1 + (∇ f )2]1/2n̂T, nB = −ez − ∇g = [1 + (∇g)2]1/2n̂B, (11)

where n̂T and n̂B are unit vectors.
The solution to eq. (8) is expressed in the form

v = v0 + ṽ0 + E1/2v1 + E1/2ṽ1, P = P0 + P̃0 + E1/2 P1 + E1/2 P̃1, (12)

where the variables without a tilde represent the flow in the bulk and those with a tilde are boundary layer corrections, which are assumed to
differ appreciably from zero only in the boundary layer.

As is customary in boundary layer analysis, we consider the derivatives of the tilde variables in directions tangential to the boundary to
be negligibly small compared with the derivative in the normal direction and retain only the latter in the equations of motion. It is convenient
to express the normal part of the gradient in terms of a variable ζ , which represents the scaled normal distance from the boundary, scaled also
by the dimensionless Ekman depth E1/2:

ζ = E−1/2n̂ · (r0 − r), (13)

where r0 is a point on the boundary, r is within the boundary layer and (r − r0) is in the same direction as n̂. Then we can write

∇ = −n̂E−1/2 ∂

∂ζ
(14)

when applied to quantities with a tilde, which represent boundary layer flow. This expression implies that the derivative of the variables with
a tilde, in the direction normal to the boundary, is expected to be of the order of E−1/2. Eq. (14) is not applicable to the derivative of bulk flow
quantities (without tilde), which vary slowly over much larger length scales.

Substituting eq. (12) into the equations of motion and the boundary conditions of the problem, we decompose them into parts that are
of different orders in E1/2. We obtain thus a sequence of problems for the flow in the bulk of the core, flow in the boundary layer and their
interactions. The total flow is determined by solving this sequence of problems.

The equations involving terms of order E−1/2 are

∂

∂ζ
P̃0 = 0,

∂

∂ζ
(n̂ · ṽ0) = 0, (15)

with the boundary condition n̂ · ṽ0 = 0. Because both P̃0 and ṽ0 should fall off to zero outside the boundary layer, it is evident that the solutions
are

P̃0 = 0, n̂ · ṽ0 = 0. (16)

The equations given by terms of order E0 in the bulk are

2ez × v0 = −∇ P0, ∇ · v0 = 0, (17)

with a boundary condition n̂ · v0 = 0. The solution for P0 is, as shown by Greenspan (1969),

P0 = P0(h), (18)

where h = f + g is the height of the column of fluid at (x, y) from the lower surface, z = −g, to the upper, z = f , and the solution for v0 is

v0 = −1

2

[
∂

∂h
P0(h)

]
nT × nB. (19)

These solutions imply that the internal pressure, for given (x, y), is a function only of the height of the column at that point and is independent
of z; the internal flow is columnar, the entire vertical column of fluid from the lower surface to the upper one moving as a unit, consistent with
the Taylor–Proudman theorem.
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Within the boundary layer, the equations of order E0 are

2ez × ṽ0 − n̂
∂

∂ζ
P̃1 = ∂2

∂ζ 2
ṽ0, − ∂

∂ζ
(n̂ · ṽ1) + ∇ × (n̂ × ṽ0) = 0, (20)

with the boundary condition v0 + ṽ0 = V, where V is the velocity of the solid side of the boundary scaled according to eq. (7). The solution
given by Greenspan (1969) for ṽ0 is

n̂ × ṽ0 + i ṽ0 = −[n̂ × (v0 − V) + i(v0 − V)]ζ=0e−(2iez ·n̂)1/2ζ , (21)

where the root is taken with the positive sign for the real part:

(2iez · n̂)1/2 =
(

1 + i
ez · n̂

|ez · n̂|
)

|ez · n̂|1/2. (22)

Thus, we obtain (Guo 1989)

ṽ0 = e−|ez ·n̂|1/2ζ

[
−(v0 − V)ζ=0 cos(|ez · n̂|1/2ζ ) + ez · n̂

|ez · n̂| n̂ × (v0 − V)ζ=0 sin(|ez · n̂|1/2ζ )

]
. (23)

We see that the thickness of the Ekman layer is proportional to |ez · n̂|−1/2. This property will be discussed further at a later stage when applying
the theory to outer core flow. Eq. (23) is the solution of the first equation in eq. (20). The second one may be solved to obtain (n̂ · ṽ1) by using
eq. (21). Its value at ζ = 0, which is all we need here, is found to be

(n̂ · ṽ1)ζ=0 = 1

2
n̂ · ∇ ×

{[
n̂ × (v0 − V) + ez · n̂

|ez · n̂| (v0 − V)

]
|ez · n̂|−1/2

}
ζ=0

. (24)

The equations for the terms of order E1/2, in the bulk of the fluid, are

2ez × v1 = −∇ P1, ∇ · v1 = 0, (25)

with the boundary condition n̂ · (v1 + ṽ1) = 0. The presence of both bulk and boundary layer variables (with and without tilde, respectively)
in the boundary condition produces, in effect, a bulk—boundary layer interaction. Greenspan (1969) used the eqs (19), (24) and (25) to obtain
the following explicit expression for ∂ P 0(h)/∂h:

−1

2

[
∂

∂h
P0(h)

]
= I

J
(26)

with

I =
∫

C
|nT × nB|(|ez · n̂T|−1/2 + |ez · n̂B|−1/2

)
dC, (27)

J =
∫

C

nT × nB

|nT × nB| · [
(VT + n̂T × VT)|ez · n̂T|−1/2 + (VB − n̂B × VB)|ez · n̂B|−1/2

]
dC, (28)

where VT and VB are the values of V at the top and bottom boundaries, respectively, and C is the isoheight contour of the container, i.e. the
contour along which the height h = f + g from the lower boundary to the upper boundary is constant.

The velocity v0 in the bulk is given by eq. (19) together with eqs (26), (27), and (28). The boundary layer correction ṽ0 is given by
eq. (23).

The bulk flow v1 of order E1/2 is an example of the consequence of the Ekman pumping: the flow ṽ0 of order E0 in the Ekman layer
induces the flow ṽ1 of order E1/2 in the layer, which in turn drives the flow v1 of the same order in the bulk of the fluid. One sees readily
that v1 is determined by eq. (25) together with the boundary condition n̂ · (v1 + ṽ1) = 0, which links it to ṽ1. Furthermore, n̂ · ṽ1 is itself
determined by the difference v0 − V at the boundary through eq. (24). The Ekman pumping is a process of boundary layer—bulk interaction.
The resulting bulk flow v1 cannot be a rigid rotation as the angular velocities of the upper and lower boundaries (for example, the CMB and
ICB discussed in detail in the next subsection) are different.

2.3 Application to outer core flow

In the theory of Greenspan (1969), any line parallel to the rotation axis should intersect the container at just two points, one at the upper
boundary 	T and one at the lower boundary 	B. Nevertheless, we can use the theory to determine the core flow even when the inner core
is present, by dividing the outer core into three regions by the inner core surface and the cylindrical surface parallel to ez touching the inner
core, as shown in Fig. 2, and then computing the velocity fields in these regions separately. The nature of the flow in the bulk of each region
is such that any column of the fluid parallel to the rotation axis moves only along the isoheight contour (within that region) on which it is
located, as may be seen from the formulae for v0.

The following parameters will appear in our expressions for the velocity fields: a and c, the semi-major and semi-minor axes, respectively,
of the inner core; f = (a − c)/a, the ellipticity (we use geometrical flattening as measure of ellipticity) of the surface of the ICB; ac and
cc, the semi-major and semi-minor axes, respectively, of the CMB; and fc = (ac − cc)/ac, the flattening of the CMB. We use a, �−1 and
aω̄ = max(aω0, aωp) to scale length, time and velocity, respectively. The expression of the Ekman number is then

E = η/(�a2ρ) = ν/(�a2), (29)
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y

z

(1) (1)

(2)

(3)

Figure 2. Three regions of the outer core.

where ν is the kinematic viscosity. In the computation of the internal flow v0, the terms of the first order in the ellipticities are taken into
account in nT × nT, but they are neglected when computing I and J , as the integrations in the expressions for I and J are quite complicated.
Thus, the direction of the velocity is kept accurate to the first order in the ellipticities, but no ellipticity term is retained in the magnitude of
the velocity. Ellipticity terms are neglected also in computing the viscosity correction ṽ0 in the Ekman boundary layers. We are able, in this
manner, to take into account the most relevant aspects of the physics of the process while obtaining analytical expressions for the quantities
of interest.

We write out now the results obtained, in terms of the real (unscaled) physical variables. Further details may be found in Appendix A. In
region (1), i.e. outside the cylindrical surface, the fluid rotates rigidly with the mantle. Within the region enclosed by the cylindrical surface,
the velocity is

v0 = Lc L
[
ωp(ac L)1/2 − ω0 cos ε(aLc)1/2

]
(Lc − L) [(ac L)1/2 + (aLc)1/2]

[{
− y

Lc
(1 − fc) + y

L ′

[
1 + 2 f

(
1 − 3

2
cos2 ε

)]
+ 2 f (signz) sin ε cos ε

}
ex

+
[

x

Lc
(1 − fc) − x

L ′ (1 − f cos2 ε)

]
ey +

[
−2 f

x

Lc
sin ε cos ε − 2 f

xy

Lc L ′ (signz) sin2 ε

]
ez

]
, (30)

where

Lc = [
a2

c − (x2 + y2)
]1/2

, (31)

L = [a2 − (x2 + y2)]1/2, (32)

L ′ = {a2 − [x2 + y2(1 + 2 f sin2 ε)]}1/2. (33)

When all elliptic terms are neglected, eq. (30) simplifies to

v0 = −ωp(ac L)1/2 − ω0 cos ε(aLc)1/2

(ac L)1/2 + (aLc)1/2
(−yex + xey). (34)

As for the corrections as a result of viscosity in the boundary layer, we write them out in terms of spherical polar coordinates associated with
the reference frame Oxyz. At the ICB, the boundary layer correction is

ṽ0 = ae−r−a/α

{[
ω1 cos

(
r − a

α

)
+ (signz)ω2 sin

(
r − a

α

)]
eθ +

[
ω2 cos

(
r − a

α

)
− (signz)ω1 sin

(
r − a

α

)]
eλ

}
, (35)

where

α = a(E/| cos θ |)1/2 (36)

is the Ekman depth, which is in fact independent of a according to the definition of E in eq. (29), and

ω1 = ω0 sin ε cos λ, (37)

ω2 = (ωp + ω0 cos ε) sin θ | cos θ |1/2

| cos θ |1/2 + [
1 − (a/ac)2 sin2 θ

]1/4 − ω0 sin ε cos θ sin λ. (38)

At the CMB, the boundary layer correction is

ṽ0 = ace−r−ac/αγ

[
−(signz) sin

(
r − ac

α

)
eθ − cos

(
r − ac

α

)
eλ

]
, (39)

where

γ = (ωp + ω0 cos ε) sin θ | cos θ |1/2

| cos θ |1/2 + [
1 − (ac/a)2 sin2 θ

]1/4 . (40)
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Note that θ varies from 0 to arcsin(a/ac) in region (2) and from π − arcsin(a/ac) to π in the region (3). It is evident that the Ekman depth
a(E/|cos θ |)1/2 is not constant over the ICB or the CMB. At the poles, where the ICB (or CMB) is perpendicular to the rotation axis, it is
aE1/2; but at the equator where the boundaries becomes parallel to the rotation axis, it becomes infinitely large. This is a reflection of the fact
that the boundary layer at a surface parallel to the rotation axis is really a Stewartson layer (Stewartson 1966), which is characterized by a
thickness of order E1/4, thicker than the Eckman layer thickness of order E1/2. Hence, our expression for boundary layer flow is not applicable
in a small area near the equator.

In all the previous discussions, the velocity is expressed relative to the reference frame Oxyz. In the mantle fixed frame, ω pez × r has
to be added to the expressions given above for the velocity v in the bulk of the fluid, while the boundary layer correction remains the same.
Thus, the fluid velocity relative to the mantle in regions (2) and (3) inside the cylindrical surface mentioned becomes

vm = ωpez × r + v0. (41)

If all the ellipticity terms are neglected, it simplifies to

vm = ωm(−yex + xey), (42)

where

ωm = βδ�, (43)

β = (aLc)1/2
/[

(ac L)1/2 + (aLc)1/2
]
, (44)

δ� = ωp + ω0 cos ε. (45)

This clearly represents a rotation around the Oz-axis with the angular rate ωm. It may be noted that δ� is the projection of the inner core
angular velocity relative to the mantle along the figure axis of the mantle, which is in fact the super-rotation rate of the inner core.

2.4 Numerical results for the outer core flow

The main result concerning the outer core flow is the velocity field in the bulk, which is given by the formulae (41) to (44) in the approximation
neglecting ellipticity; they show the flow to be a rotation around the figure axis of the mantle. The angular velocity given by eq. (42) is a
function of the distance (x2 + y2)1/2 from the figure axis. It is determined by δ� and β. The function β is plotted in the Fig. 3. It varies from
0.5 to 1 as the distance from the figure axis increases from 0 to a. However, in the most part of its definition domain it remains close to 0.5.
Its overall average is 0.54.

For the pure super-rotation, the obliquity ε of the inner core is zero. Then ωp becomes irrelevant and may also be set equal to zero; and
the super-rotation rate δ� given in eq. (45) becomes ω0. If we take the rate to be δ� = 1◦ yr−1 (Song & Richards 1996), the angular rate of
the outer core flow would be continuously distributed in the interval between 0.5◦ and 1◦ yr−1, the average being 0.54◦ yr−1. Because the flow
in the bulk depends only on the super-rotation rate δ�, the flow pattern would remain the same for all combinations of ωp, ω0 and ε that lead
to the same super-rotation rate δ� (which is equal to ω p + ω0 cos ε).

When inner core super-rotation is accompanying the ICW, the period of the ICW depends also on the super-rotation rate. Here we give
the results for the particular values of super-rotation rate δ� given in Guo & Ning (2002).

(i) For the ICW in the sense of Mathews et al. (1991a,b), which is not accompanied by a super-rotation, there is no flow in the bulk of the
outer core.

(ii) If the figure axis of the inner core is assumed to be in the direction of the geomagnetic pole (Guo 1989), so that ε = 11.5◦ and ωp =
−0.05◦ yr−1, the corresponding numerical value of δ� indicates a retrograde rotation of the inner core relative to the mantle with the period
of 6.90 yr, as one sees on using the value 4.11 × 10−4 for δN/(C�2

0) in eq. (63) of the next section. In this case, the flow in the interior of the
outer core is also retrograde, the period being continuously distributed in the interval between 6.90 and 13.80 yr with an average of 12.78 yr.

(iii) Greiner-Mai & Barthelmes (2001) recovered a mean obliquity ε = 1◦ and a mean eastward drift ωp = 0.7◦ yr−1 of the inner core axis
relative to the mantle by analysing polar motion data. If we interpret this inner core rotation as the ICW, the numerical value of δ� indicates

√
x2 + y20 a

β

0.5

1

Figure 3. The function β depending on (x2 + y2)1/2.
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Impact of inner core rotation on outer core flow 379

Table 1. Ekman number and Ekman depth at the ICB.

ν (m2 s−1) Author (s) E Ekman depth (m)

1.1 × 10−6 Gans (1972) 1.0 × 10−14 1.2 × 10−1

3.0 × 10−3 Molodensky & Groten (2001) 2.8 × 10−11 6.4
2.0 × 102 Lumb & Aldridge (1991) 1.8 × 10−6 1.6 × 103

1.0 × 107 Smylie & McMillan (2000) 9.2 × 10−2 3.7 × 105

a retrograde rotation of the inner core relative to the mantle with the period of 6.73 yr, as may be seen also from eq. (63) in next section.
The flow within the outer core is also retrograde, the period being continuously distributed in the interval between 6.73 and 13.46 yr with an
average of 12.46 yr.

The boundary layer correction is confined to the interior of the thin Ekman layer, the thickness of the layer being of order E1/2 in scaled
length. We have evaluated E and the thickness aE1/2 of the Ekman layer in physical units (dropping the factor |cos θ | −1/2) using various
estimates of viscosity near the ICB. The results are listed in Table 1 (when computing E, we take � to be �0, their difference ωp being
much smaller than �). We note that the viscosity estimate of Smylie & McMillan (2000) is very high, leading to a value of approximately
0.3 for E1/2, which makes our boundary layer analysis inaccurate for this viscosity, because we neglect quantities that are smaller than of
order E1/2.

The viscous boundary layer flow is dissipative: so it causes damping of the inner core rotation. This is the subject of the next section.

2.5 Comparison with existing work

Busse (1970) studied the quasi-steady flow of a homogeneous, incompressible and inviscid outer core caused by oscillatory rotations of the
inner core and the mantle, where the period of the flow is assumed to be much longer than 1 d. The inertial term being then much smaller than
the Coriolis term, it was neglected in the momentum equation. We follow here the reformulated version of this problem from Kakuta et al.
(1975). The frame (I1, I2, I3) is assumed to be rotating uniformly in space with angular velocity �0 I3. The directions of the figure axes of
the inner core and mantle are denoted by I3 + i′r and I3 + i′m. The oscillatory rotations of the inner core and mantle are represented by the
variations of i′r and i′m with time. The solution of the outer core flow velocity for the problem is (in the notation of Kakuta et al. 1975)

u = 1

2�0
I3 × ∇� + wI3 (46)

with:

� =



4�0
zm zr

zm−zr
(I3 × r) · (

em
di′m
dt − er

di′r
dt

)
, (0 ≤ s ≤ rr );

0, (rr ≤ s ≤ rm);
(47)

w =



− 2
zm−zr

r · (
zmem

di′m
dt − zr er

di′r
dt

)
, (0 ≤ s ≤ rr );

−2emr · di′m
dt , (rr ≤ s ≤ rm);

(48)

where em and er are the ellipicities (geometrical flattenings) of the CMB and the ICB, respectively, rm is the equatorial radius of the CMB
and rr is the equatorial radius of the ICB, which is also approximately the radius of the cylinder circumscribing the inner core, with its axis
parallel to that of the mantle. s is the distance from the I3-axis and zm = (sign z)(r 2

m − s2)1/2, zr = (sign z)(r 2
r − s2)1/2.

Now we write out the inviscid flow given by eqs (46), (47) and (48) for the case of inner core rotation in our work using our notation.
In our work, we assumed the mantle to be rotating uniformly in space. So the frame (I1, I2, I3) of Kakuta et al. (1975) is equivalent to our
mantle-fixed frame, I3 being along the figure axis of the mantle. Keeping this in mind, we can write out the correspondence between the
variables of Kakuta et al. (1975) and those of this paper: rr ⇔ a, rm ⇔ ac, er ⇔ f , em ⇔ fc, I1 ⇔ ex0, I2 ⇔ ey0, I3 ⇔ ez0 (or ez), i′m ⇔ 0,
i′r ⇔ ez′ − ez . It is evident that

di′m
dt

= 0. (49)

In view of the fact that the frame Ox′y′z′ rotates with angular velocity ωp ez + ω0 ez′ with respect to the mantle, we have

di′r
dt

= d

dt
(ez′ − ez) = −ωp sin εex . (50)

Substituting eqs (49) and (50) into eqs (46), (47) and (48), we obtain the inviscid flow within the cylindrical region s < rr of the outer core:

u = −(signz)
2 f ωp sin ε

Lc − L

{[
y2

(
L

Lc
+ Lc

L
+ 1

)
− Lc L

]
ex − xy

(
L

Lc
+ Lc

L
+ 1

)
ey + (sign z)x Lez

}
. (51)

This is the velocity of the outer core with respect to the mantle for the inviscid case according to Busse (1970) expressed using our notation.
The fluid outside the cylindrical surface mentioned above rotates rigidly with the mantle. We see that the inviscid flow u is proportional to
the inner core ellipticity and so there would be no flow at all if the inner core were spherical. This is easy to understand. For inviscid flow, the
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Figure 4. Patterns of flow in the outer core in the inviscid and viscous cases.

boundary condition is that the fluid velocity normal to the boundary is equal to the velocity of the boundary normal to itself and there is no
constraint on the fluid velocity tangential to the boundary. For a spherical inner core, the surface velocity is always tangential to the surface,
in whichever manner the inner core rotates around its centre. Thus, in this case, the inner core rotation does not influence the outer core flow
at all. In fact, eq. (51) represents the outer core flow induced by the inner core surface velocity normal to the surface itself, which is caused
by rotation and deviation from sphericity of the inner core. However, the presence of viscosity changes the pattern of the flow completely, as
may be seen by a comparison of vm of eqs (41) and (30) of the viscous case with u of eq. (51). Unlike u, vm does not vanish if the flattening
f becomes zero. In fact, with fc also set equal to zero, the flow becomes a rotation about the z-axis, as given by eqs (42) to (45). The difference
between the flows in the inviscid and viscous cases is illustrated in Fig. 4. The flow patterns shown are in a plane z = constant. The first
two are for the inviscid flow given by eq. (51) obtained according to Busse (1970) at a positive and a negative z, respectively; the third is for
the viscous case (our eqs 42 to 45) for both a positive and a negative z. Notice that the inviscid flow velocity is proportional to f ωp sin ε

and the viscous flow velocity is proportional to δ�. The viscous flow v0 is a consequence of the viscous drag through boundary layer—bulk
interaction.

3 I N F L U E N C E O F T H E F L O W O N I N N E R C O R E RO TAT I O N

3.1 Influence of the viscous torque on the inner core

For studying the influence of the outer core flow given in last section on inner core rotation, we first derive an expression for the viscous torque
exerted by the outer core flow on the inner core. This torque can be readily written out (Guo & Ning 2002):

Nη = η

∫
S

r × n · [∇v + (∇v)T ] d S, (52)

where v is the velocity field in the outer core with respect to the mantle fixed frame, S is the ICB and n is the outward unit normal of S. Using
the spherical approximation to the ICB, which is sufficient for the present purposes, we have n = er and r = a er . The total fluid velocity v
in the outer core relative to the rotating mantle is v = vm + ṽ0, where ṽ0 is given in eq. (35) on neglecting ellipticity terms. Both vm and ṽ0 are

the same order of magnitude within the boundary layer. However, as ṽ0 has a factor e− r−a
α = e− E−1/2

a |cos θ |1/2(r−a), ∂ ṽ0/∂r has a factor of order
E−1/2, which is quite large. So when computing n · [δv + (δv)T ], the contribution of vm may be neglected as vm varies significantly only over
distances of the order of the dimension of the core. Ellipticity is ignored in the computation of Nη: its contribution is only of order f , which
is much smaller than the contribution of order E−1/2 from ṽ0. Thus, only ṽ0 needs to be retained when computing Nη from eq. (52) and only
the terms originating from ∂v/∂r need to be considered. Then, expressing the gradient operator and the velocity in terms of their spherical
components and retaining only the radial derivative terms, we obtain

Nη = aη

∫
S

(
∂vθ

∂r
eλ − ∂vλ

∂r
eθ

)
d S. (53)

Substituting for ṽ0 from eq. (35) into eq. (53), retaining only the terms of order E−1/2 (the other terms being much smaller) and then
expressing eθ , eλ in terms of ex, ey, ez, we obtain the Cartesian components of the viscous torque. Details of the computations are deferred to
Appendix B. Here, we write out the results:


N η
x = γ1(ω0/�0) sin ε,

N η
y = −γ2(ω0/�0) sin ε,

N η
z = −γ3(ωp + ω0 cos ε)/�0,

(54)
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Impact of inner core rotation on outer core flow 381

where


γ1 = 8
5 π�

3/2
0 a4ρν1/2 = 8

5 π�2
0a5ρE1/2,

γ2 = 40
21 π�

3/2
0 a4ρν1/2 = 40

21 π�2
0a5ρE1/2,

γ3 = 4Qπ�
3/2
0 a4ρν1/2 = 4Qπ�2

0a5ρE1/2,

(55)

with

Q =
∫ π/2

0

sin3 θ cos θ

cos1/2 θ + [
1 − (a/ac)2 sin2 θ

]1/4 dθ = 0.15, (56)

the numerical value being obtained by numerical integration. We see that γ 1, γ 2 and γ 3 have the dimensions of torque. Their numerical
values, when various estimated values as shown in in Table 1 are used for the viscosity, are listed in Table 2.

The Cartesian components of the viscous torque along ex′ , ey′ , ez′ are readily found:


N η

x ′ = γ1(ω0/�0) sin ε,

N η

y′ = −γ2(ω0/�0) sin ε cos ε + γ3[(ωp + ω0 cos ε)/�0] sin ε,

N η

z′ = −γ2(ω0/�0) sin2 ε − γ3[(ωp + ω0 cos ε)/�0] cos ε.

(57)

3.2 Influence on inner core rotation

Following the approach of Guo & Ning (2002), we use an inertial reference frame Oξηζ to express the equations governing the inner core
rotation, ζ being defined in the direction of mantle axis. (Note the different meaning of ζ here from that of the last section.) The angle between
the ξ and x axes is denoted by ψ . It is easy to see that ψ is related to �, �0 and ωp in the following way:

ψ̇ = � = �0 + ωp. (58)

According to eqs (5) and (6) of Guo & Ning (2002), the equations governing the inner core rotation in terms of ψ , ε, ω0 are


−A d ε̇

dt − [C(ω0 + ψ̇ cos ε) − Aψ̇ cos ε]ψ̇ sin ε = Nx ′ ,

−A d
dt (ψ̇ sin ε) + [C(ω0 + ψ̇ cos ε) − Aψ̇ cos ε]ε̇ = Ny′ ,

C d
dt (ω0 + ψ̇ cos ε) = Nz′ ,

(59)

where N x′ , N y′ , N z′ are the components of the total torque N acting on the inner core. It is to be noted that the coordinate system denoted by
Ox′y′z′ here is called Oxyz by Guo & Ning (2002). A and C are the principal moments of inertial of the inner core around its equatorial and
polar axes, respectively.

Guo & Ning (2002) separated N into three parts: Ns, Nv , and Nη, where Ns is the contribution of gravitation and the pressure ps (defined
in eq. 4), which is independent of the outer core flow, Nv is the contribution of the pressure pv defined in eqs (3) and (4), which is related to
the outer core flow, and Nη is the contribution of viscous friction related to the outer core flow. As Ns is predominant, Guo & Ning (2002)
neglected the effect of Nv and Nη on the ICW.

The expression for Ns is (Guo & Ning 2002)

Ns = [−�2
0(C − A) + δN

]
sin ε cos εex ′ , (60)

δN = 2

5
[(C − A) − (C0 − A0)]

[
G M

a3
(2 f + a f ′) + G M0

a3
(3 f )

]
. (61)

Here, M and a are respectively the mass and semi-major axis of the inner core. f and f ′ are respectively the inner core ellipticity and its
derivative with respect to the radius. A0, C0 and M 0 are respectively the principal moments of inertia and mass that the inner core would have
if its density were equal to the outer core density at the ICB. δN represents the part of the torque on the inner core proportional to the density
jump at the ICB. Its numerical value is 1.28 × 1023 Nm. The viscous torque Nη was computed in the last subsection. Here, we make some
comments on the pressure torque Nv related to the pressure pv caused by outer core flow (Guo & Ning 2002):

Nv = −
∮

S
r × (pvn) d S, (62)

Table 2. Viscous torque at the ICB.

ν (m2 s−1) γ 1 (Nm) γ 2 (Nm) γ 3 (Nm)

1.1 × 10−6 8.8 × 1019 1.1 × 1020 3.3 × 1019

3.0 × 10−3 4.6 × 1021 5.5 × 1021 1.7 × 1021

2.0 × 102 1.2 × 1024 1.4 × 1024 4.5 × 1023

1.0 × 107 2.7 × 1026 3.2 × 1026 1.0 × 1026
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where S is the ICB and n is the unit normal of S, pointing outward from the inner core, as before. In the theory of Greenspan (1969), pv

is denoted by P in scaled units, as in eq. (7). We base our discussion here on the scaled variable. The dominant part of P in the solution of
Greenspan (1969) is P0. We recall from eq. (18) that P0 at any point (x, y, z) is a function only of the total height h of the column of fluid from
the lower boundary z = −g to the upper boundary z = f at the given (x , y): h = f + g, P 0 = P 0(h). In the context of the outer core divided
into three regions as shown in Fig. 2, P0 is a function of the height from the ICB to the CMB in region (2) and of the height from the CMB to
the ICB in region (3). Considering the fact that both the ICB and the CMB are assumed axially symmetric, this property of P0 implies that
the value of P0 also has certain symmetries. For example, its values at two points having the same coordinates y and z but having opposite
signs for x are equal, its values at two points having the same value of x but having opposite signs for y and z are equal, and its values at two
points having opposite signs for x, y and z are equal. From these symmetries it can be inferred that the direction of the torque Nv should be
along the axis x, the same as the dominant torque Ns. Furthermore, from the same property of P 0 = P 0(h), it can be inferred that, if the inner
core is spherical, or if the obliquity ε is equal to zero, the pressure torque Nv should vanish. So the magnitude of Nv should be proportional
to e, sin ε and P0; and P0 is proportional to ω0 (or ωp), in view of eq. (17). Thus, Nv should be of much smaller magnitude than Ns, which
is proportional to e and sin ε. It is also in the same direction as Ns. Therefore, we do not expect any new feature of the inner core rotation to
emerge by taking account of Nv besides Ns.

As will be shown, the viscous torque Nη is also small compared with Ns in magnitude. However, as the direction of Nη is different from
that of Ns, its influence on inner core rotation is expected to be different from that of Ns. Thus, it is worthwhile to estimate the influence of
Nη on inner core rotation in addition to that of Ns. The only effect of the x component of Nη (the component parallel to the much larger Ns) is
to add a small correction to the angular rate of the ICW (see eq. 71 below) without affecting the ICW otherwise.

It is well established that in the absence of viscosity, ε, ωp and δ� are all constant (Mathews et al. 1991a,b; Guo & Ning 2002; Mathews
et al. 2002). The dependence of the constant angular rate ωp of the ICW on the other two quantities when Nv and Nη are neglected has been
determined by (Guo & Ning 2002):

ωp

�0
= δN

C�2
0

cos2 ε + δ�

�0
, (63)

where terms of higher orders in δN/(C�2
0), δ�/�0 and the inner core dynamic flattening

e = (C − A)/C (64)

are neglected. On introducing the definition of δ� from eq. (45) into eq.(63), we find that

ω0

�0
= − δN

C�2
0

cos ε. (65)

Now we incorporate the viscous torque given in eq. (57) into the theory of ICW. In this case, the torque on the right hand side of eq. (59)
is

Nx ′ = N s
x ′ + N η

x ′ , Ny′ = N η

y′ , Nz′ = N η

z′ . (66)

In order to see how the introduction of viscosity influences the result, we seek an approximate solution of the problem. For the inner
core, C = 5.85 × 1034, and hence C�2

0 = 3.11 × 1026 and δN/(C�2
0) ≈ 4.11 × 10−4 ≈ 0.170 e. In the following analysis, we assume that the

dimensionless quantities ωp/�0, δ�/�0, γ 1/(C�2
0), γ 2/(C�2

0) and γ 3/(C�2
0) are of the same order of magnitude as δN/(C�2

0) or smaller
and are therefore small compared with unity. Actually this assumption is not valid for the the values of the γ i shown in the last row of Table 2,
which correspond to the viscosity estimate of Smylie & McMillan (2000); γ 1/(C�2

0), γ 2/(C�2
0) and γ 3/(C�2

0) are practically the order of
unity in this case, which has to be therefore excluded from further consideration. For the viscosity values to which the first three rows of the
table pertain, the magnitude of these quantities are the same order as or several orders smaller than δN/(C�2

0) and the treatment that follows
will be applicable to these cases. Viscosity enters into the equations of motion only through these quantities, which are very small: yet they
must not be neglected when one seeks to determine the effects of viscosity on the inner core rotation. Our objective here is indeed to present
an analytical treatment that leads to a solution displaying the dissipative effects (in particular, the decay of the ICW and the super-rotation)
as a result of viscosity. In proceeding to obtain such a solution, we shall take advantage of the fact that the viscous torque given by eq. (54)
is of second order in the small quantities mentioned. Naturally, the solution needs to be carried to the second order. It is to be expected that
(ε̇/�0), (1/�0) (dωp/dt) and (1/�0) (dδ�/dt), which represent the time variation, are also of second order. This expectation will be borne
out by the solution obtained.

On substituting eqs (45), (58), (66), (57) and (64) into eq. (59), we have a system of ordinary differential equations for ωp, ε and δ�,
which will also be implicitly referred to as eq. (59) in the following development. Our task now is to solve these equations accurate to the
second order terms. First, we look for the solution for ωp accurate only to first order terms from the first equation of eq. (59). Predictably, it
is the same as eq. (63), but with the various quantities no longer time independent. Secondly, we differentiate this expression to obtain

1

�2
0

dωp

dt
= 1

�2
0

dδ�

dt
. (67)

Note that the derivative of the first term from the right hand side of eq. (63) has been dropped, because it is proportional to both sin ε

and ε̇ besides δN and is therefore bound to be of the third or higher order. Thirdly, we substitute the expressions (63) and (67) for ωp and
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(1/�2
0)(dωp/dt) into the second and third equations of eq. (59). The result is a pair of algebraic equations for ε̇/�0 and (1/�2

0)(dδ�/dt).
With the neglect of third and higher order terms, these equations may be written in the following form:


X cos ε = −Y sin ε, X sin ε = Y cos ε,

where
X = ε̇

�0
+ γ2

C�2
0

δN
C�2

0
cos ε sin ε, Y = 1

�2
0

dδ�

dt sin ε + γ3

C�2
0

δ�

�0
cos ε.

(68)

It is evident that the solution of these equations is X = Y = 0 and hence that
ε̇

�0
= − γ2

C�2
0

δN

C�2
0

sin ε cos ε,
1

�2
0

dδ�

dt
= − γ3

C�2
0

δ�

�0
. (69)

Thus, ε and δ� are not really mutually coupled: they satisfy separate differential equations of the first order (of which the first one is non-linear).
The time evolutions of the obliquity and the super-rotation are independent of each other. It is worth noting also that both the quantities in
eq. (69) are of the second order, as was conjectured earlier.

Now we integrate eq. (69) to obtain ε and δ� as functions of time t depending on their initial values ε = ε0 and δ� = δ�0 at t = 0. We
obtain

tan ε = tan ε0e−(γ2δN/C2�3
0)t , δ� = δ�0e−(γ3/C�0)t . (70)

It is of considerable interest to observe that the viscous damping of the obliquity ε (or, more precisely, of tan ε) and that of the super-rotation δ�

take place on very different timescales. The ratio of the two decay times, τ ε ≡ [(γ 2δN )/(C2�3
0)]−1 and τ δ� ≡ [(γ 3)/(C�0)]−1, is independent

of the viscosity. On evaluating the ratio using eqs (55) and (61), one finds that τ δ�/τ ε is approximately 1.4 × 10−3, i.e. the super-rotation
decays 700 times as fast as the obliquity. For the first three values of viscosity given in Table 1, the numerical values of the decay time τ ε of
tan ε are 3.1 × 106, 6.0 × 104 and 2.3 × 102 yr respectively, and those of δ�0 are 4.1 × 103, 7.8 × 101 and 3.0 × 10−1 yr respectively. Our
treatment is not expected to be valid for the last value of viscosity in the table, as stated earlier.

We observe that according to the solution (70), the super-rotation decays exponentially. The interpretation of observations is however in
terms of a more or less steady super-rotation, at least over a period of a few years. It is pertinent in this context to ask how a steady super-rotation
could be sustained despite the damping resulting from viscosity. In seeking an answer, one needs to recognize that the viscosity effect is actually
a damping of the relative motion between the fluid outer core and the solid inner core. Thus, if the outer core itself happens to be rotating
faster than the inner core, the effect of viscosity would be to speed up the inner core till its speed of rotation eventually matches that of the
outer core; and if the outer core rotation itself is faster than that of the mantle, the inner core would end up in a state of super-rotation relative
to the mantle. The outer core rotating faster than the mantle is a feature of some models of the geodynamo driven by thermocompositional
convection (Aurnou et al. 1996; Glatzmaier & Roberts 1996; Buffett & Glatzmaier 2000); speeding up of the inner core in these examples is
the result of electromagnetic coupling to the outer core, but viscous coupling could well play the same role.

Finally, we substitute the expressions obtained for ωp/�0, (1/�2
0)(dωp/dt), ε̇/�0 and (1/�2

0)(dδ�/dt) given by eqs (63), (67) and (69)
into the first of the equations of eq. (59) to obtain ωp/�0 in terms of ε and δ�/�0, accurate to second order terms:

ωp

�0
=

(
δN

C�2
0

cos2 ε + δ�

�0

)(
1 + 2e cos2 ε − δN

C�2
0

cos2 ε
)

− γ1

C�2
0

δN

C�2
0

cos2 ε. (71)

One readily obtains ω0 now by combining eqs (45) and (71):

ω0

�0
= − δN

C�2
0

cos ε

(
1 + 2e cos2 ε − δN

C�2
0

cos2 ε − γ1

C�2
0

)
− δ�

�0
cos ε

(
2e − δN

C�2
0

)
. (72)

Eqs (70), (71) and (72) constitute the complete solution of the problem.
It may be seen from the solutions (69) and (71) that our expectations regarding the orders of magnitude of the various terms are justified,

thus confirming the correctness of our solutions to the accuracy sought. Furthermore, differentiation of the leading terms in eq. (72) shows
that (ω̇0/�2

0) is of at least one order higher in the small quantities than (ε̇/�0) and (dδ�/dt)/�2
0 and hence negligible in comparison with

the latter. It may also be noted that, as mentioned earlier, γ 1 appears only in the expression for ωp/�0 and plays no role in the variation of ε

and δ� with time.
Finally, we discuss briefly the validity of our computation of the outer core flow, which ignores the damping of ε and δ� resulting from

viscous drag. If the damping of δ� and ε were taken into account, the outer core flow caused by the ICW or the super-rotation of the inner
core would no longer be steady as in our treatment and the inertial term in the momentum equation for the flow, ∂v/∂t , would no longer
vanish. Nevertheless, as long as the magnitude of this term is much smaller than that of the Coriolis term 2Ω × v, our results should still be
approximately valid. Thus, for giving an error estimate of our results for the outer core flow, we only need to compare the magnitudes of the
inertial and Coriolis terms. To make this comparison, we observe first from eqs (30)–(40) that v0 and ṽ0 depend linearly on ωp and ω0 cos ε

or, equivalently, on δ� and ω0 cos ε, in view of eq. (45):

v0 ∼ L1δ� + L2ω0 cos ε, ṽ0 ∼ L̃1δ� + L̃2ω0 cos ε, (73)

where L1, L2 and L̃1, L̃2 are factors having the dimension of length. In view of the observation made below eq. (72), the derivative of
ω0 cos ε is negligibly small compared with that of δ�. Therefore,

dv0

dt
∼ L1

dδ�

dt
=

(
− γ3

C�0

)
L1δ�,

dṽ0

dt
∼ L̃1

dδ�

dt
=

(
− γ3

C�0

)
L̃1δ�, (74)

where we have made use of the second of the equations in eq. (69).
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The order of magnitude of the Coriolis term, on the other hand, may evidently be written as

2Ω × v0 ∼ 2�0L1δ� + 2�0L2ω0 cos ε, 2Ω × ṽ0 ∼ 2�0L̃1δ� + 2�0L̃2ω0 cos ε. (75)

The numerical value of the factor 2�0 is 1.5 × 10−4 s−1. For the first three values of viscosity given in Table 1, the values of γ 3/(C�0) are
respectively 7.8 × 10−12, 4.1 × 10−10 and 1.0 × 10−7 s−1. It is evident then that the inertial term is smaller than the Coriolis term by at least
10−3. Therefore, the errors resulting from the neglect of the inertial term even while allowing the decay resulting from viscous drag is only
of this order of magnitude.

4 C O N C L U D I N G R E M A R K S

We have investigated the fluid flow in the outer core induced by two kinds of slow rotation of the inner core relative to the mantle: the ICW
and the inner core super-rotation. For using the theory of Greenspan (1969) to treat the problem analytically, the outer core is assumed to be
homogeneous and incompressible, and the effect of the electromagnetic fields within and at the boundaries of the fluid core is not included.
We have also computed the viscous torque exerted on the inner core by the induced outer core flow, and studied its influence on the ICW and
the inner core super-rotation.

The variation of density and viscosity over the outer core as well as the presence of electromagnetic fields would no doubt affect the
results obtained. The density decreases by approximately 20 per cent from the ICB to the CMB (Dziewonski & Anderson 1981). It enters
our equation of motion via the scaled pressure P and the Ekman number E. The variation in density influences not only the boundary layer
flow but also the flow in the bulk, directly as a result of the appearance of the density in P as well as indirectly through bulk—boundary
layer interaction as a result of its appearance in E. Considering the complexity of the theory of Greenspan (1969), it is difficult to quantify
the level of influence of this density variation on the outer core flow obtained. The viscosity of the outer core is very poorly determined.
Estimates found in the literature, which depend strongly on the assumptions and approaches employed, differ by over ten orders of magnitude.
There is no generally accepted picture, either, of the variation of the viscosity over the fluid core and we can not assess its level of influence.
The influence of electromagnetic fields generated by the geodynamo mechanism, which is quite complicated in itself, would be even more
difficult to assess. It is not at all obvious as to how the electromagnetic fields could be integrated into the theory of Greenspan (1969) and the
problem treated analytically, even in an approximate manner. All modern geodynamo models are based on numerical simulation; they differ
considerably from one another, but all involve complicated temporal and spatial variations of the magnetic field. It would therefore be very
difficult to draw any useful conclusions about the effect of the magnetic fields on the details of the core flow, even if some way could be found
to tackle the problem analytically.

Despite the deficiencies discussed in the last paragraphs, we believe that our results still provide a useful demonstration as to how a
slow inner core rotation may induce fluid flow in the outer core and in which manner the induced outer core flow may react on the inner
core rotation. Furthermore, the analytical solution for the simplified model should serve a useful purpose by providing a means of testing the
numerical codes for more realistic models.
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A P P E N D I X A : C O M P U TAT I O N O F O U T E R C O R E F L O W

The derivation of an expression for the velocity in the outer core using the theory of Greenspan (1969) involves very heavy algebra. In this
appendix, we shall present the major steps of the derivation for the case of region (2) as an illustration. More details may be found in Guo
(1989).

As stated in Section 2.3, we use a, �−1 and aω̄ = max(aω0, aωp) to scale length, time and velocity respectively. We shall use the same
notations for the unscaled and scaled values of the quantities, as is customarily done. In the following development, all variables stand for
their scaled dimensionless versions unless otherwise stated.

The equation for the ICB, expressed in the coordinate system Ox′y′z′ and accurate to the first order in the ellipticity, is

x ′2 + y′2 + (1 + 2 f )z′2 = 1. (A1)

The relation between coordinates in Oxyz and Ox′y′z′ is given by


x ′ = x,

y′ = y cos ε − z sin ε,

z′ = y sin ε + z cos ε;




ex ′ = ex ,

ey′ = ey cos ε − ez sin ε,

ez′ = ey sin ε + ez cos ε.

(A2)

Thus, in the coordinate system Oxyz, the equation for the ICB becomes, accurate to the first order in the ellipticity,

x2 + (1 + 2 f sin2 ε)y2 + (1 + 2 f cos2 ε)z2 + 4 f yz sin ε cos ε = 1. (A3)

The equation of the CMB is, to the first order in the ellipticity,

(x2 + y2)/a2
c + (1 + 2 fc)z2

/
a2

c = 1. (A4)

The functions f (x, y) and g(x, y), which characterize the top and bottom surfaces 	T and 	B, are, in view of eqs (A3) and (A4),
given by

f (x, y) = (1 − fc)
[
a2

c − (x2 + y2)
]1/2

, g(x, y) = 2 f y sin ε cos ε − (1 − f cos2 ε){1 − [x2 + y2(1 + 2 f sin2 ε)]}1/2. (A5)

The height from the lower boundary to the upper boundary is then

h = (1 − f )
[
a2

c − (x2 + y2)
]1/2 + 2 f y sin ε cos ε − (1 − f cos2 ε){1 − [x2 + y2(1 + 2 f sin2 ε)]}1/2. (A6)

We can compute nT, nB, n̂T, n̂B, nT × nB, I, J using the above formulae, and hence also v0 and ṽ0 using the formulae given in
Section 2.2. As mentioned in Section 2.3, for obtaining an analytical expression for these velocities, we need to neglect terms of the order of

C© 2004 RAS, GJI, 159, 372–389

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/159/1/372/1995178 by guest on 20 O

ctober 2022



386 J. Y. Guo et al.

ellipticity when computing the integrals I and J , which determine the magnitude of the velocity v0, while keeping the direction of the velocity
accurate to the first order in ellipticity by retaining terms of this order in nT × nB.

The vectors nT and nB defined in the eq. (11) are computed from the expressions given above for f (x, y) and g(x, y). The results, accurate
to the first order in the ellipticities, are:


nT = ex
(1− fc )x

[a2
c −(x2+y2)]1/2 + ey

(1− fc )y
[a2

c −(x2+y2)]1/2 + ez,

nB = −ex
x(1− f cos2 ε)

{1−[x2+y2(1+2 f sin2 ε)]}1/2 − ey

{
2 f sin ε cos ε + y[1+2 f (1− 3

2 cos2 ε)]
{1−[x2+y2(1+2 f sin2 ε)]}1/2

}
− ez .

(A7)

The expression nT × nB is also computed to the same accuracy:

nT × nB = ex

{
− y(1 − fc)

[a2
c − (x2 + y2)]1/2

+ 2 f sin ε cos ε + y
[
1 + 2 f

(
1 − 3

2 cos2 ε
)]

{1 − [x2 + y2(1 + 2 f sin2 ε)]}1/2

}

+ ey

{
− x(1 − f cos2 ε)

{1 − [x2 + y2(1 + 2 f sin2 ε)]}1/2
+ x(1 − fc)

[a2
c − (x2 + y2)]1/2

}

+ ez

{
− 2 f x sin ε cos ε[

a2
c − (x2 + y2)

]1/2 − 2 f xy sin2 ε[
a2

c − (x2 + y2)
]1/2 {1 − [x2 + y2(1 + 2 f sin2 ε)]}1/2

}
. (A8)

As mentioned earlier, all ellipticity terms are neglected when computing I and J as given by eqs (27) and (28). With this approximation,
the height h given by eq. (A6) depends only on (x2 + y2) and so the equation of isoheight contour C, in the formulae for I and J in eqs (27)
and (28), is simply

x2 + y2 = Constant. (A9)

The expressions (A7) and (A8) for n̂T and n̂B are also to be taken with the neglect of terms involving the flattenings f and fc when computing
I and J from eqs (27) and (28). We then get

n̂T = ex
x

ac
+ ey

y

ac
+ ez

(
1 − x2 + y2

a2
c

)1/2

, n̂B = −ex x − ey y − ez[1 − (x2 + y2)]1/2. (A10)

With the use of these approximations,

|ez · n̂T|−1/2 =
[

a2
c

a2
c − (x2 + y2)

]1/4

, |ez · n̂B|−1/2 =
[

1

1 − (x2 + y2)

]1/4

, (A11)

|nT × nB| = (x2 + y2)1/2

1 − (x2 + y2)
− (x2 + y2)1/2

a2
c − (x2 + y2)

(A12)

and
nT × nB

|nT × nB| = ex
y

(x2 + y2)1/2
− ey

x

(x2 + y2)1/2
. (A13)

The fluid velocities VT and VB at the upper and lower boundaries have to be equal, respectively, to the velocities VCMB and VICB on the
solid side of the respective boundaries:

VT = VCMB, VB = VICB. (A14)

The velocities on the solid side, given by eq. (6), can be expressed in terms of the scaled variables as

VCMB = ex (ωp/ω̄)y − ey(ωp/ω̄)x, VICB = −ex (ω0/ω̄)(y cos ε − z sin ε) + ey(ω0/ω̄)x cos ε − ez(ω0/ω̄)x sin ε. (A15)

In VICB, z is to be replaced, with the neglect of ellipticity, by [1 − (x2 + y2)]1/2. We have then

n̂T × VT = ex (ωp/ω̄)x
[
a2

c − (x2 + y2)
]1/2

/ac + ey(ωp/ω̄)y
[
a2

c − (x2 + y2)
]1/2

/ac − ez(ωp/ω̄)(x2 + y2)/ac, (A16)

n̂B × VB = ex (ω0/ω̄){xy sin ε + x cos ε[1 − (x2 + y2)]1/2} + ey(ω0/ω̄){y cos ε[1 − (x2 + y2)]1/2 − sin ε(1 − y2)}
+ez(ω0/ω̄){y sin ε[1 − (x2 + y2)]1/2 − cos ε(x2 + y2)}. (A17)

The integrals I and J defined by eq. (27) may now be readily evaluated using the above expressions, noting that the contours C are circles
(x2 + y2) = constant as already mentioned:

I =
∫

C


{

(x2 + y2)1/2

[1 − (x2 + y2)]1/2
− (x2 + y2)1/2[

a2
c − (x2 + y2)

]1/2

} 


[
a2

c

a2
c − (x2 + y2)

]1/4

+
[

1

1 − (x2 + y2)

]1/4




 dC

= 2π (x2 + y2)

[
a2

c − (x2 + y2)
]1/2 − [1 − (x2 + y2)]1/2[

a2
c − (x2 + y2)

]1/2
[1 − (x2 + y2)]1/2




[
a2

c

a2
c − (x2 + y2)

]1/4

+
[

1

1 − (x2 + y2)

]1/4

 , (A18)
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J =
∫

C

ωp

ω̄
(x2 + y2)1/2

[
a2

c

a2
c − (x2 + y2)

]1/4

dC

−
∫

C

ω0

ω̄

{
cos ε(x2 + y2)1/2 − y sin ε[1 − (x2 + y2)]1/2

(x2 + y2)1/2
− x sin ε

(x2 + y2)1/2

} [
1

1 − (x2 + y2)

]1/4

dC

= 2π (ωp/ω̄)a1/2
c (x2 + y2)[

a2
c − (x2 + y2)

]1/4 − 2π (ω0/ω̄) cos ε(x2 + y2)

[1 − (x2 + y2)]1/4
.

(A19)

The internal flow velocity in region (2) can finally be computed using the fact that v0 = (I/J )(nT × nB), according to eqs (19) and (26):

v0 =
[
a2

c − (x2 + y2)
]1/2

[1 − (x2 + y2)]1/2[
a2

c − (x2 + y2)
]1/2 − [1 − (x2 + y2)]1/2

(ωp/ω̄)a1/2
c [1 − (x2 + y2)]1/4 − (ω0/ω̄)

[
a2

c − (x2 + y2)
]1/4

cos ε

a1/2
c [1 − (x2 + y2)]1/4 + [

a2
c − (x2 + y2)

]1/4

·
〈

ex

[
− y(1 − fc)

[a2
c − (x2 + y2)]1/2

+ 2 f sin ε cos ε + y
[
1 + 2 f

(
1 − 3

2 cos2 ε
)]

{1 − [x2 + y2(1 + 2 f sin2 ε)]}1/2

]

+ ey

[
− x(1 − f cos2 ε)

{1 − [x2 + y2(1 + 2 f sin2 ε)]}1/2
+ x(1 − fc)[

a2
c − (x2 + y2)

]1/2

]

+ ez

[
− 2 f x sin ε cos ε

[a2
c − (x2 + y2)]1/2

− 2 f xy sin2 ε

[a2
c − (x2 + y2)]1/2{1 − [x2 + y2(1 + 2 f sin2 ε)]}1/2

]〉
.

(A20)

This is the internal flow velocity in scaled dimensionless variables. The results in eq. (30) are obtained on transforming to real physical
variables [in region (2), signz = 1]. The corresponding expression for the region (3) (wherein signz = −1), may be obtained in a similar
fashion.

We proceed now to calculate the boundary layer correction ṽ0 near the ICB by introducing the above results in eq. (23), neglecting all
ellipticity terms; the calculation for the CMB is similar.

For region (2), the the lower boundary 	B is the ICB. We have then, from eq. (A10),

ez · n̂B = −[1 − (x2 + y2)]1/2,
ez · n̂B

| ez · n̂B | = −1. (A21)

We also have

ζ = E−1/2n̂B · (r0 − r) = E−1/2(r − 1), (A22)

remembering that, by definition, r0 − r should be in the same direction as n̂B.
On neglecting ellipticity, the internal flow velocity (eq. A20) reduces to

v0 = (ωp/ω̄)a1/2
c [1 − (x2 + y2)]1/4 − (ω0/ω̄)

[
a2

c − (x2 + y2)
]1/4

cos ε

a1/2
c [1 − (x2 + y2)]1/4 + [

a2
c − (x2 + y2)

]1/4 (ex y − ey x). (A23)

Also, the inner core becomes a sphere whose radius is unity in the scaled units. So one has

x = sin θ cos λ, y = sin θ sin λ (A24)

for any point on the ICB.
From eqs (A23), (A14), (A15) and (A24), we now obtain

(v0 − VB)ζ=0 = ex

[
{[ωp/ω̄ + (ω0/ω̄) cos ε] sin θ sin λ − (ω0/ω̄) sin ε cos θ}a1/2

c cos1/2 θ

a1/2
c cos1/2 θ + (a2

c − sin2 θ )1/4
− (ω0/ω̄) sin ε cos θ

(
a2

c − sin2 θ
)1/4

a1/2
c cos1/2 θ + (

a2
c − sin2 θ

)1/4

]

− ey
[ωp/ω̄ + (ω0/ω̄) cos ε] sin θ cos λa1/2

c cos1/2 θ

a1/2
c cos1/2 θ + (

a2
c − sin2 θ

)1/4 + ez(ω0/ω̄) sin ε sin θ cos λ (A25)
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and hence, with the use of eq. (A10),

[n̂B × (v0 − VB)]ζ=0 = ex

{
−(ω0/ω̄) sin ε sin2 θ sin λ cos λ − [ωp/ω̄ + (ω0/ω̄) cos ε] sin θ cos λa1/2

c cos3/2 θ

a1/2
c cos1/2 θ + (

a2
c − sin2 θ

)1/4

}

+ ey

[
(ω0/ω̄) sin ε sin2 θ cos2 λ − {[ωp/ω̄ + (ω0/ω̄) cos ε] sin θ sin λ − (ω0/ω̄) sin ε cos θ}a1/2

c cos3/2 θ

a1/2
c cos1/2 θ + (

a2
c − sin2 θ

)1/4

+ (ω0/ω̄) sin ε cos2 θ
(
a2

c − sin2 θ
)1/4

a1/2
c cos1/2 θ + (a2

c − sin2 θ )1/4

]

+ ez

[
{[ωp/ω̄ + (ω0/ω̄) cos ε] sin θ − (ω0/ω̄) sin ε cos θ cos λ} sin θa1/2

c cos1/2 θ

a1/2
c cos1/2 θ + (

a2
c − sin2 θ

)1/4

− (ω0/ω̄) sin ε sin θ cos θ sin λ
(
a2

c − sin2 θ
)1/4

a1/2
c cos1/2 θ + (

a2
c − sin2 θ

)1/4

]
.

(A26)

These expressions, and those which follow, are written for the region (2) where cos θ is positive. In region (3) where cos θ is negative,
(−cos θ )1/2 should appear instead of cos1/2θ .

Finally the expression (23) for the boundary layer correction may be evaluated by introducing in it eqs (A21)–(A22), (A25) and (A26):

ṽ0 = e−E−1/2(r−1) cos1/2 θ

{
ex

〈[
−{[ωp/ω̄ + (ω0/ω̄) cos ε] sin θ sin λ − (ω0/ω̄) sin ε cos θ}a1/2

c cos1/2 θ

a1/2
c cos1/2 θ + (

a2
c − sin2 θ

)1/4

+ (ω0/ω̄) sin ε cos θ
(
a2

c − sin2 θ
)1/4

a1/2
c cos1/2 θ + (a2

c − sin2 θ )1/4

]
cos[E−1/2 cos1/2 θ (r − 1)]

+
{

(ω0/ω̄) sin ε sin2 θ sin λ cos λ + [ωp/ω̄ + (ω0/ω̄) cos ε] sin θ cos λa1/2
c cos3/2 θ

a1/2
c cos1/2 θ + (

a2
c − sin2 θ

)1/4

}
sin[E−1/2 cos1/2 θ (r − 1)]

〉

+ ey

〈
[ωp/ω̄ + (ω0/ω̄) cos ε] sin θ cos λa1/2

c cos1/2 θ

a1/2
c cos1/2 θ + (

a2
c − sin2 θ

)1/4 cos[E−1/2 cos1/2 θ (r − 1)]

+
[
−(ω0/ω̄) sin ε sin2 θ cos2 λ + {[ωp/ω̄ + (ω0/ω̄) cos ε] sin θ sin λ − (ω0/ω̄) sin ε cos θ}a1/2

c cos3/2 θ

a1/2
c cos1/2 θ + (

a2
c − sin2 θ

)1/4

− (ω0/ω̄) sin ε cos2 θ (a2
c − sin2 θ )1/4

a1/2
c cos1/2 θ + (a2

c − sin2 θ )1/4

]
sin[E−1/2 cos1/2 θ (r − 1)]

〉

+ ez

〈
− (ω0/ω̄) sin ε sin θ cos λ cos[E−1/2 cos1/2 θ (r − 1)]

−
[

{[ωp/ω̄ + (ω0/ω̄) cos ε] sin θ − (ω0/ω̄) sin ε cos θ sin λ} sin θa1/2
c cos1/2 θ

a1/2
c cos1/2 θ + (

a2
c − sin2 θ

)1/4

− (ω0/ω̄) sin ε sin θ cos θ sin λ
(
a2

c − sin2 θ
)1/4

a1/2
c cos1/2 θ + (

a2
c − sin2 θ

)1/4

]
sin[E−1/2 cos1/2 θ (r − 1)]

〉}
. (A27)

It is a straightforward matter to compute the spherical components of ṽ0 in real physical variables from the Cartesian components above,
which are expressed in terms of dimensionless variables. The result is shown as eq. (35).

A P P E N D I X B : C O M P U T A T I O N O F T H E T O R Q U E R E S U L T I N G F R O M V I S C O S I T Y

As mentioned in the main text, only the boundary layer flow ṽ0 contributes significantly to the viscous torque. Substituting for the boundary
value (at r = a) of ṽ0 from eq. (35) into eq. (53), retaining only the terms of order E−1/2 (the other terms being much smaller) and recalling
that r = a at the ICB, we obtain

Nη = a3ηE−1/2

∫
S
| cos θ |1/2 sin θ{[−ω1 + (signz)ω2]eλ + [(signz)ω1 + ω2]eθ } dθ dλ. (B1)

We now replace eθ , eλ with their expressions in terms of ex, ey, ez, and substitute for ω1 and ω2 from eqs (37) and (38), to obtain the
Cartesian components of the torque:
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


N η
x = ηa3 E−1/2

∫ 2π

0

∫ π

0 | cos θ |1/2 sin θ
{
χ [cos θ cos λ − (signz) sin λ]

+ ω0 sin2 θ sin λ cos λ sin ε + (signz)ω0 sin ε cos θ
}
dθdλ,

N η
y = ηa3 E−1/2

∫ 2π

0

∫ π

0 | cos θ |1/2 sin θ{χ [cos θ sin λ + (signz) cos λ] − ω0(1 − sin2 θ sin2 λ) sin ε} dθdλ,

N η
z = ηa3 E−1/2

∫ 2π

0

∫ π

0 | cos θ |1/2 sin θ [−χ sin θ + ω0 cos θ sin θ sin λ sin ε − (signz)ω0 cos λ sin θ sin ε] dθdλ,

(B2)

where χ is defined as

χ = (ωp + ω0 cos ε) sin θ | cos θ |1/2

| cos θ |1/2 + [1 − (a/ac)2 sin2 θ ]1/4
. (B3)

We see that the integrations over λ and θ in eq. (B2) can be carried out in succession and that most of the integrals over λ are equal to
zero. The expressions (54) and (55) may thus be obtained in a straightforward fashion.
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