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3D magnetotelluric modeling using the T-�� finite-element method

Yuji Mitsuhata∗ and Toshihiro Uchida∗

ABSTRACT

We present a finite-element algorithm for comput-
ing MT responses for 3D conductivity structures. The
governing differential equations in the finite-element
method are derived from the T–� Helmholtz decom-
position of the magnetic field H in Maxwell’s equations,
in which T is the electric vector potential and � is the
magnetic scalar potential. The Coulomb gauge condition
on T necessary to obtain a unique solution for T is in-
corporated into the magnetic flux density conservation
equation. This decomposition has two important bene-
fits. First, the only unknown variable in the air is the scalar
value of �. Second, the curl–curl equation describing T
is only defined in the earth. By comparison, the system
of curl–curl equations for H and the electric field E are
singular in the air, where the conductivity σ is zero. Al-
though the use of a small but nonzero value of σ in the
air and application of a divergence correction are usually
necessary in the E or H formulation, the T–� method
avoids this necessity. In the finite-element approxima-
tion, T and � are represented by the edge-element and
nodal-element interpolation functions within each brick
element, respectively. The validity of this modeling ap-
proach is investigated and confirmed by comparing mod-
eling results with those of other numerical techniques for
two 3D models.

INTRODUCTION

Three-dimensional EM surveys are becoming increasingly
feasible because of recent improvements in 3D modeling tech-
niques. The three commonly used modeling methodologies are
the integral equation, finite difference, and finite element. The
finite-difference approach, conventionally based on a Taylor
series expansion of partial differential equations, is now of-
ten based on integral forms of partial differential equations
(Mackie et al., 1994). The finite-volume method (e.g., Saad,
1996) has also been used for 3D modeling of EM responses
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(Haber et al., 2000), and it derives from the conservation law
of a flux. Each of these modeling methods has particular ad-
vantages: for example, in integral-equation methods, series ex-
pansion solutions can be implemented quickly (Zhdanov and
Fang, 1996; Avdeev et al., 1997). The use of staggered grids
in finite-difference and finite-volume techniques has recently
become popular, conserving a magnetic flux and an electric
current (Smith, 1996a) and allowing for realistic discontinu-
ous fields. In addition, the convergence of solutions has been
greatly accelerated by adopting Krylov subspace methods, var-
ious preconditioning techniques, and divergence corrections
(Mackie et al., 1994; Smith, 1996b; Sasaki, 1999). Generally,
however, finite-element methods are still not widely used in 3D
EM modeling of geophysical problems, and few improvements
have been published recently. Ellis (1999) uses edge elements
to model airborne EM data, and Zyserman and Santos (2000)
develop a parallel finite-element algorithm with domain de-
composition for MT modeling. Zanoubi et al. (1999) use edge
elements and the spectral Lanczos decomposition solver for
well-log modeling, and Badea et al. (2001) calculate well-log
responses with respect to the Coulomb gauge magnetic vec-
tor potential A and the electric scalar potential φ using nodal
elements.

In the finite-difference, finite-volume, and finite-element
methods, the governing equations are usually derived directly
for the electric field (Newman and Alumbaugh, 1995; Smith,
1996a, b; Sasaki, 1999; Zanoubi et al., 1999) or the magnetic
field (Mackie et al., 1994). This approach yields a system of
equations that is singular in the air (Haber et al., 2000; Aruliah
et al., 2001), requiring the conductivity of air to be approxi-
mated by a small, finite value. Consequently, the use of a diver-
gence correction becomes indispensable, especially in the air
(Mackie et al., 1994; Sasaki, 1999). The Helmholtz decompo-
sition of the electric field into A and φ in conjunction with the
Coulomb gauge condition ∇ · A = 0 is a popular approach in
EM engineering (referred to as the A–φ method) that has been
applied recently in geophysics (LaBrecque, 1999; Haber et al.,
2000; Aruliah et al., 2001; Badea et al., 2001). Incorporating
the Coulomb gauge condition makes the governing equation
elliptic in the air, avoiding the singularity (Haber et al., 2000;
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3D Finite-Element Modeling of MT Data 109

Aruliah et al., 2001). Another approach, in which the magnetic
field is decomposed into the electric vector potential T and the
magnetic scalar potential �, is sometimes adopted for eddy cur-
rent problems in EM engineering (Carpenter, 1977; Biro and
Richter, 1991; Albanese and Rubinacci, 1998). This method in-
volves solving the curl–curl equation for T inside the conduc-
tive region alone, avoiding problems associated with vanishing
conductivity in the air. Additionally, the only unknown com-
ponent in the air is the magnetic scalar potential �: This is an
advantage over the A–φ method, where the three components
of A as well as the scalar value of φ must be determined even in
the air. Another approach uses A,φ–� formulations, in which
� is another magnetic scalar potential (Everett and Schultz,
1996). In this approach, the magnetic field is described by only
� in the air. The conventional A–φ method is used within the
earth, and the Laplace equation with respect to � is solved in
the air. This method can also reduce the number of unknown
components.

We present a finite-element algorithm based on the T–�

Helmholtz decomposition for 3D MT modeling. The vector
field T and scalar field � are approximated by edge and
nodal elements, respectively; the Coulomb gauge condition
∇ · T = 0 is incorporated directly into one of the governing
equations to obtain a unique solution. The asymmetrical system
of equations derived in this manner is solved using one of the
Krylov subspace methods, the biconjugate gradient-stabilized
(Bi-CGSTAB) method van der Vorst, 1992), combined with
the incomplete LU decomposition (Saad, 1996). To verify the
validity of our modeling method, we compare our calculation
results with those obtained using other methods for two 3D
models considered as part of the international project on the
comparison of modeling methods for electromagnetic induc-
tion problems (COMMEMI) by Zhdanov et al. (1997).

BASIC THEORY

T–Ω formulations

At the low frequencies used in MT studies (104–10−3 Hz),
displacement currents are negligible, representing what is re-
ferred to as an eddy current problem in EM engineering. Under
these circumstances, the EM field is described by the diffusive
forms of Maxwell’s equations with a time-dependent compo-
nent eiωt :

∇ × E = −iωµ0H, (1)

∇ × H = J = σE, (2)

where E and H are the electric and magnetic fields, respectively;
J is the electric current density; ω is the angular frequency; σ

is the spatially variable electrical conductivity; and the mag-
netic permeability is that of free space µ0. We separate H into
the incident magnetic field H0 and the resultant magnetic field
produced by the electric current induced in the earth Hc, such
that H = H0 + Hc. Using this definition, equation (2) can be
rewritten as

∇ × H0 = 0, (3)

∇ × Hc = J = σE. (4)

Since there is no electric current source in MT modeling prob-
lems, ∇ · J = 0 is straightforwardly satisfied. Therefore, J can be

written in terms of the electric vector potential T as

J = ∇ × T. (5)

In the air region Va (Figure 1), J = 0. Although T can be de-
scribed with a certain scalar potential such that T = ∇ϕ, it is
more convenient to treat T as zero in Va also (Carpenter, 1977;
Steele, 1997). Comparing equations (4) and (5) and using the
magnetic scalar potential �, we can represent Hc as

Hc = T − ∇� (6)

since ∇ × (∇�) = 0. Substituting equations (5) and (6) into
equation (1), we obtain the following curl–curl equation for
the interior of the earth (Vc) as the first equation:

∇ ×
(

1
σ

∇ × T
)

+ iωµ0(T − ∇�) = −iωµ0H0 in Vc.

(7)
As the second equation, the scalar equation is obtained by
combining the conservative law for the magnetic flux density
Bc = µ0Hc,

∇ · Bc = 0, (8)

with equation (6), giving

∇ · (T − ∇�) = 0 in V (9)

because µ0 is constant in the whole region. This is satisfied
throughout the whole problem domain V (= Va ∪ Vc ∪ Sc)
with T = 0 in Va .

Equations (7) and (9) can be used to determine T and �,
an approach referred to as the T–� method (e.g., Tsuboi and
Naitoh, 1994; Steele, 1997). In some studies, T and � are re-
ferred to as the current density vector potential (Albanese and
Rubinacci, 1998) and the reduced magnetic scalar potential
(Silvester and Ferrari, 1996), respectively. However, equations
(7) and (9) cannot be uniquely solved because they are not in-
dependent of each other: the divergence of equation (7) leads
to equation (9) because the divergence of the first term on
the left-hand side of equation (7) and ∇ · (µ0Hc) both equal

FIG. 1. Schematic of the MT forward problem. The air, earth,
and earth’s surface are denoted by Va , Vc, and Sc, respectively;
n is the outward unit normal vector to Sc.
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110 Mitsuhata and Uchida

zero. To overcome this nonuniqueness, we adopt the Coulomb
gauge:

∇ · T = 0 in Vc. (10)

In the finite-element method using nodal elements, equa-
tion (10) is incorporated into equation (7) as a penalty (e.g.,
Biro and Richter, 1991). In recent approaches using edge
elements in EM engineering, however, the gauge condition
based on the tree–cotree decomposition is used (Albanese and
Rubinacci, 1998). In our study, we substitute equation (10) into
equation (9) and reformulate equation (9), as shown later. In
particular, the Coulomb gauge condition is incorporated when
deriving the governing differential equations.

Interface conditions

We next consider the conditions imposed on T and � at the
interface between two media, medium 1 and medium 2, with
different values of conductivity. At the interface, the tangen-
tial component of H is continuous (e.g., Harrington, 1961) and
therefore

n × (H1 − H2) = 0, (11)

where n is the unit vector normal to the interface. This condition
can be split into two by defining interface conditions in terms
of the tangential component of T and the value of � (Biro and
Richter, 1991):

n × (T1 − T2) = 0 (12)

and

�1 = �2. (13)

At the air–earth interface Sc, J cannot flow out into the air and
we must impose

n · J = 0 at Sc, (14)

where n is the unit normal vector from the earth toward the air.
Integrating equation (14) at Sc and substituting equation (5),
we obtain, via Stokes’ theorem,∫

S0

n · Jd S =
∫

S0

n · (∇ × T)d S

=
∮

C0

T · tdl = 0, (15)

where S0 is a certain area in Sc, C0 is a closed curve bounding
S0, and t is the unit vector tangential to C0. Bearing in mind that
equation (15) is satisfied for any arbitrary C0 in Sc, we can write
equation (15) as T · t = 0 at Sc. Since t lies within the surface Sc,
T · t = 0 is equivalent to

n × T = 0 at Sc, (16)

which can be imposed as an interface condition at Sc (Miya,
1995).

There is another important consideration to make regarding
Sc. At any interface within Vc, the Coulomb gauge condition
[equation (10)] requires continuity of the normal component of
T. Equation (16) implies that a normal component of T exists

at Sc; but, as shown, T is zero in Va . Clearly, the normal com-
ponent of T is discontinuous across Sc. The Coulomb gauge
condition cannot be satisfied there, and then it cannot be im-
posed in equation (9) because equation (9) should be satisfied
in V including Sc. In Appendix A we present the derivation
of a more general divergence condition (that incorporates the
Coulomb gauge condition), in which topography described by
g(x, y) = z is treated. As a result, we obtain

∇ · T(r) = −n · T(r)|∇ f |δ(r ∈ Sc) in V (17)

instead of equation (10), where δ is the Dirac delta function
and f = z − g(x, y). Equation (17) includes the Coulomb gauge
condition in Vc. Substituting equation (17) into equation (9),
we finally obtain

∇2�(r) = −n · T(r)|∇ f |δ(r ∈ Sc) in V, (18)

implying that the source of � is the normal component of T
at Sc. In this study, we solve equations (7) and (18) to obtain
T and �. We reemphasize that equation (7) is satisfied only in
the earth, since T is fixed at zero in the air. This T–� approach
uses significantly less computer memory than the conventional
A–φ method because the only unknown variable in the air is
the scalar component �. Moreover, Mackie et al. (1994) and
Sasaki (1999) show that when iteratively solving the curl–curl
equation for H or E using staggered-grid, finite-difference (FD)
methods, the divergence correction to H or E is particularly
necessary in the air. It is their representation of the air with
a small nonzero conductivity that makes the system of equa-
tions ill conditioned. With the T–� method, in contrast, such
an approximation is unnecessary.

Boundary conditions

To determine the EM fields uniquely, we must specify the
tangential components of H or E on the boundaries of the com-
putation region V (Harrington, 1961). Similar to the interface
conditions, the boundary conditions on the tangential compo-
nents of H can be split into two by specifying both the tangen-
tial component of T and the value of �. In MT problems, for
which the incident magnetic field H0 has only horizontal com-
ponents, the vertical component of T is produced exclusively
by 2D or 3D conductivity anomalies. Accordingly, we can see
from equation (18) that � is generated by the same conductiv-
ity anomalies. Assuming the boundaries lie sufficiently far from
these anomalies, we apply the Dirichlet condition � = 0 at the
boundary of V and the condition Tz = 0 at the side boundaries
of Vc. For a uniform incidence field H0x parallel to x , we impose
Tx = T0x at the x–z boundary surfaces of Vc and Ty = 0 at the
y–z surfaces of Vc , whereT0x is the solution corresponding to
an earth model without any 2D or 3D conductivity anomalies.
Assuming that the bottom of Vc is sufficiently deeper than the
skin depth, we can adopt Tx = −H0x because Hx = H0x + Tx = 0
at the bottom. Similar boundary conditions are imposed in the
case of a uniform y-directional incident field H0y .

Homogeneous earth response

To illustrate the T–� method, we now solve equations (7)
and (18) for a homogeneous earth. For a uniform incidence
field H0x , the induced field Hc has only an x-component. Thus,
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3D Finite-Element Modeling of MT Data 111

T also has only an x-component Tx , the right-hand side of equa-
tion (18) equals zero, and equation (18) is the Laplace equation.
Given the Dirichlet boundary condition � = 0 at the boundary
of V , the harmonic function satisfying the Laplace equation
requires that � = 0 throughout V . Since Tx is a function of z
only, equation (7) becomes

− 1
σ

∂2Tx

∂z2
+ iωµ0Tx = −iωµ0 H0x . (19)

For the particular boundary conditions used, namely, Tx = 0 at
z = 0 and Tx → −H0x as z → ∞, a characteristic solution to this
equation is

Tx = H0x (e−ikz − 1), (20)

where k is the wavenumber given by k = (−iωµ0σ )1/2.

FINITE-ELEMENT METHOD ANALYSIS

Edge and nodal elements

We divide the problem domain into a number of bricks and
adopt edge and nodal elements (e.g., Jin, 1993) to approximate
the T and � fields, respectively (Figure 2). Each side of a brick
is assigned a constant tangential field component of T, and each
node is assigned a constant value of �. Within each brick, σ is
assumed to be constant. Representing T and � within the eth
element as Te and �e, we can write

Te =
11∑

i=0

Ne
i T e

i , (21)

and

�e =
7∑

j=0

N e
j �

e
j , (22)

where N e
j denotes the eight scalar interpolation functions and

Ne
i denotes the 12 vector interpolation functions, given by

Ne
i∈[0,3] = N e

xi x̂, Ne
i∈[4,7] = N e

yi ŷ, Ne
i∈[8,11] = N e

zi ẑ,

(23)

FIG. 2. Sampling points for T and � in the brick element and
the local coordinate system. In each brick, the vector field T is
approximated by the twelve components assigned at the cen-
ters of edges; the scalar field � is approximated by the eight
components at the vertices. Within each brick, σ is assumed to
be constant.

with respect to unit vectors x̂, ŷ, and ẑ parallel to the x , y, and
z axes, respectively. As a matter of convenience, we use a local
coordinate system (ξ, η, γ ) within each element, as shown in
Figure 2. The local coordinates are given by ξ = 2(x − xe

c )/ le
x ,

η = 2(y − ye
c )/ le

y , and γ = 2(z − ze
c)/ le

z , where xe
c , ye

c , and ze
c de-

note the coordinate of the center of the eth element and where
le
x , le

y , and le
z denote the side lengths of the eth element in the

x-, y-, and z-directions, respectively. We can then express N e
j

as

N e
j∈[0,7] = 1

8
(1 + ξξ j )(1 + ηη j )(1 + γ γ j ). (24)

The values N e
xi , N e

yi , and N e
zi in equation (23) are expressed by

N e
xi = 1

4
(1 + ηηi )(1 + γ γi ), (25)

N e
yi = 1

4
(1 + γ γi )(1 + ξξi ), (26)

and

N e
zi = 1

4
(1 + ξξi )(1 + ηηi ), (27)

where (ξ j , η j , γ j ) is the position of the jth node and (ξi , ηi , γi )
is the position of the midpoint of the ith edge.

The combined use of edge and nodal elements such as this
has been used in some applications of the A–φ method to eddy
current problems (e.g., Kameari, 1988; Fujiwara et al., 1996).
Since � is composed of the values assigned at the nodes, the
interface condition of equation (13) is automatically satisfied.
Moreover, the vector interpolation function also guarantees
the continuity of the tangential field of T. Since Ne

i has a tan-
gential component only along the ith edge, the interface condi-
tion of equation (12) is automatically satisfied by the expansion
given in equation (21) (Jin, 1993).

Galerkin finite-element method

From the governing differential equations (7) and (18),
we derive the corresponding system of finite-element method
equations using the Galerkin method (e.g., Jin, 1993). We de-
fine a residual vector r for equation (7) and a scalar residual r
for equation (18):

r = ∇ ×
(

1
σ

∇ × T
)

+ iωµ0(T − ∇�) + iωµ0H0, (28)

r = −∇2�(r) − n · T(r)|∇ f |δ(r ∈ Sc). (29)

The Galerkin method enforces the conditions

RT k =
∫

Vc

Nk · rdV =
NE∑
e=1

∫
V e

c

Ne
i(k) · rdV = 0 (30)

and

R�l =
∫

V
NlrdV =

N T∑
e=1

∫
V e

N e
j(l)rdV = 0, (31)

where RT k is the integral of r weighted by Nk assigned to the
kth edge over the entire earth (Vc), R�l is the integral of r
weighted by Nl assigned to the lth node over the whole region
(V ), NE is the number of brick elements in Vc, NT is the total
number of brick elements in V , and i(k) and j(l) represent the
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112 Mitsuhata and Uchida

local numbers of edges and nodes corresponding to the global
numbers k and l in the eth element, respectively.

Calculating the integrals in equations (30) and (31) for each
element as shown in Appendix B, we obtain the following ma-
trix expression:

{Re} =
[{

Re
�

}{
Re

T

}
]

=
[

[Ge] [Qe]

−iωµ0[H e] ρe[Ee] + iωµ0[Fe]

]

×
[
{�e}
{T e}

]
+

[
{0}

iωµ0{Pe}

]
, (32)

where { } and [ ] represent a column vector and a matrix,
respectively. The elements of {Re

�} and {Re
T } are the inte-

grals of equations (30) and (31) for eight nodes and 12 edges
over the eth element, respectively; {�e} = {�e

0, . . . , �
e
7}T and

{T e} = {T e
0 , . . . , T e

11}T ; [Ge], [Qe], [H e], [Ee], and [Fe] are 8 × 8,
8 × 12, 12 × 8, 12 × 12, and 12 × 12 matrices, respectively; and
{Pe} is the source term from the incident magnetic field H0.
Details of the derivations of these submatrices and column
vectors are provided in Appendix B. Assembling {Re} over all
elements and setting it equal to zero subject to the boundary
conditions, we finally obtain the system of equations

[A]{X} = {B}, (33)

where [A] is an asymmetrical sparse complex matrix often re-
ferred to as the system matrix, {X} consists of the unknowns
{�e} and {T e}, and {B} is composed of the last term of equation
(32) and the Dirichlet boundary condition.

Solving the finite-element method matrix equation

Equation (33) is a large, sparse, asymmetrical matrix equa-
tion of the sort typically solved using Krylov subspace solvers
incorporating preconditioning (Barrett et al., 1994). Haber
et al. (2000) and Aruliah et al. (2001) use the Bi-CGSTAB
method (van der Vorst, 1992) and the incomplete LU (ILU)
threshold decomposition for preconditioning to solve similarly
large, sparse, asymmetrical matrix equations derived in a finite-
volume discretization of the A–φ equations. We also use the

FIG. 3. The COMMEMI 3D-1 model used to compare the finite-element method solutions with the COMMEMI results and the
staggered-grid FD solutions. Three-dimensional MT responses were computed at profiles along the x- and y-axes.

Bi-CGSTAB method and the incomplete (LU) preconditioner
with no fill-in allowed (Saad, 1996).

The Bi-CGSTAB method uses two residual vectors, {s}
and {r}, at each iteration, defined by {s} = {r} = {B} − [A]{X}
(Barrett et al., 1994). When either of the convergence crite-
ria, ‖{s}‖2/‖{B}‖2 ≤ ε or ‖{r}‖2/‖{B}‖2 ≤ ε, is satisfied given a
specified tolerance ε, the iterative process ends. In the exam-
ples shown below, ε = 10−8. As demonstrated in the two com-
putation results shown later, computation for solving the finite-
element method matrix equation takes much longer than the
staggered-grid, finite-difference method (e.g., Sasaki, 1999),
apparently because of the larger bandwidth (51 nonzero el-
ements) in matrix [A] compared to that (13 nonzero elements)
in the staggered-grid FD method.

RESULTS

We computed MT responses for two different COMMEMI
project models (Zhdanov et al., 1997) and compared them with
those obtained using other modeling methods. In the follow-
ing examples, we show apparent resistivity and phase data for
the XY and YX modes along profiles across the 3D bodies.
An XY mode means the Ex field is generated by the incident
Hoy field and the apparent resistivity and phase data are calcu-
lated from the tentative impedance Z∗

xy = Ex/Hy . Likewise, YX
mode means the Ey field is generated by the incident H0x field,
and apparent resistivity and phase data are calculated from
the tentative impedance Z∗

yx = −Ey/Hx . Note that Z∗
xy and Z∗

yx

can be different from the exact off-diagonal components of
the impedance tensor, Zxy and Z yx , which can be evaluated
straightforwardly from field data generated by two different
polarization sources (e.g., Ting and Hohmann, 1981). All com-
putations in the following examples were implemented on a
1-GHz Pentium III PC.

Example 1: COMMEMI 3D-1 model

The first model we consider (model 1) is the COMMEMI
3D-1 model (Figure 3) of an embedded conductive block
(0.5 ohm-m) exhibiting a relatively high-conductivity contrast
with a homogeneous background earth (100 ohm-m). As the
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3D Finite-Element Modeling of MT Data 113

boundary condition in our computation, we use the analyti-
cal solution of T for the 100-ohm-m homogeneous earth rep-
resented by equation (20). The COMMEMI project lists 3D
modeling results obtained using various modeling methods
and the mean values and standard deviations of the appar-

FIG. 4. Plots of the squared residual as a function of iteration
number in the Bi-CGSTAB method applied to estimates of
the XY- and YX-mode MT responses for the COMMEMI
3D-1 model at 0.1 Hz. The squared residual is defined as
‖{B}-[A]{X}‖2/‖{B}‖2 [see equation (33)].

FIG. 5. Comparisons between results obtained using the T–� FEM (this study; denoted TO3DMT), staggered-grid FD, and COM-
MEMI results. The XY-mode MT response at 0.1 Hz is shown in terms of apparent resistivity along the (a) x-axis and (b) y-axis;
phase data are along the (c) x-axis and (d) y-axis. The mean apparent resistivities of the COMMEMI results are shown with their
standard deviations. No information on the mean values of the phase data was provided in the COMMEMI results.

ent resistivity for frequencies of 0.1 and 10 Hz. We also make
comparisons with solutions obtained using the staggered-grid
finite-difference method for the E field (Sasaki, 1999, 2001).

To compute the 3D response at 0.1 Hz, we use an irregu-
lar mesh with a three-decade difference in grid spacing and a
mesh consisting of 24 × 28 × 28 elements to represent a total
computational domain of 70 × 70 × 140 km. Figure 4 shows a
plot of the squared residual ‖{r}‖2/‖{B}‖2 versus the iteration
number in the Bi-CGSTAB. The squared residuals for the XY
and YX modes exhibit some rising spikes but nevertheless con-
verge after 129 and 186 iterations, respectively. The CPU time
for the computations is 688 s for the XY mode and 857 s for
the YX mode. Figures 5 and 6 compare our results with the
COMMEMI and staggered-grid FD solutions. With the excep-
tion of some discrepancies near the edges of the conductor, our
solutions agree very well with the others.

Next, we computed the 3D responses for 10 Hz with a
40 × 42 × 28 irregular mesh. The whole computational do-
main was 10 × 10 × 15 km. Figure 7 shows the convergence
of the XY and YX modes, which converge after 201 itera-
tions (2454 s of CPU time) and 124 iterations (1665 s), respec-
tively. Figures 8 and 9 compare our results with those from the
COMMEMI and staggered-grid FD solutions. The agreement
between our solutions and the staggered-grid FD solution is
excellent, with the largest discrepancy (x = 950 m, Figure 9c)
less than 5%. The consistency with the COMMEMI results
is generally good, also. However, the XY-mode apparent re-
sistivities of the COMMEMI results are larger than those of
our solutions and the staggered-grid FD solutions above the
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conductive block (x < 500 m and y < 1000 m) in Figures 8a
and 8b. A similar discrepancy with the COMMEMI results is
recognized by Zyserman and Santos (2000), whose results are
consistent with ours. The COMMEMI results are the mean val-
ues of seven results obtained with integral-equation and finite-
difference modeling code, which have large standard errors
over the conductive block.

Example 2: COMMEMI 3D-2 model

Model 2 is the COMMEMI 3D-2 model (Figure 10),
with which several new modeling methods have been tested
(Mackie et al., 1993; Avdeev et al., 1997; Sasaki, 1999;
Zyserman and Santos, 2000; Fomenko and Mogi, 2002). This
model is comprised of two rectangular blocks embedded adja-
cent to one another in a three-horizontal-layer structure. The
XY and YX mode responses at 0.001 Hz were computed with
a 25 × 22 × 21 irregular mesh, representing an entire computa-
tional domain of 400 × 400 × 540 km. The analytical solution
for T in a three-layered earth was the boundary condition. The
Bi-CGSTAB process converged after 396 iterations for the XY
mode and 368 iterations for the YX mode, requiring 1067 and
982 s CPU time, respectively. Figure 11 compares the results
obtained using the T–� method and the integral-equation so-
lutions obtained by Wannamaker (1991), taken from Mackie
et al. (1993). The consistency between them is excellent.

CONCLUSIONS

We have developed a finite-element algorithm based on the
T–� decomposition for 3D MT modeling. The Coulomb gauge

FIG. 6. The YX-mode results at 0.1 Hz. See Figure 5 for details.

condition on the electric vector potential T is incorporated in
the conservation law for magnetic flux density at the level of
the governing equations. Both T and � are represented us-
ing the edge-element and nodal-element interpolation func-
tions, respectively, in each brick-shaped finite element. We
solve the system of finite-element modeling equations using
the Bi-CGSTAB method with the no fill-in incomplete LU de-
composition preconditioner. In popular MT modeling schemes

FIG. 7. Plots of the squared residual versus iteration number
in the Bi-CGSTAB solution of the XY- and YX-mode MT
responses for the COMMEMI 3D-1 model at 10 Hz.
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3D Finite-Element Modeling of MT Data 115

FIG. 8. Comparisons between results obtained using the T–� finite-element (this study; denoted TO3DMT), staggered-grid FD,
and COMMEMI results. The XY-mode MT response at 10 Hz is shown in terms of apparent resistivity along the (a) x-axis and (b)
y-axis; phase data are along the (c) x-axis and (d) y-axis. The mean apparent resistivities of the COMMEMI results are shown with
their standard deviations. Information on the mean values of the phase data was not provided in the COMMEMI results.

FIG. 9. The YX-mode MT response for the COMMEMI 3D-1 model at 10 Hz. See Figure 8 for details.
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116 Mitsuhata and Uchida

FIG. 10. The COMMEMI 3D-2 model used to compare the finite-element solutions (this study) with the integral-equation solutions.
The 3D MT response at 0.001 Hz was computed along the x-axis.

FIG. 11. Comparisons between the finite-element (TO3DMT) and integral-equation solutions for the COMMEMI 3D-2 model at
0.001 Hz: (a) XY-mode apparent resistivity, (b) XY-mode phase data, (c) YX-mode apparent resistivity, and (d) YX-mode phase
data.

formulated in terms of E or H, the system of curl–curl equations
for E and H becomes singular in the air where σ is zero. Thus, it
is necessary to approximate the air’s conductivity with a small
but nonzero value and to use a divergence correction. In our
algorithm, however, the curl–curl equation of T is only defined
in the earth, avoiding instabilities arising from the air’s low or
zero conductivity. Comparisons with the solutions to two com-

monly discussed 3D models in the COMMEMI project confirm
the validity of our modeling technique. The proposed finite-
element modeling method, in addition to integral-equation
methods, also represents a useful tool for checking the validity
of staggered-grid FD solutions, the accuracy of which has been
observed to vary depending on the type of staggered grid used
(Siripunvaraporn et al., 2002).
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APPENDIX A

DIVERGENCE OF THE ELECTRIC VECTOR POTENTIAL AT THE AIR–EARTH INTERFACE

In this appendix, we obtain an expression for the divergence
of T that includes the Coulomb gauge condition and that can
be used throughout the entire problem domain V . As shown in
Figure A-1, we consider an earth surface with topography Sc,
which is described using a function g( ) such that z = g(x, y).
Simplistically, the Coulomb gauge condition ∇ · T = 0 must be
satisfied in Vc [corresponding to z > g(x, y)], and T = 0 must
be satisfied in Va [corresponding to z < g(x, y)]. However, with
respect to the divergence of T at the earth’s surface Sc, a more
careful treatment is needed. We consider an infinitesimal vol-
ume �V containing an infinitesimal plane �Sc that is tangential
to Sc and define a local coordinate system of u, v, and w as

shown in Figure A-2. The axes of u and v lie within the plane
�Sc, and the w-axis is the downward normal to �Sc. The unit
outward normal vector n is antiparallel to the w-axis. The di-
vergence of T is given by

∇ · T = lim
�u,�v,�w→0

{
Tu(�u) − Tu(−�u)

2�u

+ Tv(�v) − Tv(−�v)
2�v

+ Tw(�w) − Tw(−�w)
2�w

}
,

(A-1)
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118 Mitsuhata and Uchida

FIG. A-1. A general view of T on the earth’s surface Sc de-
scribed by g(x, y) = z. The positive direction of T is antiparallel
to the outward unit normal vector n.

FIG. A-2. An infinitesimal volume �V containing a part of Sc.
The local coordinate axes u, v, and w are defined in �V ; and the
side lengths of �V are denoted by 2�u, 2�v, and 2�w in the
u, v, and w directions, respectively. The infinitesimal tangential
plane to Sc is denoted by �Sc.

where Tu , Tv , and Tw are components of T in the u-, v-, and
w-directions, respectively. Considering the condition implied
by equation (16) at Sc, we can treat Tu and Tv as zero in �V .
Consequently, equation (A-1) becomes

∇ · T = ∂Tw

∂w
in �V . (A-2)

APPENDIX B

DERIVATION OF THE SYSTEM MATRIX FOR THE GALERKIN METHOD

Here we derive the submatrices in the system matrix of the
Galerkin finite-element method. Substituting equation (28)
into equation (30), we consider the following terms:

∫
V e

c

Ne
i · ∇ ×

(
1
σ

∇ × T
)

dV

=
∫

V e
c

1
σ

(∇ × Ne
i

) · (∇ × T)dV

+
∫

V e
c

∇ ·
[(

1
σ

∇ × T
)

× Ne
i

]
dV

=
∫

V e
c

1
σ

(∇ × Ne
i

) · (∇ × T)dV

+
∫

Se

[(
1
σ

∇ × T
)

× Ne
i

]
· nd S

=
∫

V e
c

1
σ

(∇ × Ne
i

) · (∇ × T)dV

+
∫

Se
Ne

i · (n × E)d S, (B-1)

where the vector formula ∇ · (A × B) = B · (∇ × A) − A · (∇ ×
B), Gauss’s theorem, and equation (5) are used and where
n is the outward unit normal vector to the surface Se of the
eth volume element V e

c . Since the tangential components of E
are continuous at the interfaces, the second term on the right-
hand side of equation (B-1) disappears during the assembly
of equation (B-1) for the entire region Vc. Consequently, from
equations (28), (30), and (B-1), the submatrices obtained from
equation (30) are given by

[Ee]i j =
∫

V e
c

(∇ × Ne
i

) · (∇ × Ne
j

)
dV, (B-2)

[Fe]i j =
∫

V e
c

Ne
i · Ne

j dV, (B-3)

At any point r in the lower part of �V contained by Vc, or
r ∈ �V ∩ Vc, the Coulomb gauge condition ∇ · T(r) = 0 is satis-
fied, meaning that ∂Tw(r)/∂w = 0 from equation (A-2). More-
over, Tw is regarded as invariable with respect to u and v within
the infinitesimal volume �V . Therefore, Tw is a constant value
at r ∈ �V ∩ Vc. In addition, because T = 0 in Va , we can write

Tw = T 0
wU(z − g(x, y)) in �V, (A-3)

where T 0
w is the value of Tw at Sc and U is the unit step function

U(z ≥ g(x, y)) = 1 and U(z < g(x, y)) = 0. The derivative of Tw

with respect to w can be written as

∂Tw

∂w
= T 0

w

∂U(z − g(x, y))
∂w

= T 0
w

∂U( f )
∂ f

∂ f

∂w
in �V . (A-4)

where f = z − g(x, y). Since the gradient of f is parallel to the
w-direction, we have ∂ f/∂w = |∇ f | (see Miya, 1995). More-
over, because dU(α)/dα = δ(α), the Dirac delta function [equa-
tion (A-4)] can be written as

∂Tw

∂w
= T 0

wδ( f )|∇ f | in �V . (A-5)

Given once again that n is antiparallel to the w axis and
δ( f �= 0) = 0, and using equations (A-2) and (A-5), we obtain

∇ · T(r) = −n · T(r)|∇ f |δ(z − g(x, y)), (A-6)

where

|∇ f (x, y)| =
√(

∂g

∂x

)2

+
(

∂g

∂y

)2

+ 1. (A-7)

Owing to the characteristics of the delta function, equa-
tion (A-6) incorporates the Coulomb gauge condition in Vc

and is applicable to the entire problem domain V .
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and

[H e]i j =
∫

V e
c

Ne
i · ∇N e

j dV . (B-4)

In addition, using the incident magnetic field H0, the elements
of {Pe} are written by

{Pe}i =
∫

V e
c

Ne
i · H0dV . (B-5)

Equation (18) is a type of Poisson equation for the scalar po-
tential. Solving the Poisson equation using the Galerkin finite-
element method with nodal elements is a well-known proce-
dure (e.g., see Jin, 1993). The submatrix [Ge] is easily obtained
as

[Ge]i j =
∫

V e
∇N e

i · ∇N e
j dV . (B-6)

In equation (31), the integral of the second term on the right-
hand side of equation (29),

Qe
i = −

∫
ve

N e
i n · T(r)|∇ f |δ(r ∈ Se

c

)
dV, (B-7)

looks complicated; but as it contains the delta function and the
gradient of topography, the transformation of this volume in-
tegral into a surface integral is relatively straightforward. Only
�e

i on Se
c needs to be taken into account for evaluation (B-7).

As shown in Figure B-1, we note the eth volume element V e

containing the surface Se
c and consider a small volume �V e

containing an infinitesimal element of area dSe
c forming a tan-

gential plane to Se
c . Within V e, the local coordinates u, v, and w

can be formed such that the u and v axes can lie within Se
c and

w can be the downward normal to Se
c . As the first step, equa-

tion (B-7) is evaluated with respect to �V e. Assuming that T(r)

FIG. B-1. The volume integral over the eth volume element V e

containing the air–earth interface Se
c . The local coordinate axes

u, v, and w are defined within V e such that the u and v axes can
lie on Se

c and the w axis can be normal to Se
c . To evaluate the

integration across Se
c , a small-volume element �V e containing

an infinitesimal plane dSe
c tangential to Se

c is considered.

is constant with respect to u and v within �V e and varies along
w, we can write

qe
i = −du dv

∫ d

−d
N e

i n · T(r)|∇ f |δ(r ∈ Se
c

)
det([J ])dw,

(B-8)
where d is the half-length of �V e along w and det([J ]) denotes
the determinant of the Jacobian matrix [J ], given by

[J ] =




∂x

∂u

∂y

∂u

∂z

∂u
∂x

∂v

∂y

∂v

∂z

∂v

∂x

∂w

∂y

∂w

∂z

∂w




. (B-9)

Since f = z − g(x, y) and ∂ f/∂u = ∂ f/∂v = 0, we obtain
|∇ f | = ∂ f/∂w. Thus, equation (B-8) can be rewritten as

qe
i = −du dv

∫ d

−d
N e

i n · T(r) det([J ])δ
(
r ∈ Se

c

) ∂ f

∂w
dw

= −du dv

∫ d

−d
N e

i n · T(r) det([J ])δ( f )d f

= −N e
i n · T

(
r ∈ Se

c

)
det([J ])w=0du dv, (B-10)

where the fact that f = 0 and w = 0 are satisfied on Se
c is used.

Equation (B-10) shows that the volume integral with respect
to �V e equals the surface integral on dSe

c. Consequently by
integrating qe

i with respect to Se
c , Qe

i becomes

Qe
i =

∫
Se
c

qe
i = −

∫
Se
c

N e
i n · T det([J ])w=0du dv. (B-11)

Since in this paper we deal with a flat earth surface f = z, we
can write n = −ẑ and det([J ]) = 1. By substituting equation (21)
into equation (B-11) for brick elements located immediately
below the earth’s surface, Qe

i can be expressed as


Qe
0

...

Qe
3


 = [Qe]




T e
8
...

T e
11


 . (B-12)

By rewriting equation (B-12) for all N e
i and Ne

j in the form
of equation (32), the elements of the submatrix [Qe] in equa-
tion (32) are given by

[Qe]i j =
∫

Se
c

N e
i

∣∣Ne
j

∣∣d S (i = 0 ∼ 3 and j = 8 ∼ 11)

= 0 (otherwise).
(B-13)
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