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S U M M A R Y
A viscoelastic damage rheology model is presented that provides a generalization of Maxwell
viscoelasticity to a non-linear continuum mechanics framework incorporating material degra-
dation and recovery, transition from stable to unstable fracturing and gradual accumulation
of non-reversible deformation. The model is a further development of the damage rheology
framework of Lyakhovsky et al. for evolving effective elasticity. The framework provides
a quantitative treatment for macroscopic effects of evolving distributed cracking with local
density represented by an intensive state variable. The formulation, based on thermodynamic
principles, leads to a system of kinetic equations for the evolution of damage. An effective
viscosity inversely proportional to the rate of damage increase is introduced to account for
gradual accumulation of irreversible deformation due to dissipative processes. A power-law
relation between the damage variable and elastic moduli leads to a non-linear coupling be-
tween the rate of damage evolution and the damage variable itself. This allows the model to
reproduce a transition from stable to unstable fracturing of brittle rocks and the Kaiser effect.
3-D numerical simulations based on the model formulation for homogeneous and heteroge-
neous materials account for the main features of rock behaviour under large strain. The model
coefficients are constrained, using triaxial laboratory experiments with low-porosity Westerly
granite and high-porosity Berea sandstone samples.
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1 I N T RO D U C T I O N

Fracture processes control the mechanical response and stability
of a rock mass under brittle conditions and produce rock damage.
The evolving rock damage in turn modifies the strength and elas-
tic properties of the rock (e.g. Nishihara 1957; Zoback & Byerlee
1975; Schock 1977; Lockner & Byerlee 1980; Schock & Louis 1982;
Alm et al. 1985; Reches & Lockner 1994; Weinberger et al. 1994;
Pestman & Munster 1996) and leads to reduced elastic moduli at
large stresses before brittle failure (e.g. Lockner & Byerlee 1980;
Lockner et al. 1991, 1992). Laboratory investigations of rock frac-
turing show that this process cannot be described in terms of prop-
agation of a single crack in the framework of linear elastic fracture
mechanics (e.g. Yukutake 1989; Lockner et al. 1991, 1992; Reches
& Lockner 1994). The distributed damage at the tip of a propagat-
ing crack, or process zone, is often treated by models that specify
a cohesive zone within the plane of the crack, which eliminates the
non-physical crack-tip singularity (e.g. Dugdale 1960; Barenblatt

1962; Ida 1972; Palmer & Rice 1973; Rubin 1993, 1995; Willemse
& Pollard 1998). The size and geometry of the damage zone con-
trol both the trajectory and growth rate of the evolving macrocrack
(Bazant & Cedolin 1991; Huang et al. 1991; Chai 1993; Zietlow
& Labuz 1998). Thus it is important to account explicitly for the
distribution of damage in analysis of rock fracturing.

The theory of damage mechanics has been applied extensively to
model fracturing processes in engineering and rock-like materials.
In this theory, the degradation of elastic moduli and strength of the
material is interpreted as resulting from an increase in the density
of cracks or rock damage. In order to simulate this degradation, a
non-dimensional intensive damage variable α is introduced. In con-
tinuum frameworks, the damage variable characterizes rock volumes
large enough that the distribution of internal flaws (microcracks in
laboratory specimens or small faults in a crustal domain) continues
smoothly. Therefore, the continuum damage mechanical approach
does not imply precise micromechanical fracture mechanisms. The
effect of rock degradation is achieved by making the elastic moduli
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a decreasing function of the damage variable. Several researchers
(see, e.g., the review of Kachanov 1994) have proposed models with
a scalar damage variable that fit various aspects of existing experi-
mental results. In the study of Hansen & Schreyer (1994), a scalar
isotropic damage model correlated well with changes in Young’s
modulus but not with changes in the apparent Poisson ratio. For this
reason, Ju (1990) and Hansen & Schreyer (1994) suggested upgrad-
ing the damage variable from a scalar to a tensor quantity. Such a
tensorial damage model contains at least three adjustable parameters
that can be used to simulate the evolution of the apparent Poisson
ratio. Variations of Young’s modulus and Poisson’s ratio with dam-
age intensity under different types of load can also be described
using a non-linear elastic model with a scalar damage variable. This
was done in the thermodynamically based damage model proposed
by Lyakhovsky & Myasnikov (1984), Agnon & Lyakhovsky (1995)
and Lyakhovsky et al. (1997a,b).

For mathematical simplicity, the damage model of Lyakhovsky
et al. (1997a) ignores gradual accumulation of irreversible strain be-
fore the free energy function loses its convexity and a macroscopic
brittle failure occurs. Ben-Zion et al. (1999), Lyakhovsky et al.
(2001) and Ben-Zion & Lyakhovsky (2002) use the loss of convex-
ity of the energy function to define initiation of seismic events asso-
ciated with a step-like increase of inelastic strain in regional litho-
spheric models incorporating the damage rheology. Fig. 1 shows
schematically stress–strain relations for linear elasticity and elas-
tic and viscoelastic damage rheology models. Deformation of a
damage-free rock follows linear Hookean elasticity represented by
a dotted line. The stress–strain curve begins to deviate from linear
elasticity when the conditions for the onset of damage evolution
are achieved (point A in Fig. 1). The stage of distributed damage
increase begins with the onset of damage and ends at point C, where
brittle failure of the rock occurs. If the loading is stopped at point B,
the elastic damage model reverts to zero total strain after unloading
the stress to zero, by a different path, as shown in Fig. 1. The area be-
tween the loading and unloading paths (area 1 in Fig. 1) represents

Figure 1. Schematic diagram of stress–strain relations and related energy partitions for linear elasticity, the pure elastic damage model (Lyakhovsky et al.
1997a) and the viscoelastic model (the present model). The areas between the loading and unloading paths represent energy dissipation in the pure elastic
damage model (area 1, horizontal lines) and in the present model (area 2, diagonal lines).

energy dissipated due to the creation of damage and friction be-
tween crack surfaces during the cycle (Jaeger & Cook 1984). Rocks
exhibit a more complex behaviour and the strain during unloading
beyond point A does not return to zero but to a permanent inelastic
strain level εi

0. The accumulation of an additional irreversible strain
component slightly changes the new loading path (curve A–B′–C′

instead of A–B–C in Fig. 1). An extra energy dissipated during the
loading cycle (the difference between areas 2 and 1 in Fig. 1) is
related to permanent inelastic slip between the microcrack surfaces.
In this paper we attribute that permanent strain and additional dissi-
pation to a damage-related viscosity in a viscoelastic version of the
damage rheology model.

The generalized formulation presented provides a better agree-
ment between model predictions and observed features of rock
mechanics experiments, including the onset of brittle failure, sta-
ble/unstable fracturing and the Kaiser effect. Stable fracturing is a
situation in which an increase of load is required to cause further
cracking, whereas in the unstable regime no further increase of load
is required for a complete eventual failure of the sample (Bieniawski
1967). The unstable crack growth and static fatigue were related ex-
perimentally by Martin & Chandler (1994) to situations where the
time-to-failure under constant loading is finite. According to static
fatigue tests, the stress at failure decreases with an increase in the
loading time (e.g. Kranz et al. 1982; Lawn 1993; Bolotin 1999). Un-
der cyclical load, acoustic emissions are not created at stress levels
less than the maximum stress reached in the previous cycle, while
above that level there is a high production of additional acoustic
emissions. Although this stress-memory effect, called the Kaiser
effect, was discovered more than 50 yr ago (Kaiser 1950), it is not
well understood theoretically, especially for rocks (Holcomb 1993;
Tang et al. 1997; Lavrov 2001).

In the following sections we first discuss the theoretical basis for
the elastic and viscoelastic versions of our damage rheology model.
Then we apply the damage rheology model to laboratory triaxial
experiments with low-porosity Westerly granite and high-porosity
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Berea sandstone samples. The quantities measured in the laboratory
experiments are axial and transverse components of stress–strain
curves and acoustic emissions. Some of the experiments included
small loading–unloading cycles during which the Kaiser effect was
observed. Using a simplified analysis for a homogeneous distri-
bution of damage (single-element simulation) and 3-D numerical
simulations accounting for spatial heterogeneity in damage evolu-
tion, we show that the viscoelastic version of the model can account
quantitatively for the main stages and key deformation features of
the various experiments.

2 T H E O RY

In this section we present the main features of the damage rheology
model. To evaluate the damage effects, Lyakhovsky et al. (1997b)
derived the macroscopic stress–strain relations for a 3-D elastic solid
with non-interacting cracks embedded inside a homogeneous ma-
trix. The assumed cracks dilate due to local tension perpendicular
to the crack orientation or contract under local compression. The
solution for the elastic energy of such a solid was derived using
the self-consistent scheme of Budiansky & O’Connell (1976). Fol-
lowing the formulations discussed by Lyakhovsky et al. (1997a,b),
the elastic potential can be written as a second-order non-analytical
function of the strain invariants:

U = 1

ρ

(
λ

2
I 2

1 + µI2 − γ I1

√
I2

)
, (1)

where ρ is the density, λ and µ are the Lamé parameters and I 1 =
ε i i and I 2 = ε i jε i j are two independent invariants of the elastic
strain tensor. The energy expression (1), adds to the two quadratic
terms of the Hookean elastic solid a third non-analytical, second-
order term with a coefficient γ . This is the simplest mathematical
generalization of the elastic energy that goes beyond the classical
form of Hookean elasticity. Energy expressions with non-integer
power of state variables are common for many well-known non-
linear systems, e.g. Hertzian theory for elastic deformation of a
granular medium or van der Waals energy equation for a non-ideal
gas. Similarly, the third term in (1) incorporates non-linear elasticity,
even for an infinitesimal strain, and it simulates abrupt change in
the elastic moduli when the loading reverses from compression to
tension. Lyakhovsky et al. (1997a) derived the conditions imposed
on the elastic moduli λ, µ, and γ to ensure the convexity of the
elastic potential (1), and calculated the maximum value of γ using a
condition for loss of convexity corresponding to macroscopic brittle
failure.

Following Murnaghan (1951), the stress tensor, σ i j , is defined
as a derivative of the energy potential (1) with respect to the strain
tensor

σi j = ρ
∂U

∂εi j
=

(
λ − γ

ξ

)
I1δi j + 2

(
µ − 1

2
γ ξ

)
εi j , (2)

where ξ = I1/
√

I2, referred to as the strain diagonality, varies from
−√

3 for pure compaction to +√
3 for pure tension. A value of ξ =

0 corresponds to pure shear or zero volumetric strain (I 1 = 0). A
non-zero coupling coefficient γ makes the effective elastic moduli
dependent on the strain diagonality ξ .

The kinetic aspect of the damage rheology model is introduced
by making the elastic moduli functions of a scalar damage variable
α (i.e. λ(α), µ(α) and γ (α)), with 0 ≤ α ≤ 1. For mathematical
simplicity we keep one of the elastic moduli constant. Thus, we
consider the following three combinations: (i) γ = const., λ = λ(α),
µ = µ(α); (ii) µ = const., λ = λ(α), γ = γ (α); (iii) λ = const.,

µ = µ(α), γ = γ (α). All three combinations lead to a decrease
in Young’s modulus with damage. However, combination (i) pre-
serves a constant Poisson ratio, as discussed by Hansen & Schreyer
(1994). In both combinations (ii) and (iii) the Poisson ratio changes,
but only combination (iii) leads to an increase in the Poisson ra-
tio and dilatation with increasing damage. An increase in Poisson’s
ratio, dilation and decrease in Young’s modulus are all widely ob-
served features in rock mechanics experiments (e.g. Jaeger & Cook
1984; Martin & Chandler 1994). Having limited observational data,
Agnon & Lyakhovsky (1995) assumed that the moduli µ and γ are
linear functions of the damage variable α (i.e. µ = µ0 − αµ1, γ =
αγ 1) and the modulus λ is constant. The values of µ1 and γ 1 were
constrained by Lyakhovsky et al. (1997a, eq. 15) from the condition
of material destruction for α = 1. In the present formulation we
follow similar assumptions and vary only two of the elastic moduli,
but we generalize the relations between the damage variable and
elastic moduli to the forms:

λ = const., µ = µ0 − µ1α, γ = γ1
α1+β

1 + β
, (3)

where β is constant. As will be shown later, the choice 0 < β <

1 in conjunction with other model coefficients provides a better fit
to experimental data than the previous assumption of β = 0. In
the next section we will use the elastic energy (1) and the elastic
moduli for damaged material (3) to derive an equation for damage
evolution, and show that it reproduces the transition between stable
and unstable weakening and the Kaiser effect.

2.1 Kinetics of damage evolution

The damage evolves with time as a result of the ongoing deforma-
tion. Here we briefly present the thermodynamic background of the
damage rheology model (see Lyakhovsky et al. 1997a, for detailed
derivation of the equation of damage evolution). The free energy,
F(T , ε i j , α) = U − TS, of a solid is assumed to be a function of
temperature, T , elastic strain, ε i j , and damage variable, α. The en-
tropy is given by S = − ∂ F/∂T (Malvern 1969). The assumption
that the energy depends only on the elastic strain, ε i j = εt

i j − εv
i j ,

i.e. the difference between the total strain, εt
i j , and the irreversible

strain, εv
i j , is consistent with a viscoelastic Maxwell model. Using

the balance equations of the energy and entropy, the Gibbs relation,
and the definition (Murnaghan 1951) of the stress tensor (2), the
local entropy production, �, may be represented as

� = − Qi

ρT
∇i T + 1

ρ
σi j

dεv
i j

dt
− ∂U

∂α

dα

dt
≥ 0, (4)

where Qi is the heat flux. The first term of eq. (4) describes en-
tropy production by heat conduction; the second term is related to
viscous dissipation; and the last term is related to internal energy
changes caused by microcracking. The elastic deformation is con-
servative and does not contribute to the entropy production. Each
term in eq. (4) represents entropy production due to a different phys-
ical process and can be classified according to its tensorial rank
(deGroot & Mazur 1962). Therefore, they should provide a non-
negative entropy production separately. The phenomenological
equations for the kinetics of εv

i j and α are written as (deGroot &
Mazur 1962; Malvern 1969)

dεv
i j

dt
= 1

η
σi j , (5)

dα

dt
= −C

∂ F

∂α
, (6)
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where the viscosity η and the coefficient C are positive functions of
the state variables describing the rate of irreversible strain accumu-
lation and damage processes, respectively. In the case of Maxwell
viscoelasticity, the same total stress defines the elastic deformation
through the Murnaghan relations (2) and drives the accumulation of
the irreversible strain accumulation (5). The damage kinetic eq. (6)
describes not only damage increase, but also a process of material
recovery associated with healing of microcracks, which is favoured
by high confining pressure, low shear stress, and, especially, high
temperature. Substituting (1) into (6) using (3), the damage evolu-
tion (6) can be rewritten as

dα

dt
= Cd I2

(
αβξ − ξ0

)
, (7)

where ξ 0 = µ1/γ 1 and the coefficient C d > 0 describes the rate of
damage evolution for a given deformation.

In the previous work by Lyakhovsky et al. (1997a) with β = 0 the
transition between degradation and healing was assumed to occur at
a critical strain-invariant ratio ξ = ξ 0 < 0 (Fig. 2a). The coefficient
ξ 0 was related to the friction angle (Agnon & Lyakhovsky 1995)
and the modulus γ 1 was constrained by the condition for loss of
convexity (eqs 14 and 15 in Lyakhovsky et al. 1997a). The model
version with β = 0 did not account for possible stable weakening,
and once the strain field exceeds ξ 0 unstable weakening of the sam-
ple occurred. Hence, the previous formulation cannot reproduce the
Kaiser effect. This is demonstrated in Fig. 2(b) with a simulation

Figure 2. (a) States of stress associated with material weakening (degra-
dation) and healing for model with β = 0. Degradation (dα/dt > 0) occurs
whenever ξ > ξ 0 and healing, when ξ < ξ 0. (b) Schematic cyclic load-
ing and damage rate for simulation with β = 0 and zero initial damage
(α0 = 0).

of damage evolution for β = 0 under cyclic loading. Shear stress
was cyclically increased (continuous line in Fig. 2b) due to a con-
stant strain rate applied to initially damage-free material. In every
cycle the damage starts to accumulate (broken line in Fig. 2b) at a
loading level corresponding to a critical strain-invariant ratio ξ =
ξ 0. In this case, onset of damage occurs at about the same loading,
or even lower, than that of the previous cycle, due to material weak-
ening. This result contradicts the observed Kaiser effect where new
acoustic emissions occur only when the stress exceeds the maximum
stress of the previous cycle.

The proposed power-law relation (3) between the damage variable
and the elastic modulus, γ , leads to a non-linear coupling between
the rate of damage evolution and the damage variable itself (7). The
steady-state solution (dα/dt = 0) of (7) gives a transitional strain-
invariant ratio, ξ tran, that separates the healing and stable weakening
regions,

ξtran(α) = ξ0

αβ
. (8)

In the current formulation with β > 0, three different types of dam-
age evolution exist, shown in Fig. 3(a). The first type is healing or
damage decrease for ξ < ξ tran(α). The second type is stable weak-
ening for ξ tran(α) ≤ ξ < ξ 0. In this region the steady-state solution
for damage is a stable value α ≤ 1, and the damage does not grow to
a level of complete failure. The third type is unstable weakening for
ξ ≥ ξ 0. In this regime the steady-state solution for damage is

Figure 3. (a) States of stress associated with unstable and stable material
weakening and healing for model with β > 0 and α0 > 0. Unstable weakening
occurs whenever ξ ≥ ξ 0; stable weakening occurs when ξ tran ≤ ξ < ξ 0; and
healing when ξ < ξ tran. (b) Schematic cyclic loading and damage rate for
simulation with β = 0.5 and α0 = 0.1. Note that the damage rate is roughly
zero for stresses lower than the maximal stress previously achieved.
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Figure 4. Damage evolution for simulations with constant differential
stress, σ d and confining pressure (50 MPa). The coefficients used in these
simulations are the same as the coefficients for BS1 (see Table 1), except
that here C v = 0.

unstable, and loading in this region will lead to α ≥ 1 associated
with complete failure. Fig. 3(b) illustrates simulations of damage
evolution with β = 0.5 and α0 = 0.1 under cyclic loading similar
to that presented in Fig. 2(b). Since α increases during loading, the
transitional strain-invariant ratio ξ tran also increases within the cy-
cle. Therefore, the onset of damage in every cycle depends on the
damage level reached in the previous cycle. Fig. 3(b) shows that the
onset of damage occurs at stress levels close to the maximal value
of the previous cycle. This theoretical result is consistent with the
experimental observation of the Kaiser effect (e.g. Holcomb 1993;
Lavrov 2001). Fig. 4 illustrates the stable and unstable types of
damage evolution under constant loading applied to a rock sample
with pre-existing damage α = 0.1 and β = 0.5. Under low differen-
tial stress, a steady-state solution of eq. (7) is obtained after about
5500 s for 40 MPa differential stress and after about 7500 s for 80
MPa. The rate of damage evolution goes to zero at these stress lev-
els and the behaviour corresponds to stable weakening. For higher
differential stresses, there is unstable weakening associated with
accelerated damage increase with time until complete failure. The
time-to-failure decreases with increasing differential stress. These
results are in qualitative agreement with static fatigue tests discussed
by Kranz et al. (1982), Lawn (1993), Martin & Chandler (1994) and
others.

2.2 Damage-related viscosity

Viscosity values for rocks at room temperature and stresses below
the onset of acoustic emissions are above 1020 Pa s. With such val-
ues of η irreversible deformation, before the complete brittle failure
during typical rock mechanics experiments, cannot be attributed to
viscous deformation. Previous studies suggested that the observed
permanent inelastic deformation before brittle failure is related to
effective viscosity associated with the growth of microcracks and
frictional sliding between grains (e.g. Lockner 1993, 1998). For sim-

Table 1. Model coefficients for the different experiments.

Sample Rock type P conf λ µ0 ξ 0 β C d C v

(MPa) (104 MPa) (104 MPa) (s−1) (10−5 MPa−1)

GR1 Westerly granite 50 2.9 1.9 −0.56 0 3.0 2.0
GR2 Westerly granite 50 3.0 2.3 −0.62 0.15 2.2 3.0
BS1 Berea sandstone 50 0.5 1.4 −0.8 0.5 50 10
BS2 Berea sandstone 100 0.5 1.4 −1.0 0.5 50 10

ilar reasons, Martin & Chandler (1994) related the damage variable
to irreversible volumetric strain. Here we assume that for ξ >ξ tran(α)
there is a linear relation between the rate of irreversible deformation
and the rate of damage accumulation. With this we rewrite (5) as

dεv
i j

dt
=

{
Cv

dα

dt

(
σi j − 1

3 σkkδi j

)
, dα/dt > 0

0, dα/dt ≤ 0 . (9)

The compliance or inverse of viscosity (C vdα/dt) relates the devi-
atoric stress to the rate of irreversible strain accumulation. The units
of the material parameter C v are the inverse of stress and there is
no new timescale related to its value. The timescale associated with
the damage-related viscosity is controlled by the rate of the damage
process (7) through the damage rate parameter C d. The parame-
ter C v is assumed to be constant and constrained using laboratory
data presented in the following section. Here we do not account for
irreversible volumetric deformation (inelastic compaction), which
is negligible for granite and is small for Berea sandstone under
relatively low confining pressures. A damage-related inelastic com-
paction was discussed by Ricard & Bercovici (2003) and Hamiel
et al. (2004).

3 A N A LY S I S O F L A B O R AT O RY DATA

Westerly granite and Berea sandstone have been used extensively in
laboratory experiments on brittle deformation because they provide
convenient representative material for low-porosity crystalline rock
and high-porosity sedimentary rock, respectively. In this section we
analyse data obtained during two experiments with Westerly granite,
GR1 and GR2, and two experiments with Berea sandstone, BS1 and
BS2. The experiment GR1 was conducted and analysed earlier by
Lockner et al. (1992), where it was referred to as G3. The other three
experiments are new to this work. Experiments GR1, GR2 and BS1
were done under a confining pressure of 50 MPa, while BS2 was
conducted under a confining pressure of 100 MPa (Table 1). Data
recorded in the experiments include differential stress, axial and
transverse strain and the acoustic emission (AE) rate. In test GR1
the stress was controlled by a feedback of the AE rates to keep a
stable increase of AE events. The loading portions of all other tests
were done with a constant shortening rate of the combined piston and
rock sample. During tests GR2, BS1 and BS2 the stress was cycled a
number of times. Additional explanations of the experimental set-up
can be found in Lockner et al. (1992).

3.1 Westerly granite

All stress–strain curves recorded in the experiments with the
Westerly granite samples clearly show two different regimes of
deformation. The stress–strain data exhibit an almost linear relation
until the onset of acoustic emissions and significant deviation from
linear elasticity with the onset of AE (see Figs 5 and 8). We use the
linear part of the stress–strain curves to calculate the initial elastic
moduli (λ, µ0) for samples GR1 and GR2 (see Table 1 for all model
coefficients). The measured axial and transverse strains
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throughout the experiment allow us also to estimate the transitional
strain-invariant ratio (ξ tran) at the onset of acoustic emissions. The
parameters C d and C v for GR1 and GR2 are estimated by fitting
the calculated stress–strain curves to the observed ones. The
accumulated irreversible strain estimated from the small loading
cycles of sample GR2 provides additional constraint for C v.

Fig. 5 shows the measured differential stress versus axial strain
of GR1 together with the calculated curves. Simulations with a ho-
mogeneous damage distribution (single-element) using the elastic
damage model with β = 0, ignoring irreversible strain accumulation
(C v = 0) and a different kinetic coefficient (C d = 3 and 5 s−1) do
not fit well with the observed data over the entire deformation range
(Fig. 5a). The discrepancy near the peak stress can be attributed to
the accumulation of relatively high irreversible strain at this stage. A
better fit near the peak stress can be obtained with a single-element
simulation that accounts for the accumulation of irreversible strain,
using C v = 2 × 10−5 MPa−1 and C d = 3 s−1 (Fig. 5b). These
results indicate the importance of the damage-related viscosity for
reproducing correctly the experimental data. A small remaining dis-
crepancy between the observed and simulated stress–strains may be
related to the strong damage localization at the final stages of damage
evolution. This localization, shown by acoustic emission locations

Figure 5. (a) Measured stress–strain curve for GR1 (grey line) compared
with the calculated curves for single-element simulation, from linear elastic-
ity (dashed line) and the pure elastic damage model (C v = 0) with different
C d (3.0 and 5.0 s−1, black lines). (b) Measured stress–strain curve for GR1
compared with the calculated curves for the viscoelastic damage model
(C v > 0) for single-element simulation and multi-element 3-D simulation
(black lines). Stages (I, II, III) indicated on the stress–strain curve corre-
spond to failed elements location plots in Fig. 6. Note that the discrepancy
between multi- and single-element approaches is negligible until stage II.
For model coefficients see Table 1.

(Lockner et al. 1992), is a common feature of granite sample fractur-
ing and requires 3-D calculations that account for heterogeneity of
damage distribution. The simulation results in Fig. 5(b) with multi-
elements in a cylinder governed by the viscoelastic damage rheology
model provide a better fit to the observed data (see the Appendix for
details on the numerical method). Fig. 5(b) also shows a comparison
between the results obtained with multi-elements and with a single
element. The discrepancy between stress–strain curves simulated
with multi- and single-element approaches is negligible for most of
the simulation, except for the very last stage of deformation where
the damage strongly localizes to a narrow zone. This localization is
observed in the laboratory experiments just before the peak stress
(Lockner et al. 1992). Therefore, in the calculations for the other
samples (GR2, BS1 and BS2), we use only a single-element model.
In addition to fitting the stress–strains, the 3-D numerical simulation
also reproduces the evolving spatial distribution of deformation and
damage. The simulated evolution of damage can be divided into
three stages, marked on Fig. 5(b), characterized by different spatial
distribution. Fig. 6 represents the locations of failed numerical el-
ements at these stages. In stage (I) of the deformation the damage
is not localized and the failed elements occupy most of the sam-
ple surface. Stage (II) corresponds to the onset of localized damage
and stage (III) represents the total final failure along a narrow zone.
Fig. 7 shows the numerical grid used in the simulation and the values
of the damage variable α for each element at the final stage of the
simulation. At that stage a localized damage zone cuts the sample
obliquely with an orientation compatible with the observed fault
zone orientation in the laboratory experiment (Lockner et al. 1992).

The linear viscoelastic damage model with β = 0 (not shown
here) can provide a reasonable fit to the observed data of GR2 ex-
cept for the small loading cycles. The damage model with β > 0
improves the fitting quality throughout the loading cycles. Fig. 8
shows comparisons between the measured and calculated stress–
strain (axial and transverse) curves for GR2 using β = 0.15. We
note that the β value for the low-porosity granite rock is about zero
or relatively small.

Figure 6. Three stages of spatial distribution of evolving damage from the
3-D numerical simulations. The black dots represent the location of failed
numerical elements at each stage.
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Figure 7. Numerical grid of the sample and the values of the damage
variable, α, of each element at the final stage of the simulation.

Figure 8. Measured stress–strain curves, axial and transverse, for GR2
(grey line) compared with the calculated curve (black line). For model co-
efficients see Table 1.

3.2 Berea sandstone

The Berea sandstone experimental data (Figs 9–11) reveal three fun-
damental different aspects of deformation from those of the Westerly
granite. First, the onset of AE in Berea sandstone samples occurs
at a very early stage of the loading and linear elastic deformation
is hardly observed. Second, the accumulated inelastic strain during
loading is much higher, reaching about a third of the total strain
(Figs 9 and 10). Third, throughout all of the unloading–loading cy-
cles acoustic emissions are not recorded (Fig. 11) and inelastic strain
is not accumulated (Figs 9 and 10). These features can be accounted
for by assigning the Berea sandstone higher values of β and C v than
those of the Westerly granite.

To illustrate the foregoing effects we compare the observed and
single-element calculated stress–strain curves for BS1 (at 50 MPa
confining pressure) and BS2 (at 100 MPa confining pressure) using
the viscoelastic damage model with β = 0 (Figs 9a and 10a). These
calculations show that irreversible strain continues to accumulate
during the small cycles of loading–unloading, in contrast to the
experimental data. Corresponding model calculations with β = 0.5
provide a significantly better fit to the observed data (Figs 9b and
10b). In agreement with observed acoustic emissions, the damage
onset occurs at a very early stage of deformation and the damage
level remains constant during most of the cycles (Fig. 11). This

Figure 9. Measured stress–strain curves, axial and transverse, for BS1
(grey line) compared with the calculated curves (black line), with β = 0
(a) and β = 0.5 (b). For model coefficients see Table 1.

feature is compatible with the observed rock behaviour associated
with the Kaiser effect. The model simulations used to fit the data
recorded in the two experiments with Berea sandstone (BS1 and
BS2) differ only in that for BS1 the employed critical strain-invariant
ratio was ξ 0 = −0.8, whereas for BS2 it was ξ 0 = −1 (Table 1).
Hamiel et al. (2004) discuss similar changes of ξ 0 in relation to
a transition from brittle failure to cataclastic flow in high-porosity
rocks.

4 D I S C U S S I O N

4.1 Elastic moduli of the damaged rock

Having limited observational data, Agnon & Lyakhovsky (1995)
and Lyakhovsky et al. (1997a) assumed previously linear relations
between the elastic moduli and the damage variable. In their model,
the transition between degradation and healing occurs at a critical
strain-invariant ratio ξ 0 related to the friction angle (Agnon &
Lyakhovsky 1995). Once the strain field exceeds ξ 0, unstable
weakening of the sample occurs. Thus the previous version of the
model with linear damage–moduli relation did not account for
possible stable weakening, and failed to describe the Kaiser effect.
In the new version of the damage rheology model with power-law
relations between the damage variable and elastic moduli (eq. 3), the
rate of damage evolution (eq. 7) depends on the value of the damage
variable itself. Instead of the constant critical strain-invariant ratio
separating healing and weakening regions, damage onset occurs at
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Figure 10. Measured stress–strain curves, axial and transverse, for BS2
(grey line) compared with the calculated curves (black line), with β = 0 (a)
and β = 0.5 (b). For model coefficients see Table 1.

Figure 11. Normalized AE (thick line) compared with normalized damage
variable (dotted line) during BS1 (a) and BS2 (b). Note that both accumulated
AE and damage are roughly constant during the small unloading–loading
cycles.

the transitional strain-invariant ratio ξ tran that increases with growing
damage variable. This allows the model to reproduce a transition
from stable to unstable fracturing of brittle rocks and the Kaiser
effect. Since the transition from degradation to healing depends on
the damage level accumulated during a previous loading cycle and
the rate of healing is negligibly small on laboratory timescales at
room temperature, the damage does not change until the stress of
the current loading cycle approaches the maximum stress of the
previous cycle (Fig. 3). Similarly to static fatigue tests (e.g. Kranz
et al. 1982; Lawn 1993; Bolotin 1999) the simulations with the
model using power-law moduli–damage relations show decrease in
strength with increase in loading time (Fig. 4).

4.2 Damage-related viscosity and irreversible deformation

The elastic damage rheology model of Lyakhovsky et al. (1997a) ig-
nores gradual accumulation of irreversible strain that is observed in
rock mechanics experiments (e.g. Martin & Chandler 1994) before
a macroscopic brittle failure occurs. In the present study, we gen-
eralize the Maxwell viscoelasticity and use the concept of damage-
related viscosity to model a gradual accumulation of irreversible
deformation. The effective compliance or inverse of viscosity in a
viscoelastic damage rheology model is proportional to the rate of
damage accumulation and vanishes at a state of stress corresponding
to healing (negative rate of damage). Under this assumption, short-
term damage-related viscous deformation does not exist if there is
no damage evolution (since the effective viscosity will be very high).

The concept of damage-related viscosity is supported by the de-
formation behaviour of rock in the progressive unloading and reload-
ing cycles. In the stress–stain curves of Figs 8–10 we do not observe
significant irreversible deformation in the cycles that have low AE
rates. Figs 5 and 8–10 show a quantitative agreement between the
damage model with a damage-related viscosity and the experimental
observations on crystalline as well as high-porosity rock samples.

4.3 Comparisons between the model
and new experimental results

The generalized viscoelastic damage rheology model was tested
against new laboratory data, two experiments with Westerly granite
GR1 and GR2 and two experiments with Berea sandstone BS1 and
BS2. The Berea sandstone experimental data (Figs 9–11 ) reveal
three aspects of deformation different from those of the Westerly
granite that support the model assumptions. First, the onset of AE
in Berea sandstone samples occurs at a very early stage of loading
and linear elastic deformation is hardly observed. Second, the irre-
versible strain in Berea sandstone samples is much higher than in
Westerly granite, reaching about a third of the total strain (Figs 9 and
10). Third, throughout all of the unloading–loading cycles acoustic
emissions are not recorded (Fig. 11) and irreversible strain is not
accumulated (Figs 9 and 10). All these features are well reproduced
using a power-law (β = 0.5) model with damage-related viscosity
(C v = 1 × 10−4 MPa−1). These model coefficients for the Berea
sandstone differ significantly from those of the Westerly granite. The
model fits well the experimental data of the Westerly granite with
small β values, ranging from 0 to 0.15, and C v = 2–3 × 10−5 MPa−1.
The comparison between elastic and viscoelastic damage rheol-
ogy model simulations (Fig. 8) shows that the accumulated irre-
versible deformation in the Westerly granite sample is on the order of
10 per cent of the total deformation at the peak stress. Thus, the elas-
tic damage rheology model with β = 0 is a good approximation for
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low-porosity crystalline rocks, while a power-law moduli–damage
relation and accumulation of irreversible strain is essential for high-
porosity rocks.

4.4 3-D numerical simulation of evolving damage

Although a single-element simulation of damage rheology for ho-
mogeneous material gives a reasonable fit to the stress–strain curves
until failure, it cannot reproduce correctly the evolution in the vicin-
ity of a peak stress and post-failure frictional sliding. This is because
single-element simulation does not account for spatial variability of
the evolving damage, which can only be done by using a 3-D multi-
element simulation. The numerical model correctly reproduces the
stress–strain data including macroscopic failure and post-failure
frictional behaviour. The location maps of failed elements during
the numerical simulation of Westerly granite show a transition from
distributed non-localized damage at an initial stage of damage evo-
lution to a localized oblique damage zone at a later stage (Fig. 6).
Similarly to localization of plastic deformation in fracture mechan-
ics models (e.g. Rudnicki & Rice 1975), the loss of convexity in the
damage rheology model leads to strain localization along the narrow
damage zone (Fig. 7). The simulated transition from distributed to
localized damage is compatible with geometrical patterns reported
for acoustic emission location maps by Lockner et al. (1992) for
Westerly granite samples.
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A P P E N D I X A : N U M E R I C A L M E T H O D

Our 3-D numerical simulations use the fast Lagrangian analysis
of continua (FLAC) algorithm (Cundall & Board 1988; Cundall
1989; Poliakov et al. 1993). The formulation is explicit in time,
using an updated Lagrangian scheme to provide the capability for
large strains. The FLAC algorithm is believed to offer advantages
over conventional finite-element schemes in cases where material
instability occurs. Physical instability is modelled without numerical
instability if inertial terms are included in the equilibrium equations.
The general procedure basically involves solving a force balance

equation for each grid point in the body

∂vi

∂t
= Fi

m
, (A1)

where vi and Fi are velocity and force applied to a node of mass m.
The solution of the equations of motion provides velocities at each
grid point, which are used to calculate element strains. These strains
substituted into the linear or non-linear constitutive relation provide
element stresses and then forces acting on the element faces. These
forces recalculated to the grid nodes are the necessary input for the
solution of the equation of motion in the next step of the calculation
cycle.

The computational mesh consists of four-point tetrahedral ele-
ments. The four linear element basic functions, Lk (k = 1–4 being
the number of element nodes) are

Lk = ak + bk x1 + ck x2 + dk x3, (A2)

where ak , bk , ck , dk are constants and (x 1, x 2, x 3) are coordinates
within the element. These shape functions are used to linearly in-
terpolate the nodal velocities (V (k)

i ) within each element and enable
calculation of the strain increments 
ε i j


εi j = 
t
4∑

k=1

(
V (k)

i

∂Lk

∂ X j
+ V (k)

j

∂Lk

∂ Xi

)
. (A3)

After the elastic strains are calculated, the stress tensor is computed
using constitutive relation (2), which in our case also includes the
local value of the level of damage in the specific element. The nodal
forces are now a vector sum of one-third of the forces acting on all
faces adjacent to the node:

Fi

∑
faces

1

3
σi j n j + mgi , (A4)

where nj is a normal vector to the face, node mass m is one-third
of the mass of elements adjacent to the node, and gi is the gravity
acceleration vector. Once the forces are known, new velocities are
computed by integrating (A1) over a given time step

V (n)
i (t + 
t) = V (n)

i (t) +
[

F (n)
i − χ

∣∣∣F (n)
i

∣∣∣ sign
(

V (n)
i

)]
× 
t

m inert
. (A5)

During the integration, the previously calculated force (F (n)
i ) is

damped. The damping term is proportional to the acceleration (out-
of-balance) force and sign opposite to velocity with the damping
factor 0 < χ < 1. This term dissipates the energy of the system and
attenuates elastic waves travelling in the simulated area. It vanishes
if the system is in equilibrium and provides a convergence of numer-
ical procedure to a steady-state solution. Following Poliakov et al.
(1993) we use ‘inertial’ mass in (A5) instead of ‘gravity’ mass in
(A1) to allow adaptive time scaling. The time step, which provides
stability to the numerical scheme, is:


t = 1

2


x

Vp
, (A6)

where 
x is a minimal distance between gridpoints and Vp is the
maximum possible seismic velocity in the material. Introducing den-
sity scale factor (m inert = D s m) we decrease Vp as the square root of
D s and proportionally increase the time step without any numerical
artefacts. This certainly can only be done if the system is close to
equilibrium (out-of-balance force approaches to zero). This adap-
tive procedure, starting with D s = 1, automatically increases D s if
the system is in a steady-state regime, or brings it back to unity if
the solution deviates from static.

C© 2004 RAS, GJI, 159, 1155–1165



A viscoelastic damage model 1165

The damage variable (α) for each element is calculated for every
numerical cycle according to eq. (4) with the time step defined by
adaptive procedure. If damage in one element achieves its critical
level (α = αcr) then a drop in stress occurs. The real dynamic pro-
cess, wherein the stress drop generates waves, is not simulated here.
However, a quasi-dynamic procedure is applied to simulate prop-
agation of a rupture front. This is accomplished by recalculating
the stress field after each stress drop for every element involved in

the rupture process, and by incorporating dynamic weakening of
material; the latter is achieved by reducing the critical value of the
damage variable, αcr, to αdynamic:

αdynamic = αcr −
√

τa
dα

dt
, (A7)

where τ a is material coefficient.
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