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ABSTRACT: The nature, thickness, and location of deposits from a par-
ticulate gravity current is strongly influenced by whether the flow is
concentrated or dilute, whether it is laminar or turbulent, and whether
it is supercritical or subcritical. These transitions are causally linked,
because there is a clear contrast between a concentrated, laminar flow-
type (e.g., pyroclastic flows and debris flows) and a dilute, turbulent
flow-type (e.g., pyroclastic surges and turbidity currents). In this paper
it is shown that the primary transition is from a dense to a less dense
current, leading, in turn, to a transition from laminar to turbulent flow.
This density transition can be caused by interface instability or by
vigorous entrainment of ambient fluid at a hydraulic jump. It is also
shown in this paper that hydraulic jumps occur at Froude numbers
significantly different from unity. These concepts are confirmed by pre-
viously published data from a gravity current in the San Dimas Res-
ervoir.

INTRODUCTION

Gravity currents, in which a dense fluid underflows a less dense one, are
widespread in the natural world (e.g., rivers and cold fronts; Simpson
1997). In particulate gravity currents the dense fluid is formed by particles
suspended in a gas or liquid (e.g., an avalanche in which the dense fluid
is a mixture of snow and air). Two types of particulate gravity current are
of particular interest to sedimentologists. Explosive volcanic events give
rise to pyroclastic surges and pyroclastic flows, in which the dense fluid is
a mixture of hot gases, dust, and larger volcaniclastic fragments. In sub-
aqueous environments, on the other hand, slope failure events can give rise
to debris flows and turbidity currents, in which the dense fluid is a mixture
of water, mud, sand, and larger siliciclastic fragments. For both environ-
ments there is a clear contrast between a concentrated, laminar flow-type
(pyroclastic flows and debris flows) and a more dilute and turbulent flow-
type (pyroclastic surges and turbidity currents). This immediately suggests
that there is some causal link between the transition from a concentrated
to a dilute flow and the transition from a laminar flow to a turbulent flow.
However, the direction of the causal link is not obvious. A transition to
turbulence might result in increased entrainment of ambient fluid, leading,
in turn, to a rapid transition to a dilute flow. On the other hand it would
seem equally plausible that a drop in flow density results in a drop in flow
viscosity, leading to a transition to turbulence. This paper is concerned
with sorting out these questions of cause and effect. These transitions are
of much more than purely theoretical interest. The nature of the flow de-
posits, as well as their location and thickness, are strongly affected by these
changes in flow properties.

Fisher (1983) specifically concentrated on the laminar-to-turbulent tran-
sition and identified four distinct routes for producing this transformation:

1. Body transformations, in which a flow changes from laminar to turbu-
lent flow without significant change in density;

2. Gravity transformations, in which a flow segregates, by gravitational
settling, into an underlying dense laminar flow and an upper dilute tur-
bulent flow;

3. Surface transformations, in which ambient fluid becomes entrained in
the upper part of the flow, leading, again, to an underlying dense laminar
flow and an upper dilute turbulent flow;

4. Fluidization transformations, in which particles and fluids diffuse up-

wards from a dense laminar flow to produce an overlying dilute tur-
bulent flow.

Body transformations imply that the laminar-to-turbulent transition oc-
curs first and that this is followed by increased fluid entrainment and a
transition to a low-density or density-stratified flow. The other three trans-
formations are examples in which the primary transition is to a flow with
density stratification. The low-density parts of that flow then subsequently
become turbulent.

In addition to the high-density to low-density transition and the laminar-
to-turbulent transition, there is a third important form of flow transition:
the transition from a supercritical flow, in which flow is faster than the
speed of a wave propagating across the flow surface, to a subcritical flow.
This transition is important partly because supercritical and subcritical
flows have very different characteristics. More importantly, however, the
supercritical-to-subcritical transition is abrupt and leads to a very sharp
change in flow speed and thickness known as a hydraulic jump. It is very
plausible that an increase in turbulence, and/or the potential for flow strat-
ification, might be associated with the changes at a hydraulic jump, and so
this third flow transition type is also investigated in this paper.

In principle, these three transitions are distinct. For example, it is theo-
retically quite possible to have a transition from a laminar, high-density
flow to a laminar, low-density flow. Nevertheless, several authors (e.g.,
Komar 1971; Hand 1974) have suggested that these transitions should be
causally linked by, for example, enhanced fluid entrainment (high-density
to low-density transition) at a hydraulic jump (supercritical to subcritical
transition). Observations of real flows have been interpreted as supporting
this conclusion (e.g., Weirich 1989; Piper et al. 1999).

This paper investigates these transitions using depth-averaged Equations
closely related to those used by Chu et al. (1979) and Parker et al. (1986).

LAMINAR-TO-TURBULENT FLOW TRANSITIONS

The transition from a laminar to a turbulent flow is commonly investi-
gated by calculating the Reynolds number

Re 5 Dvr/m (1)

where D is a typical flow dimension, v a typical velocity, r is density and
m is viscosity. This number expresses the relative sizes of inertial and
viscous forces. Turbulence requires inertial forces large enough to over-
come the tendency of viscosity to keep the flow well ordered. Hence, tran-
sition to turbulence occurs when the Reynolds number exceeds a critical
value. For simple Newtonian fluids this critical value is approximately 103,
but for more complex rheologies the critical value can be very much higher
(Hampton 1972).

Taking the flow depth, h, as the appropriate typical dimension, and the
depth-averaged flow velocity, ū, as the appropriate typical velocity, Equa-
tion 1 becomes

Re 5 hūr/m. (2)

It is convenient to express this in terms of the mass flux, Q, of the flow
given by

Q 5 hūrW (3)

where W is the mean flow width. Combining Equations 2 and 3 gives

Re 5 Q /Wm. (4)
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Hence, a transition from a laminar to a turbulent flow requires an increase
in flux, a decrease in flow width, a fall in viscosity, and/or a drop in the
critical value of the Reynolds number. Note that, in most flows, width
increases with distance and the flow should tend to become less turbulent
as it travels away from its source. In particular, Equation 4 shows that a
body transformation (Fisher 1983) can occur only if the channel narrows.
A body transformation will certainly not be induced by a simple increase
in flow velocity (e.g., due to an increase in slope) because the effect of
this is canceled by a corresponding decrease in flow thickness.

HIGH-DENSITY TO LOW-DENSITY TRANSITIONS

Despite the conclusions of the previous section, transitions from laminar
to turbulent flow are commonly seen in nature. If this transition is not
caused by a narrowing channel, Equation 4 implies that it is due to a
decrease in viscosity and/or a decrease in the critical value of Reynolds
number. These will both be affected by changes in flow density because at
high suspended particle concentrations a fluid has a significantly increased
viscosity and a finite yield strength. This inherent strength has the effect
of suppressing turbulence, and the critical Reynolds number is therefore
significantly higher than for a simple Newtonian fluid.

The simplest rheological model for a flow having a nonzero yield
strength is a Bingham plastic (Hampton 1972), in which the basal shear
stress is given by

]u ū mū
t 5 K 1 m 5 K 1 mF 5 (F 1 B) (5)0 01 2]z h h

z50

where K is the yield strength of the fluid, z is the vertical coordinate mea-
sured upwards from the flow base, and B is the Bingham number, defined
by

B 5 Kh /mū (6)

F0, in Equation 5, is a flow-profile parameter whose precise value depends
upon the exact manner in which the flow velocity varies with height. A
flow in which the velocity increases uniformly with height would have a
gradient given simply by ]u/]z 5 2ū/h (i.e., F0 5 2) because the velocity
would go from zero at the flow base to 2ū at the flow top. Other flow
profiles (e.g., parabolic or logarithmic) have a different value of F0.

Note that if the yield strength becomes negligible (i.e., B ,, 1) then
Equation 5 reduces to that for a simple Newtonian fluid and the critical
Reynolds number should be around 103. However, if the yield strength is
significant, turbulence is suppressed and the critical Reynolds number is
greatly increased. Hampton (1972) showed experimentally that the transi-
tion to turbulent flow occurs at a Reynolds number of approximately
1000B. In the subsequent analyses, the critical Reynolds number is assumed
to be the larger of 1000 or 1000B. Note that the yield strength is strongly
dependent upon the concentration of suspended particles and so, via Equa-
tion 6, the critical Reynolds number falls dramatically as flow density
drops.

Many processes have been proposed for causing a density transition and
these are neatly summarized by the gravity, surface, and fluidization trans-
formations (Fisher 1983) discussed in the introduction.

Gravity transformations, i.e., gravitational settling as the flow slows
(Lowe 1982), is important once the transition to turbulence has occurred.
In turbulent flows suspension occurs only if the shearing velocity is sig-
nificant compared with the particle fall velocity (Bagnold 1956), and sus-
pension is therefore strongly dependent upon grain size and flow speed. In
laminar flows, on the other hand, suspension results from the inherent
strength of the fluid, and no settling occurs as a flow slows. It is therefore
not possible to use a gravity transformation to explain the high-density to
low-density transition given that this must occur before the laminar-to-
turbulent transition.

The most common models of high-density to low-density transition are
surface transformations caused by interface instability (Parker et al. 1986;
Alexander and Morris 1994; Allen 1997), turbulence (Keulegan 1949), en-
ergetic mixing at a hydraulic jump (Komar 1971; Weirich 1989), or mixing
at the flow head (Allen 1971; Hampton 1972).

Interface instability is controlled by the Richardson number, which ex-
presses the size of the velocity gradient across the boundary relative to the
density gradient across the boundary. It can be expressed in different ways
depending upon the exact problem under investigation but for a constant
density current the simplest form (see e.g., Alexander and Morris 1994 or
Kneller et al. 1999) is

2 22Ri 5 gDrh /rū 5 Fr (7)

where Fr is the Froude number defined by

Fr 5 ūÏr /Drgh 5 ū /Ïg9h (8)

where g9 is the reduced gravity and Dr is the density contrast between the
flow and the ambient fluid. Interface instability is expected whenever Ri
, 0.25 (i.e., Fr . 2). Note that debris flows generally do not have a well
defined density stratification, and so Equation 7 is a reasonable form of
Richardson number to use. The conclusion that Froude number is an im-
portant control on surface instability is confirmed by Middleton’s (1966)
review of several studies, although he also concluded that the Reynolds
number was important.

An alternative to interface stability is simple turbulent mixing across the
flow–water interface. However, this is problematic because we require fluid
entrainment first in order to get turbulence. Thus, for the particular problem
investigated here of entrainment above a laminar flow, this mechanism is
unlikely to be important.

Mixing at a hydraulic jump (Komar 1971; Weirich 1989) results from
energetic secondary currents induced immediately after the jump (Bohr et
al. 1996). These secondary currents are not turbulent because they have a
very well defined structure and scale in both time and space. It should be
emphasized that, from Equation 4, a jump cannot cause a transition to
turbulence because there is no change in Reynolds number (the effect of
increased thickness is canceled by the effect of reduced flow speed). Nev-
ertheless, the secondary currents are extremely energetic and could easily
be responsible for significant fluid entrainment. This possibility is investi-
gated using the real debris-flow example mentioned above.

Allen (1971) and Hampton (1972) showed that the most efficient process
for fluid entrainment was mixing at the flow head. In these papers, entrain-
ment occurred as a result of shearing as the head moved under the almost
stationary ambient fluid as well as by capture of ambient fluid in ‘‘tunnels’’
at the front of the head. This simple picture is not viable for the case of a
steady state flow. However, the general concept of shearing at a low-den-
sity/high-density interface as a result of differential flow rates is still valid.
One possible scenario is that a relatively thin low-density current, generated
farther up the flow by interface instability, moves faster than the underlying
dense current and hence produces shear. This hypothetical explanation
clearly requires observational support and must therefore be considered to
be rather speculative at present.

SUPERCRITICAL-TO-SUBCRITICAL TRANSITIONS

The final type of flow transition investigated in this paper is that from
a supercritical to a subcritical flow. In a supercritical flow, the flow speed
exceeds that for a wave traveling on the surface of the flow. If a small
object is dropped into a subcritical flow, ripples spread out from the impact
in all directions, whereas, if the same experiment is attempted in a super-
critical flow, the ripples are swept downstream and no part of the flow
upstream experiences any influence from the dropped object.
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FIG 1.—A conceptual model for hydraulic
jumps. At left the fast flow down the steeper
slope is supercritical and thin. At right the
horizontal slow flow is subcritical and thick.
Hence, after the change in slope, the flow slows
and thickens, giving rise to a nonhorizontal flow
top. The flow tries to reestablish a horizontal
upper surface by propagation of a wave from
right to left. However, this wave cannot
propagate beyond the point at which flow speed
equals wave propagation speed, and hence a
sharp jump occurs at this point.

This definition of criticality is all that is required to understand why
flows, decelerating from supercritical to subcritical speeds, usually expe-
rience a sudden, dramatic increase in flow thickness at the critical point
(i.e., a hydraulic jump). Figure 1 shows a steady-state gravity current mov-
ing supercritically down a slope and then decelerating, and therefore thick-
ening, as it moves into a lower-slope region. Now, a flow consisting of a
thicker part to the right is gravitationally unstable and so the thicker part
tends to flow leftwards in the form of a wave. However, this wave is also
carried rightwards by the underlying flow, and it is not able to propagate
leftwards beyond the point where its wave propagation speed equals the
flow speed. Hence, a jump in flow thickness occurs precisely at the point
where these velocities are equal.

The important point about hydraulic jumps is that the flows not only
thicken at the jump but also undergo a sudden, dramatic deceleration. The
drop in velocity can result in a dramatic increase in sediment loss from the
flow, which is important in its own right but can also indirectly influence
the Reynolds number by changing the density, viscosity, and yield strength.
However, as noted earlier, these changes happen only in a turbulent flow.
Hydraulic jumps also occur in laminar flows (Craik et al. 1981; Bohr et al.
1993; Bohr et al. 1997; Rao and Arakeri 1998; Yokoi and Xiao 1999) and
these have unaltered rheological properties after the jump unless the as-
sociated local instabilities and secondary currents (Craik et al. 1981; Bohr
et al. 1997; Yokoi and Xiao 1999) result in greatly increased ambient fluid
entrainment.

Hydraulic jumps occur when the Froude number reaches a critical value.
Most studies assume that this critical value is unity (e.g., Komar 1971;
Hand 1974). However, this is only approximately true as will be discussed
below.

In a steady, uniform gravity flow, gravitational and frictional forces are
in equilibrium, and so

Drgh tan u 1 t 5 0 (9)

where t is the shear stress resulting from friction at the flow top and the
flow base. In a steady but non-uniform flow, on the other hand, a more
complex balance involving inertial forces is required. Appendix A shows
that, for a two-dimensional flow with no density stratification,

]h
2Drgh tan u 1 t 5 [Drgh 2 rū F ] (10)

]x

where

2 ]u u(h)
2F 5 u 1 zu 2 . (11)

21 2ū ]z ū

The assumption that the current is not stratified is reasonable for a debris
flow, as noted earlier, but may become poor for a turbidity current. Hence,
the conclusions given below should be handled with care if applied to such
cases.

Now, if the flow is not uniform, then from Equation 9 the left hand side
of Equation 10 must be nonzero. This causes no mathematical difficulties
except where

Drgh ù rū2F (12)

because ]h /]x must then become large. This is the hydraulic jump.
Comparing Equations 8 and 12 it can be seen that a hydraulic jump

occurs when Fr 5 F21/2. For a flow which has uniform velocity with depth
Equation 11 reduces to F 5 1, i.e., the standard result that hydraulic jumps
are expected at a Froude number of 1. However, for depth-varying flows,
F differs from unity.

THE SAN DIMAS RESERVOIR GRAVITY CURRENT

Subaerial Debris Flow

The San Dimas Reservoir debris flow (Weirich 1989) is a well docu-
mented data set for testing the preceding theory. There are quantitative data
for the subaerial flow obtained from flumes placed in the flow path, and
in addition the reservoir was drained, after the debris-flow events, enabling
inspection of the resulting subaqueous deposits. For full details the inter-
ested reader is directed to the original paper.

For the purposes of this paper, the relevant data on the sub-aerial debris
flow are that the gradient was 0.01, the flow density was 1500 kg m23, the
flow thickness was 1 m and the flow top velocity was 6 m s21. It is also
important to note that the largest clast in debris-flow deposits had a di-
ameter of 5 cm and the clast density was 2500 kg m23. This information
was taken directly from the text of Weirich (1989) except for the flow
depth, which was estimated as follows. A photograph of the flume (Weirich
1989, fig. 2) shows a depth of about 1 m. Weirich (1989) also stated that,
at their maximum, the flows just overtopped the flumes. Hence, the flow
depths in the flumes were of the order of 1 m. This estimate can be con-
firmed by noting that, for the volume flux of 5 m3 s21 and a flow velocity
around 5 m s21, the cross-sectional area of the flow should be 1 m2. The
V-shaped flume had a maximum width of about 2 m, and hence its cross-
sectional area is, indeed, about 1 m2.

The first property which can be deduced from these observations is the
flow yield strength. The largest possible suspended clast diameter, dmax, is
related to the yield strength by (Raudkivi 1998):

dmax 5 6K /gDr (13)

which, for the observed 5 cm clasts, gives a yield strength of 82 Pa.
For a Bingham plastic flow the velocity profile is in the form of a par-

abolic increase from zero at the base to a maximum which occurs part way
up the flow (Hampton 1972). Above this point there is a constant-velocity
plug. For a subaerial flow the shear stress at the flow top is extremely
small, and so the constant velocity plug should extend all the way to the
flow surface. The thickness of this plug, hp, can be calculated simply by
noting that the gravitational shear stress at the plug base should equal the
yield strength, i.e.
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K 5 Drghp tan u. (14)

This gives a plug thickness of 0.56 m. The assumption of a parabolic profile
below this plug then implies, from Equation 5, that the viscosity is

K 2 t
m 5 (h 2 h ) (15)p2umax

where the shear stress at the flow base, t, is found from Equation 9. For
this flow, Equation 15 gives a viscosity of 2.4 Pa s.

Now that the profile of velocity versus depth is constrained, the depth-
averaged velocity can be found. For a flow with a parabolic lower section
and constant-velocity upper plug, the average velocity is given by

ū 5 umax(1 2 b/3) (16)

where b is the ratio of parabolic thickness to total thickness, i.e., b 5 (h
2 hp)/h. For the San Dimas flow b 5 0.44 and hence the depth-averaged
velocity is 5.1 m/s.

Equation 2 can now be used to estimate the Reynolds number as 3200.
At first sight this suggests a turbulent flow. However, from Equation 6, the
Bingham number was 6.7. Hence, the critical Reynolds number was ap-
proximately 6700 and the debris flow was laminar.

The fact that the flow was laminar and held material in suspension as a
result of a nonzero yield strength, justifies the description of this as a debris
flow even although its properties appear to be untypical of the majority of
such flows (e.g., Sharp and Nobles 1953 give a maximum viscosity of 200
to 600 Pa s).

Finally, it is worth calculating the Froude number and critical Froude
number for the subaerial flow. Using Equation 8, the flow Froude number
was 1.6. Equation 11, for a flow of this form, becomes

7
2 2 b

15 1
F 5 2 . (17)

2 bb 1 21 2 31 23

Hence, with b 5 0.44, Equation 17 gives F 5 1.3. The critical Froude
number is therefore 0.88 and the flow was supercritical.

Subaqueous Debris Flow

The subaerial debris flow, discussed above, then plunged into a reservoir
and could no longer be directly observed. However, on the basis of inter-
pretation of the deposits, Weirich (1989) deduced that the subaqueous flow
initially had a thickness of 0.5 m in a channel of width 5 m. Equation 3
therefore implies an average velocity around 2 m s21, and Equations 4 and
6 give a Reynolds number of 630 and a Froude number of 1.3. Note that
the maximum possible critical Froude number given by Equation 17 is 1.0
(when b 5 0). Hence, the flow remained laminar and supercritical.

However, these parameters could not be maintained, because the basal
shear stress below a submerged, uniform flow 0.5 m thick is less than the
yield strength. In other words, the drop in density contrast as the flow
entered the water must have caused an eventual deceleration to well below
the initial 2 m s21. The density contrast fell, on entering the water, by a
factor of 3 (i.e., from 1500 kgm23 to 500 kgm23) whilst the slope remained
constant. Hence, the thickness of the constant-velocity plug given by Equa-
tion 14 will triple giving a minimum possible steady state flow thickness
of 1.7 m. At this thickness, Equation 3 gives a flow velocity of 0.6 m s21

and the Froude number falls to just 0.21. Note that these are upper esti-
mates; in reality the flow thickened slightly beyond the minimum. Thus,
the plunging of the flow into the reservoir gave the potential for a hydraulic
jump, because the flow was initially supercritical but must eventually have
become subcritical. Weirich’s (1989) field observations indicate an abrupt

thickening to 1.9 m after transport for around 130m and so the above
analysis strongly supports his interpretation of this as a hydraulic jump.

Laminar–Turbulent Transition

The deeper-water deposits (Weirich’s zones 3 and 4) show a transition
from high-density debris-flow sediments to deposits more characteristic of
low-density turbidity currents. Hence, there must have been entrainment of
water, producing a low-density turbulent current riding above the debris
flow.

As discussed earlier, this entrainment may have resulted from interface
instability, and this possibility can be investigated using the Froude num-
bers calculated above. For the early subaqueous debris flow, Equation 7
indicates that interface instability was unlikely. It should be noted in ad-
dition that the yield strength of the debris flow significantly reduces surface
instability and that deceleration of the flow reduces the Froude number
further. Hence interface instability is unlikely to have been a significant
factor causing fluid entrainment.

However, the high-density to low-density transition does seem to occur
in the immediate aftermath of the hydraulic jump. This strongly suggests
that there is significant mixing at the jump. It must be emphasized, how-
ever, that this is not the result of a transition to turbulence at the jump.
The mixing is due to highly energetic secondary currents which have a
well-defined, nonturbulent structure. This mixing, in turn, results in a drop
in viscosity, an increase in flow volume, and a drop in the critical Reynolds
number and so, via Equation 4, a transition to true turbulence can occur
rapidly. This turbulence then magnifies the entrainment rate and so an
abrupt transition to a low-density turbidity current occurs in the region after
the jump.

CONCLUSIONS

This paper focuses on these types of transition in steady-state particulate
gravity currents:

1. The transition from laminar flow to turbulent flow.
2. The transition from supercritical flow to subcritical flow at a hydraulic

jump.
3. The transition from a high-density flow to a low-density flow.

These transitions are logically distinct but may well be causally connected,
and it was the nature of such connections that was investigated here.

The first important conclusion is that Reynolds numbers are not affected
by changes in flow thickness unless this is also accompanied by a change
in channel width. In particular, the Reynolds number of a flow does not
change as a direct result of a hydraulic jump. The increase in Reynolds
number resulting from the increase in flow thickness is exactly canceled
by a decrease in Reynolds number caused by a decrease in flow velocity
across the jump. In fact, the Reynolds number of a flow generally drops
with distance as a result of channel widening or lateral spreading of the
flow beyond the channel exit.

Increase in the Reynolds number, and therefore transition to turbulence,
can be achieved only by substantial entrainment of water into a flow. This
has three effects:

1. The flow discharge increases.
2. The flow viscosity decreases.
3. The critical Reynolds number decreases.

All of these factors contribute to the transition to turbulence.
Hence, the most important process producing the laminar to turbulent

transition is fluid entrainment, which also produces the high-density to low-
density transition. These two transitions are therefore intimately linked.
Unfortunately, the high-density to low-density transition is the least un-
derstood of the three transitions, with even the main mechanisms of fluid
entrainment being in dispute.
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Another important conclusion from this study is that the critical Froude
number at which a hydraulic jump takes place is unity only for the special
case of a flow which is uniform with depth. This conclusion is implicit in
one or two earlier studies (e.g., Bohr et al. 1993) but does not seem to
have been stated explicitly anywhere in the sedimentological literature. The
critical Froude number is substantially below unity for the debris flow
investigated in this paper.

The fact that critical Froude numbers are not unity for flows with non-
uniform velocity versus depth is not surprising. From the earlier discussion
it should be clear that hydraulic jumps occur when the surface wave ve-
locity equals the flow speed, but for non-uniform flows, which flow speed
should be used? It might be suspected, for example, that the important part
of the flow in this context is the near surface where the wave occurs. In
this case the important parameter would be the speed at the flow top. How-
ever, it is implicit, in the usual definition of Froude number, that the depth-
averaged flow speed is the relevant quantity. In fact, the preceding detailed
analysis shows that the relevant quantity is

û 5 ūÏF. (18)

Using this, it might be better to define a new profile-dependent Froude
number which is indeed equal to unity at a hydraulic jump, i.e., redefine
Fr as

Fr 5 ûÏr/Drgh (19)

Application of these ideas to the San Dimas Reservoir debris flow (Weirich
1989) gives results which are very compatible with Weirich’s (1989) ob-
servations. In particular:

1. The subaerial flow had the properties required for a debris flow (i.e., a
laminar flow with particle suspension due to a nonzero yield strength).

2. The subaqueous high-density flow underwent a hydraulic jump after
about 100 m, giving an increase in thickness from 0.5 m to nearly 2 m.
This jump occurred because the supercritical subaerial flow could not
maintain its momentum in the subaqueous realm where the flow-driving
density contrast was smaller.

3. Energetic secondary currents associated with the hydraulic jump prob-
ably produced a local increase in fluid entrainment. This, in turn, pro-
duced a drop in viscosity, an increase in total flux, and a drop in the
critical Reynolds number. Hence, a transition to true turbulence was
indirectly caused by the hydraulic jump.

The theory developed in this paper is based upon several assumptions.
Most of the theory assumes steady-state flow, and therefore it cannot handle
the important processes at the flow head. The theory also uses depth av-
eraging, which restricts its application to situations in which the flow di-
rection is not strongly dependent upon depth, although this is probably
reasonable for most gravity flows. This depth averaging also results in
expressions which might not be valid for a density-stratified flow. Use, for
example, of Equation 11 to estimate critical Froude numbers in turbidity
currents should be done with great care.

It is very clear from the work presented here that there is a pressing
need for more experimental studies of fluid entrainment together with the-
oretical and numerical modeling of the possible processes responsible. In
addition the prediction that depth-variable flows undergo hydraulic jumps
at Froude numbers significantly less than unity needs to be tested.
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Appendix A: The Equation of Motion for a Two-Dimensional, Depth-
Averaged Gravity Current

The general equation of motion for any continuous medium is given by the Cau-
chy Equation (see e.g., Acheson 1990)

rDui/Dt 5 ]tij/]xj 1 rgi (A1)

where ui is a component of velocity, tij a stress tensor component, xj is a component
of distance, and gi a component of gravity. The indices i and j run over the x, y,
and z directions, and z points vertically upwards with its origin at the flow base.
The other fundamental Equation is the continuity equation, ensuring mass conser-
vation:

]r/]t 5 2¹·(ru). (A2)

Note that, for a Newtonian incompressible fluid, Equations A1 and A2 reduce to
the Navier–Stokes Equations.

For a two-dimensional flow, assume that flow is in the x direction only, with all
derivatives zero in the y direction. Also assume a steady state in which the flow
characteristics at any given position do not change with time. Depth averaging the
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x component of Equation A1, and making the assumption that the normal stresses
equal the hydrostatic pressure, yields

]P t ]u ]u
2 1 5 r u 1 w (A3)[ ]]x h ]x ]z

where P is the pressure, t is the shear stress resulting from friction at the flow top
and the flow base, w is the vertical velocity component and all quantities covered
by a bar have been depth averaged. Note that the assumption of hydrostatic pressures
is justifiable provided that the flow is thin (Watanabe et al. 2003).

The two-dimensional, steady state, constant density form of Equation A2 is

]u /]x 1 ]w /]z 5 0 (A4)

which can be depth averaged, leading to

]ū /]x 5 w(h)/h (A5)

where use has been made of the boundary condition w(0) 5 0. The next step is to
note that w]u/]z 5 ]/]z(uw) 2 u]w /]z. Depth averaging this equation and com-
bining the result with Equations A4 and A5 then yields

]u ]u ]ū
w 5 u 2 u(h) . (A6)

]z ]x ]x

Hence, Equation A3 becomes

]P t ]u ]ū
2 1 5 r 2u 2 u(h) . (A7)[ ]]x h ]x ]x

At a hydraulic jump, there is a rapid change in flow thickness. Hence, to inves-
tigate the jump, all relevant terms in Equation A7 should be reexpressed in terms
of the thickness gradient, ]h /]x. The hydrostatic approximation allows the pressure
gradient to be written explicitly in terms of flow geometry as

]P ]H ]h
5 Drg 5 Drg 2 tan u (A8)1 2]x ]x ]x

where H is the height of the flow top and u is the slope of the underlying surface.

The term involving ]ū/]x can be modified by rewriting Equation A4 in the form
]/]x(hū)50. Hence,

]ū ū ]h
5 2 . (A9)

]x h ]x

Modification of the remaining term requires adoption of a similarity solution, i.e.,

u(z) 5 f(a)ū with a 5 z /h and 0 , z , h. (A10)

Hence it is assumed that the shape of the velocity profile, given by f, is a very
slowly varying function of position. As a result, the derivatives of Equation A10
can be written as

]ū ]ū zū ]h df
5 f 2 and (A11)

2]x ]x h ]x da

]u ū df
5 . (A12)

]z h da

Substituting Equations A9, A10 and A12 into A11 then yields

]u u ]h z ]u ]h
2 5 1 (A13)

]x h ]x h ]z ]x

and hence

2u]u/]x 5 (2[u 1 zu]u/]z ]/h)]h/]x. (A14)

Substitution of Equations A8, A9 and A14 into A7 then yields

]h
2t 1 Drgh tan u 5 [Drgh 2 rū F ] (A15)

]x

where

2 ]u u(h)
2F 5 u 1 zu 2 . (A16)

21 2ū ]z ū


