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Abstract

The main purpose of the present paper is to present the mathematical expression for the frequency-dependent effective

acoustic properties of a liquid–bubble mixture. Effects of the bubble resonance, the heat and mass transfer between the liquid

and bubbles, and the viscoelasticity of the liquid are included in the expression. Several characteristic frequencies associated

with these internal processes are represented by simple functions of the material and condition parameters. Using these

expressions, the acoustic properties of bubbly magmas are calculated and analyzed. It is shown that the dispersion and

attenuation of the pressure wave are particularly considerable in the frequency range lower than the characteristic frequency of

the mass transfer and in the range near the characteristic frequency of the viscous response of the bubble radius. In the

frequency range bounded by these two frequencies, the bubbly magma can be regarded as an elastic medium with the slow

sound speed. The significance of such acoustic properties on resonance of a body of bubbly magma is demonstrated in a simple

one-dimensional system.
D 2004 Elsevier B.V. All rights reserved.
Keywords: pressure wave; bubble; wave dispersion; attenuation; gas diffusion; resonance

1. Introduction other essential aspects of the acoustic properties of
It is generally considered that the sound speed of

magma is significantly reduced by the presence of

bubbles. Many features of seismo-acoustic activities

of volcanoes are ascribed to the reduced sound speed

of the magma (e.g., Chouet, 1996; Benoit and

McNutt, 1997; Kumagai and Chouet, 2000; Garces

and McNutt, 1997; Neuberg et al., 2000). However,
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liquid–bubble mixtures are the dispersion and atten-

uation, which have not been considered sufficiently in

previous studies on the volcanic phenomena. This

paper focuses on the dispersion and attenuation of

the pressure waves in the bubbly magma.

As the pressure wave propagates in the bubbly

magma, the liquid and bubbles cease to be in equi-

librium, and internal processes are set up toward

restoration of equilibrium. The bubbles tend to expand

or shrink so as to restore the mechanical equilibrium.

In addition, the expansion or compression of the

bubbles perturbs the thermodynamic equilibrium so

that the heat and the volatile components are trans-

ferred between the liquid and bubbles. These process-
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es control the volume change of the bubbles and,

eventually, the apparent compressibility of the mix-

ture. However, the restoration of the equilibrium does

not always follow the pressure change in the wave

field. Immediate expansion or compression of the gas

in the bubbles is prevented by viscous resistance and

inertia of the liquid. The heat and mass transfer by

diffusion takes place comparatively slowly. The delay

of the internal processes causes the rate-dependent

response of the mixture and attenuation of the pres-

sure wave.

There exists a number of literatures on the acoustic

properties of a bubbly liquid with viscosity as low as

that of water. The characteristics of the wave disper-

sion and attenuation have been investigated theoreti-

cally (Commander and Prosperetti, 1989; Varadan et

al., 1985; Gaunaurd and Überall, 1981; Prosperetti,

1984; Caflish et al., 1985) and experimentally

(Cheyne et al., 1995; Silberman, 1957). Good agree-

ment has been obtained between the theoretical and

experimental results. In the low viscosity liquids, the

dispersion and attenuation of the waves are mainly

caused by the resonant scattering of bubbles (Com-

mander and Prosperetti, 1989; Gaunaurd and Überall,

1981) and the heat transfer between the liquid and

bubbles (Prosperetti, 1991).

On the other hand, understandings of the acoustic

properties of bubbly magmas are not sufficient. In

volcanic systems, the magma viscosity is an important

controlling parameter. Lensky et al. (2002) recently

demonstrated a possibility that the effective bulk

viscosity of the bubbly magma has a negative value

due to the non-linear coupling between the viscous

resistance against the bubble expansion and the vol-

atile diffusion from the liquid to the bubble. They

derived a notable conclusion that this negative bulk

viscosity can cause amplification of seismic waves.

However, because of the non-linear nature of the

process, their conclusion may not be applicable to

the general cases.

The main purpose of the present paper is to present

the mathematical expressions for the effective acous-

tic properties of a liquid–bubble mixture. Effects of

the viscoelasticity of the liquid, the volatile diffusion,

the bubble resonance and the heat transfer are includ-

ed in the expressions. They are useful in evaluating

the speed and attenuation of the pressure wave as a

function of the frequency in various conditions. Char-
acteristics of the frequency dependence of the wave

speed and attenuation changes at the time scales of the

internal processes such as the viscous resistance

against the bubble expansion (contraction), the bubble

resonance and the volatile diffusion. These time scales

are expressed by simple functions of the parameters

representing the material properties (viscosity, elastic

moduli, heat and mass diffusivities, etc.) and the

condition (pressure, temperature, void fraction, etc.).

As an example of the applications, the resonance

behavior of a layer of bubbly magma is investigated.

It is shown that the resonance of the bubbly magma

depends considerably on the dispersion and attenua-

tion of the waves due to the internal processes.
2. Mathematical formulation

2.1. Bulk modulus of a bubble

The bulk modulus of a bubble, Kg, is defined as:

Kg ¼ � R

3

BPg

BR
; ð1Þ

where Pg is the pressure in the bubble and R is the

bubble radius.

The bubble should also be regarded as a viscoelas-

tic body with the bulk modulus depending on the

frequency. For example, the bulk modulus of an ideal-

gas bubble in an adiabatic process (PgR
3g = constant)

is Kg = cPg, where c is the specific heat ratio. If the

oscillation is very slow, the process is more likely to

be isothermal (PgR
3 = constant) so that Kg =Pg. Tak-

ing account of thermal diffusion in the bubble, Pros-

peretti (1991) formulated the bulk modulus of a

bubble in a periodic pressure field (~ e� iNt) as:

Kg

Po

¼ cH2

H½H þ 3ðc � 1ÞA�� þ 3iðc � 1ÞðHAþ � 2Þ ;

ð2Þ

AF ¼ sinhHFsinH
coshH � cosH

;

H ¼ R

ffiffiffiffiffiffiffi
2x
jT

r
; ð3Þ
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where Po is the static pressure, that is the center of the

oscillation of Pg, and jT is the thermal diffusivity of

the gas in the bubble.

The volumetric change of a bubble is influenced

also by the volatile transfer between the liquid and

bubble. The process is controlled by the diffusion of

the volatile in the liquid. Including this effect, we have

formulated the effective bulk modulus of a bubble

as:

Kg

Po

¼ cH2=fH½H þ 3ðc � 1ÞA� þ 3cAg
ffiffiffiffiffi
ag

p �

þ 3i½ðc � 1ÞðHAþ � 2Þ þ cAgð
ffiffiffiffiffi
ag

p
H þ 2agÞ�g;

ð4Þ

Ag ¼
q1Po

qg

BCeq

BP
; ð5Þ

ag ¼
jgl

jT

; ð6Þ

where ql and qg are the densities of the liquid and the

gas, respectively, Ceq(P) denotes the volatile concen-

tration which is in equilibrium with the gas phase at

pressure P, and jgl is the diffusivity of the volatile in

the liquid. The physical meaning of the dimensionless

parameter, Ag, is explained as follows. If the pressure

change of DP is given in a quasi-static process, the

mass of the volatile component in a unit volume of the

liquid phase is to change by UlDPBCeq/BP, while the

gas density in the bubble is to change by UgDP/Po.

The ratio of the former to the latter is the parameter,

Ag. The derivation process of Eq. (4) is explained in

Appendix A.

2.2. Viscoelasticity of the liquid

For the present study, we employ the simplest

linear viscoelastic model, which is quite general and

often used to describe the fundamental features of

elastic and viscous behaviors of silicate melts (Webb

and Dingwell, 1995; Webb, 1997).

If a sinusoidal oscillation is applied to the

viscoelastic material, the shear and bulk moduli

are described by complex functions of the frequen-

cy of the oscillation (Webb and Dingwell, 1995;
Webb, 1997), which are denoted by lN and KN,

respectively:

lx ¼ ll
�ixss
1� ixss

; ð7Þ

Kx ¼ Ko þ ðKl � KoÞ
�ixsv
1� ixsv

; ð8Þ

where ll and Kl are the unrelaxed rigidity (shear

modulus) and bulk modulus (volumetric modulus),

respectively, and Ko is the equilibrium bulk modu-

lus (relaxed modulus). The shear and volume re-

laxation times (ss and sv, respectively) are given as

the ratio of the low frequency shear and bulk

viscosity (go and fo, respectively) and the relaxa-

tional part of the elasticity (Webb and Dingwell,

1995; Webb, 1997):

ss ¼ go=ll; ð9Þ

sv ¼ fo=ðKl � KoÞ: ð10Þ

As the viscosity is a function of stress and strain

rate, the complex shear and bulk moduli are converted

into the complex viscosities, which are denoted by gN
and fN, respectively:

gx ¼ lx=ð�ixÞ; ð11Þ

fx ¼ ðKx � KoÞ=ð�ixÞ: ð12Þ

2.3. Effective properties of a liquid–bubble mixture

It is assumed that the acoustic property of a

liquid–bubble mixture is represented by the effective

bulk modulus (Km), shear modulus (lm), and density

(qm), in the same way as a homogeneous material.

The mathematical procedure to calculate these effec-

tive properties is described in the separate paper
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(Ichihara et al., 2004). Here, we just present the final

expressions:

Km ¼
Kx þ 4

3
/Clx

1� /C
;

C ¼ Kg � Kx

Kg þ
4

3
lx

� 1

1� q1x
2R2

3Kg þ 4lx
1þ ixR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1

Kx þ 4

3
lx

vuut
0
BB@

1
CCA

; ð13Þ

lm¼lx 1�
/ 1�

lg

lx

� 

1� 2

15
ð1�/Þ 3þ 2lx

Kx þ 4

3
lx

0
B@

1
CA 1�

lg

lx

� 

2
666666664

3
777777775
;

ð14Þ

qm ¼ qg/ þ q1ð1� /Þ ðAlxAfAKxAÞ; ð15Þ

qm ¼ q1

1� /ðq1 � qgÞ=ðq1 þ 2qgÞ
1þ 2/ðq1 � qgÞ=ðq1 þ 2qgÞ

ðAlxAbAKxAÞ; ð16Þ

where / is the void fraction and lg is the

shear modulus of the bubble which represents its

deformability.

The expression of Eq. (13) represents a dynamical

response of the mixture, which contains the bubble

resonance with a resonance frequency obtained by the

vanishing of the real part of the denominator of c, and
with the imaginary term in the denominator determin-

ing the radiation width of this resonance (Gaunaurd

and Überall, 1981). With the relaxed (lN= 0) and

unrelaxed (lN = ll) shear moduli, the relaxed and
unrelaxed resonance frequencies (denoted as xo and

xl, respectively) are determined as:

xo ¼
1

R

ffiffiffiffiffiffiffiffi
3Kg

ql

s
ðxossb1Þ; ð17Þ

xl ¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Kg þ 4ll

q1

s
ðxlssH1Þ: ð18Þ

In case that the frequency is much smaller than the

resonance frequency, Eq. (13) is simplified as:

Kmf
Kx Kg þ

4

3
lx

� 
þ 4

3
/lxðKg � KxÞ

/Kx þ Kg þ
4

3
lx

: ð19Þ

Constitutive Eqs.(7) and (8) are substituted into Eq.

(19), and Kl–Ko = 0 is assumed for simplicity. As-

suming llH/Ko +Kg (see Section 3.2 for the mag-

ma properties), Eq. (19) is approximated as:

Km ¼ KoKg

/Ko þ ð1� /ÞKg

þ
4

3
ll/ð1�/ÞðKo�KgÞ2�

/Koþð1�/ÞKg�½/Koþð1� /ÞKgþ
4

3
ll

�

� �ixsm
1� ixsm

f
KoKg

/Ko þ ð1� /ÞKg

þ /ð1� /ÞðKo � KgÞ2

/Ko þ ð1� /ÞKg

�ixsm
1� ixsm

; ð20Þ

sm ¼

�
/Ko þ ð1� /ÞKg þ

4

3
ll

�
ss

/Ko þ ð1� /ÞKg

f
4

3

go
/Ko þ ð1� /ÞKg

ð21Þ

where go is introduced according to Eq. (9). Eq. (20)

has the same form as (8) with sm corresponding to the

relaxation time. When xsmH1, we obtain KmfKo.
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While for xsmb1, we obtain:

KmfKmo ¼
/
Kg

þ 1� /
Ko

� �1

; ð22Þ

where Kmo is the generally used bulk modulus of the

liquid–bubble mixture (e.g., Garces, 1997).

The effective density is different between the cases

that the matrix is close to a solid and to a fluid where

relative motion between the inclusions and the matrix

can occur. The effective density for a fluid matrix, Eq.

(16), is governed by the inertia, while that for a solid

matrix, Eq. (15), is governed by the gravity (Kuster

and Toksöz, 1974).

The effective bulk and shear viscosities are calcu-

lated by fm=(Km–Kmo)/(� iN) and gm = lm/(� iN),
respectively, in the same way as gN and fN. If it is
assumed that the matrix is a Newtonian liquid

(KN =Ko– iNfo, lN=� ixgo) and the bulk modulus

of the bubble is constant, the bulk viscosity of the

mixture in the low-frequency limit is:

lim
x!0

fm ¼ 1� /

½/ þ ð1� /ÞKg=Ko�2

� 4

3
go/ 1� Kg

Ko

� 2
þfo

Kg

Ko

� 2" #
;

f
1� /

ð/ þ Kg=KoÞ2
4

3
go/ þ fo

Kg

Ko

� 2" #
;

ð23Þ

where we assume KgbKo and /b1. If we further

assume fHKg/Ko, we obtain:

fmf
4

3
go

1� /
/

: ð24Þ

Eq. (24) is often used to represent the bulk viscos-

ity of a liquid–bubble mixture (e.g. Massol and

Jaupart, 1999). On the other hand, the effective zero

shear-rate viscosity is approximately:

lim
x!0

gm ¼ go 1� 5

3

1�
lg

lx

1þ
2lg

3lx

/

0
BB@

1
CCA: ð25Þ

The parameter lg/lN represents the deformability

of the bubbles. Eq. (25) agrees with the Mackenzie’s
expression: gm= go(1–5//3) (Mackenzie, 1950; Lle-

wellin et al., 2002) with completely deformable bub-

bles (lg/lN= 0), while it approaches the Sibree’s

expression: gm= go(1–/)� 5/2 (Sibree, 1934; Massol

and Jaupart, 1999) for /! 0 with completely non-

deformable bubbles (lg/lN =l). Several other mod-

els for the shear viscosity of liquid–bubble mixtures

have been proposed. Most of the models suggest that

the effective viscosity linearly increases with the

increasing volume fraction of non-deformable bubbles

and linearly decreases with the increasing fraction of

deformable bubbles. Those models are reviewed and

tested by Llewellin et al. (2002). Their experimental

data were explained best by the Mackenzie’s model

for deformable bubbles and by the modified Taylor

model (gm = go(1 + 9/)) (Stein and Spera, 1992) for

non-deformable bubbles. They also demonstrated that,

as the frequency of the applied strain increases, the

deformability of bubbles increases, and consequently

the effective shear viscosity decreases. The transition

of the deformability occurs at a frequency around:

s�1
ca ¼ S=ðgoRÞ; ð26Þ

where S is the surface tension (Stein and Spera, 1992;

Llewellin et al., 2002). We may represent such fre-

quency dependence of the bubble deformability by

defining:

lg=lx ¼ 1=ðxscaÞ2: ð27Þ

Actually, the contribution of lg to the effective

shear modulus is of the order of / and negligibly

small in the present conditions (/b1).
3. Physical parameters of the system

3.1. Physical parameters of the bubble

We assume that H2O is the only volatile component

in the liquid–bubble system. In order to calculate Kg

and lg using Eqs. (4) and (27), we need the thermal

diffusivity (jT), the specific heat ratio (g), and Po/qg in
the vapor phase, the diffusivity (jgl) and the solubility

(Ceq) of H2O in the melt, and the surface tension (S).

We evaluate the above parameters for the pressure

up to 100 MPa, in which probability of existence of
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Fig. 1. The relevant range of the dimensionless parameters

representing the effect of the volatile transfer in the magmatic
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defined as Eqs. (5) and (6), respectively. The temperature (T) and

the volatile diffusivity (ngl) are assumed as shown in the legend, and

the pressure is varied from 0.1 to 100 MPa.
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bubbles in magma is large according to the content

and the solubility of H2O (Sparks et al., 1994; Hollo-

way and Blank, 1994). The representative temperature

of the system is regarded as 1000 jC (1273 K).

The surface tension for the H2O vapor and silicate

melt interface at 1000 jC is about 0.3 N/m at 0.1 MPa

(Murase and McBirney, 1973) and decreases to 0.1 N/

m at 100 MPa (Khitarov et al., 1979; Dingwell, 1998).

Between these pressures, we assume that S is a linear

function of log P.

Data in Table 1 (Bowers, 1995) show that the

relation of H2O gas density to the temperature and

the pressure satisfies the equation of state for an ideal

gas, Eq. (A2). Therefore, we regard the gas as an

ideal gas. The heat capacity (Cp) of H2O as an ideal

gas with c = 1.3 and Rg = 462 J/kg/K is 2000 J/kg/K,

which is calculated by Cp =Rgc/(c� 1). Although we

see a factor of difference between this value and the

measured heat capacity (Table 1), we use the former

for consistency with the ideal-gas assumption. Actu-

ally, the difference is not significant in the following

analyses and discussion which are concerned with the

order of differences.

The heat conductivity is estimated by kg =
0.1268T� 26.82 mW/m/K, extrapolating the data

measured below 1050 K (JSME, 1983). Its depen-

dence on the pressure is negligible. At the temperature

of 1273 K, we obtain kg = 135 mW/m/K. Using this

value, the thermal diffusivity is calculated by Eq. (A6)

(Table 1).

The diffusivity of H2O in magma (jgl) depends on
temperature, pressure, magma composition, and con-

centration and condition of H2O (Zhang et al., 1991;
Table 1

The material parameters and the dimensionless parameter Ag (Eq.

(5)) for H2O vapor at the temperature of 1273 K

Po qg [kg/m
3] Cp [J/kg/K] jT [m2/s] Ag

[MPa]
Data Ideal Data Ideal Ideal

0.1 0.170 0.170 2478 2000 3.97� 10� 4 8.19

1.0 – 1.70 – 3.97� 10� 5 2.78

2.5 4.26 4.25 2493 1.59� 10� 5 1.80

5.0 8.53 8.51 2508 7.93� 10� 6 1.30

10 17.1 17.0 2540 3.97� 10� 6 0.940

25 43.0 42.5 2640 1.59� 10� 6 0.611

50 87.0 85.1 2812 7.93� 10� 7 0.441

100 175 170 3113 3.97� 10� 7 0.319

The data are from Bowers (1995).
Zhang and Behrens, 2000; Nowak and Behrens, 1997;

Proussevitch et al., 1993). In a rhyolitic melt at 1273

K, jgl is about 10
� 11 m2/s (Zhang et al., 1991; Zhang

and Behrens, 2000; Nowak and Behrens, 1997). The

diffusivity is larger by a few orders in a basaltic melt

(Proussevitch et al., 1993). Therefore, we consider

10� 11 < jgl < 10
� 8 m2/s and use jgl = 10

� 9 m2/s as

the standard value in the following analyses.

The solubility of H2O calculated by Burnham

model for various types of magma at 1273 K (Hollo-

way and Blank, 1994) is reasonably fitted by:

CeqðPÞ ¼ ð2:2F0:2Þ � 10�6P0:53: ð28Þ

We use this relation with the coefficient of

2.2� 10� 6 in the following analyses.

The contributions of the material parameters to the

bulk modulus of a bubble are collected in the two

parameters, Ag and ag, in Eqs. (4–6). Fig. 1 shows the

possible range of these parameters in a magmatic

system. The magma density (Ul) is assumed as 2600

kg/m3. The numerical values for Ag at T= 1273 K are

listed in Table 1, too.

3.2. Physical parameters of magma

The magma properties are described by Ul, Ko,

Kl, Al, sv, and ss. There exist a number of
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experimental studies on viscoelastic properties of

silicate melts by using various techniques: ultrason-

ics (MHz frequencies), torsion deformation (mHz to

Hz), fiber elongation (mHz), viscosity measurements

(deformation rates of 10� 3 s� 1), and so on. Useful

compilations of the data can be found in Dingwell

and Webb (1989), Webb and Dingwell (1995), and

Webb (1997). Referring to these works we assume

Ko, Kl, and ll are constants represented by 20, 30

and 10 GPa, respectively. The relaxation time (or

viscosity) of the shear deformation is treated as a

variable parameter, assuming the equal relaxation

times of the shear and volumetric deformation

(ss = sv).
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Fig. 2. The effective bulk modulus of a bubble calculated by Eq.

(4) as a function of the dimensionless frequency. The real and

the imaginary parts are presented in (a) and (b), respectively.

The thick broken lines indicated as ‘no diffusion’ are obtained

from Eq. (2), which eliminates the effect of the volatile

diffusion.
4. Results

4.1. Effects of heat and mass diffusion on the bulk

modulus of a bubble

The effective bulk modulus of a bubble is calcu-

lated by Eq. (4) for some selected values of Ag and

ag. The thick broken lines in Fig. 2 are obtained

from Eq. (2) without the effect of the volatile

diffusion. As is noted in Section 2.1, the real parts

of the broken line approaches the isothermal bulk

modulus (Po) and the adiabatic bulk modulus (cPo)

of the ideal gas in the low and high frequencies,

respectively (Fig. 2a). The imaginary part, which

represents the energy loss, has a peak around

Q2f 30, where the transition between the isother-

mal and adiabatic conditions occurs. We define the

inverse of the peak frequency as the characteristic

time for the heat transfer (sT):

sT ¼ R2=ð15jTÞ: ð29Þ

The real part of Kg (Re Kg) including the volatile

diffusion falls off in the low frequencies (Fig. 2a),

where the imaginary part has another peak (Fig. 2b).

The volatile transfer between the bubble and melt

enhances the volumetric change of the bubble and

increases the apparent compressibility (Re Kg
� 1) and

the loss of energy (Im Kg). The dimensionless peak

frequency (denoted as Q2
peak) depends on both Ag

and ag in different ways. As ag increases by an

order, Q2
peak also increases by an order (compare the
thick solid line and the lines with the solid marks in

Fig. 2b). On the other hand, Q2
peak increases by two

orders approximately (compare the thick solid line

and the lines with the open marks), as Ag increases

by an order.

We regard Q2
peak is important, because it repre-

sents the frequency below which the effect of

volatile diffusion becomes significant. Its value is

investigated over the relevant range of Ag and ag,
and plotted against agAg

2 (Fig. 3a). It has been found

that values of Q2
peak fall on the broken line:

Q2
peak ¼ 18agA

2
g; ð30Þ

even though there exist deviations from the line at

the left end. When the data are re-plotted on the

plane of Ag
2�Qpeak

2 /ag, all the points fall on a

single curve (Fig. 3b).

Let us consider the physical meaning of the

broken line relation (Eq. (30)). According to the
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equation of state for an ideal gas, volume expansion

of a bubble, yVb, is:

yVb ¼ �yP
mgoRgTo

P2
o

þ ymg

RgTo

Po

¼ yVP þ yVm;

ð31Þ

where mg is the total mass of the gas in the bubble,

and the values at the center of oscillation are

denoted with subscript ‘o’. Here, yVP represents

the volumetric change due to the gas expansion,

and yVm represents the contribution of the mass

transfer (ymg). Significance of the latter contribution

is evaluated by:

yVm

yVP

¼ Po

mgo

AymgA
AyPA

: ð32Þ
Because of mass conservation, ymg should be

compensated by the change of the volatile in the

liquid, so that:

AymgA ¼ ql

Z l

R

4pr2yCgdr

����
���� ¼ q1R

3yP
BCeq

BP

�
4p

ffiffiffiffiffi
ag

p

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffi
2ag

p
Q

þ ag
Q2

;

s
ð33Þ

where yCg =CgoC* and C* is given by Eqs. (A26) and

(A28). The higher-order terms of ag/Q
2 is neglected

when ag/Q
2b1. Substituting Eq. (33) and mgo=(4k/

3)R3qg into Eq. (32), we obtain:

yVm

yVP

f3
q1Po

qg

BCeq

BP

ffiffiffiffiffi
ag

p

Q
¼

9agA2
g

Q2

 !1=2

: ð34Þ

Eq. (34) indicates that the energy loss due to the

mass transfer takes the maximum value when

yVm = yVP/
ffiffiffi
2

p
according to Eq. (30). The contribution

of the mass transfer is significant when yVmHyVP.

The corresponding condition is Q2b9ag Ag
2 <Q2

peak.

Actually, we can see the significant decrease of the

bulk modulus of a bubble in such a range in Fig. 2a.

We define the characteristic time of the effect of the

volatile diffusion (sg) so that Eq. (30) is satisfied at

x = sg
� 1:

sg ¼
R2

9jTagA2
g

¼ R2

9jgl

q1Po

qg

BCeq

BP

 !�2

: ð35Þ

4.2. Effects of viscoelasticity of the liquid

The effective bulk and shear moduli of a liquid–

bubble mixture are calculated by Eqs. (13) and (14),

respectively. In order to focus on the effect of liquid

viscoelasticity, we eliminate the effect of the heat and

mass transfer by fixing the bulk modulus of a bubble

(Kg) at 1 MPa in the analyses presented in this section.

The void fraction and the bubble radius are assumed

as / = 0.03 and R = 10-3 m, respectively.

Two typical results are shown in Figs. 4 and 5, in

which the real and the imaginary parts of Km and lm
are plotted against Nss. For comparison, the values of
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Km with Kl =Ko are shown by the lines with dia-

monds. The characteristic frequencies shown in the

figures are those associated with the relaxation of the

liquid (H s
� 1: Eq. (9)), the volumetric relaxation of the

mixture (H m
� 1: Eq. (21)), and the bubble resonance in

the relaxed and unrelaxed state of the liquid (xo and

xl: Eqs. (17) and (19)). Although we assumed

Kl�Ko = 0 in obtaining Eq. (21) to calculate sm, its
applicability to the present system is justified by the

agreement of the thick lines and the thin lines with

open diamonds around Nf sm
� 1 (Fig. 5). It is noted

that the bulk modulus is significantly decreased by the

bubbles, but only in the low-frequency range. The

range is bounded by xo in case that the viscosity is

relatively low and the bubble resonance occurs in the

relaxed state of the liquid (Fig. 4). In the higher-

viscosity liquids, it is bounded by sm
� 1 (Fig. 5).
4.3. Dispersion and attenuation of pressure waves

The dispersion relation for pressure waves in the

liquid–bubble mixture is given in the same way as in

an elastic medium:

x2

kmðxÞ2
¼

KmðxÞ þ 4

3
lmðxÞ

qm

; ð36Þ

cmðxÞ ¼ x
RekmðxÞ ; ð37Þ

Q�1
m ðxÞ ¼ 2ImkmðxÞ

RekmðxÞ ; ð38Þ

where km, cm and Qm
� 1 denote the wave number, the

phase velocity and the attenuation factor of the

and Geothermal Research 137 (2004) 73–91 81
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pressure wave in the mixture, respectively (Gaunaurd

and Überall, 1981; Aki and Richards, 1980).

The frequency dependence of cm and Qm
� 1 are

investigated for the conditions of the magmatic

systems and presented in Figs. 6 and 7. The

pressure is fixed at 1 MPa, and the viscosity of

the magma is varied in Fig. 6, while the viscosity is

fixed at 105 Pa s and the pressure is varied in Fig.

7. The other parameters are assumed as jgl = 10
� 9

m2/s for the volatile diffusivity in the liquid, / =0.03
for the void fraction, and R = 10-3 m for the bubble

radius.

On the figures are indicated the characteristic

frequencies for the heat transfer (sT
� 1: Eq. (29)),

the volatile diffusion (sg
� 1: Eq. (35)), the stress

relaxation of the liquid (ss
� 1: Eq. (9)), the volumetric

relaxation of the mixture (sm
� 1: Eq. (21)), and the

bubble resonance in the relaxed and unrelaxed con-

ditions (xo and xl: Eqs. (17) and (18)). The

numerical values of these characteristic frequencies

are listed in Table 2. These various internal processes

bring about the complex dependence of the phase



Table 2

The characteristic frequencies (rads) of the liquid–bubble mixture

Internal process Symbol Equation ~ Po [MPa]

0.1 1 10 100

Heat transfer sT
� 1 (29) R� 2 5.9� 103 5.9� 102 59 5.9

Mass transfer sg
� 1 (35) R� 2 0.6 6.9� 10� 2 8.0� 10� 3 9.1�10� 4

Mixture volume relaxation sm
� 1 (21) Do

� 1 4.5� 108 4.5� 108 4.6� 108 5.4� 108

Bubble volume relaxation sb
� 1 (40) Do

� 1 9.8� 104 9.8� 105 9.8� 106 9.8� 107

Relaxed bubble resonance xo (17) R� 1 1.2� 104 3.9� 104 1.2� 105 3.9� 105

Unrelaxed bubble resonance xl (18) R� 1 3.9� 106 3.9� 106 3.9� 106 3.9� 106

It is assumed that the temperature is 1273 K, the magma viscosity is 1 Pa s, the bubble radius is 1 mm and the void fraction is 0.03.
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velocity and the attenuation factor on the frequency.

The horizontal dash-and-dot line represents the value

of cmo:

cmo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kmo=qm

p
; ð39Þ

where Kmo is defined in (22). Eq. (39) is frequently

used to represent the sound speed in the liquid–

bubble mixtures (e.g. Kiefer, 1977). However, the

present results demonstrate that the phase velocity

agrees with cmo in the limited range of frequency.

When the viscosity is small and the bubble

resonance occurs in the relaxed state of the liquid,

the upper limit of the frequency range is deter-

mined by the resonance frequency of the bubble

(Fig. 6a), as is expected from the analysis for the

effective bulk modulus presented in Fig. 4. In the

cases of the larger viscosities (Fig. 6b–d), the

phase velocity gets larger than cmo in the frequency

range of x>sb
� 1 (sb

� 1bsm
� 1) in contrast with that

the effective bulk modulus changes at Nf sm
� 1

(Fig. 5). In fact, sb
� 1 is more important in the

volcanology because xo is usually much higher than

the frequency range of the observed volcanic phenom-

ena (cf. Table 2). The expression for sb
� 1 is given

below.

Analyzing Eq. (13), and considering the associ-

ated internal process of the volumetric motion of

the bubbles, we found that sb
� 1 is simply estimated

by:

s�1
b ¼ 3Kg

4go
: ð40Þ
Eq. (40) is obtained from the equation describing

the viscosity-controlled radial motion of a bubble in

an infinite Newtonian liquid:

4go
Ṙ

R
¼ Pg � P1; ð41Þ

where Pl is the pressure in the liquid far from the

bubble (Proussevitch et al., 1993). Assuming a small

change of the bubble radius (yR) and using Eq. (1),

Eq. (41) is linearized as:

4goyṘþ 3KgyR ¼ �yP1R: ð42Þ

We can see that the characteristic solution is

yR = exp(� t/H b). The solution indicates that sb is

the characteristic time of the viscous deformation of

the bubble radius. If the time scale of the external

pressure change is much longer than sb, change of the
bubble radius can follow so that the mechanical

equilibrium is maintained.

It is emphasized that the phase velocity and the

attenuation of the pressure waves in the liquid–bubble

mixture significantly depend on the frequency due to

the several internal processes such as bubble expan-

sion (contraction) and the volatile transfer. The sound

speed of the liquid–bubble mixture is represented by

cmo only in the limited frequency range. The range is

mainly bounded by sg
� 1 and sb

� 1. Namely, cmo is valid

when the frequency of the pressure wave is large

enough to keep the effect of the mass diffusion

insignificant and small enough for the bubble radius

to follow the pressure change.
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5. Discussion

5.1. Implications to resonance behaviors of a magma

body

Let us suppose a bubbly layer in a semi-infinite

body of magma (Fig. 8). A plane pressure wave

generated deep in the magma propagates through

the layer and is transmitted to the air. We demon-

strate the influence of the wave dispersion and

attenuation of the bubbly layer on the response of

the system by solving the simple one-dimensional

problem. The positions of the top and the bottom of

the bubbly layer are denoted by zt and zb, respec-

tively, and the position of the magma surface is

denoted by z0 = 0. The hydrostatic pressure of the

layer is approximated by Po =Pair + qlg-t
z, where Pair

is the atmospheric pressure (105 Pa) and g is the

gravitational acceleration. The hydrostatic gradient

within the layer is neglected for simplicity. Al-

though the model is rather artificial, the main

purpose here is to demonstrate the basic features

of the effect of the wave dispersion.
Fig. 8. A simple example system to demonstrate how the resonance

behavior of a body of bubbly magma is influenced by its frequency-

dependent acoustic properties. A layer of bubbly region is assumed in

the magma. A plane P-wave penetrates into the layer from below. It is

partly reflected at the boundaries, but partly transmitted into the

atmosphere. The frequency dependence of the wave transmission is

calculated.
We apply the mathematical method presented by

Kennet and Kerry (1979) to calculate the effective

transmission coefficient of the layered medium. The

method is described in a companion paper (Marchetti

et al., 2004), so that only the equations used in the

calculation are presented in Appendix B. The ratio of

the pressure wave transmitted to the air ( pair) to the

incident wave ( pin) is calculated by:

pair

pin

����
���� ¼ TUðz�0 ; zþb Þ

paircair

Kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KN þ 4

3
lx

ql

vuut
��������

��������
; ð43Þ

where qair and cair are the density and the sound

speed of the atmosphere, respectively, and

TU(z0
�,zb

+), which is given by (B1), is the effective

transmission coefficient from beneath the bubbly

layer (zb
+) to just above the magma surface (z0

�).

Assuming that the temperature of the air at z0
� is the

same as that of the magma (1273 K), qair = 0.27 kg/

m3 and cair = 720 m/s.

We take the magma viscosity (go) and the bubble

radius (R) as variable parameters in the following

analyses. The hydrostatic pressure in the bubbly layer

is fixed at Po = 1 MPa, which corresponds to the depth

of the layer of zt = 35.3 m. The void fraction is

assumed as / = 0.03. Eq. (39) gives cmo = 114 m/s at

this condition. The thickness of the bubbly layer is

assumed as the half-wave length of a 1-Hz wave with

this speed. Namely, zb–zt = cmo/2 = 57 m.

The response of the system (Eq. (43)) is pre-

sented as a function of frequency in Figs. 9 and 10.

In Fig. 9, the bubble radius is fixed at R = 10-3 m

and the viscosity is varied, while the viscosity is

fixed at go = 10
4 Pa s and the bubble radius is

changed in Fig. 10. The solid and broken vertical

lines in the figures present sg
� 1 and sb

� 1, respec-

tively, defining the frequency range in which the

sound speed cmo is valid. These characteristic fre-

quencies change with the viscosity and the bubble

radius as sb
� 1~go

� 1 and sg
� 1~R� 2 (Table 2).

The peaks of the response curves in Figs. 9 and 10

indicate the resonant frequencies of the layered medi-

um. The resonance occurs due to the existence of the

impedance contrast between the bubbly layer and the

bubble-free layers. We can see that those peaks appear

on condition that they are included in the range of
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Fig. 9. The frequency dependence of the wave transmission from

the magma to the air through the bubbly layer as shown in Fig. 8.
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for the conditions corresponding to (a) and (d) are presented in Fig.

6b and c, respectively.
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sg
� 1 <x < sb

� 1. The resonance fails outside the range

because the attenuation is too large (N\H g
� 1,

Nf H b
� 1) or the impedance contrast is too weak

(xHsb
� 1).

5.2. Applicability to the actual volcanic systems

The present expression for the effective properties

of the liquid–bubble mixture includes the effects of

the viscoelasticity of the liquid and the heat and mass

transfer between the liquid and bubbles. The actual

magmatic systems contain many other processes.

Here, we discuss the effects of possible important

factors.

5.2.1. Interaction between the bubbles

If we are to include the effect of the interaction

between bubbles in the present mathematical frame-

work to calculate the effective acoustic properties of

a liquid–bubble mixture, we have to consider the
multiple scattering. This effect has been treated by

Varadan et al. (1985) in calculating the phase veloc-

ity and attenuation of the pressure wave in the

liquid–bubble mixture without the effect of viscos-

ity. Their results agree with the other simpler calcu-

lations neglecting multiple scattering for the mixture

with a small void fraction. The existing experimental

results have also been explained by the simpler

theories quite well (Commander and Prosperetti,

1989; Prosperetti, 1984; Gaunaurd and Überall,

1981; Ichihara et al., 2004). The maximum void

fraction to which the single-scattering theories are

applicable is generally regarded as several percents

(Toksöz and Cheng, 1980). Unfortunately, there are

few experimental data with which we can check their

applicability to the higher void fractions. Not on the

wave propagation, but Llewellin et al. (2002) pre-

sented experimental data on shear viscosity of liq-

uid–bubble mixture with void fractions up to 46.1%.

Their data demonstrated the linear relations between

the void fraction and the effective shear viscosity of
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the mixture: gm = go(1� (5/3)/) for deformable bub-

bles, and gm= go(1 + 9/) for non-deformable bub-

bles. As is noted in Section 2.3, similar relations are

derived from the present expression. This fact may

partly support the applicability of the single scatter-

ing method to the higher void fractions.

5.2.2. Translational motion of the bubbles

The volatile transfer between the liquid and a

bubble is affected by the flow around the bubble

due to the translational motion of a bubble. We regard

such an effect is unimportant, when the length scale of

the bubble translation is much smaller than both the

bubble radius and the diffusion layer thickness.

The terminal velocity of a spherical bubble

under gravity is ub =AtR
2gql/go, where At = 1/3 for

a pure liquid and 2/9 for a liquid with surfactants.

The distance of the translational motion of a bubble

in a time scale of the volatile diffusion is repre-

sented by:

ubsg ¼
Atgql

9

R4

gojglA2
g

; ð44Þ

where the constant At gql/9 is about 630 and 950

for the pure and impure liquid, respectively. On the

other hand, the thickness of the diffusion layer at

x = sg
� 1 is:

ffiffiffiffiffiffiffiffiffiffi
jglsg

p ¼ R=ð3AgÞ: ð45Þ

The condition required to neglect the effect of the

translational motion is:

ubsgbR; ð46Þ

ubsgb
ffiffiffiffiffiffiffiffiffiffi
jglsg

p
: ð47Þ

The conditions (46) and (47) are rewritten as:

goH
Atgql

9

R3

jglA2
g

; ð48Þ

goH
Atgql

3

R3

jglAg

; ð49Þ
respectively. The condition (48) is defining for Ag < 1/

3, while condition (49) is defining for Ag>1/3. The

condition is presented on the R–go plane in Fig. 11 as

the region above the line for each pressure.

5.2.3. Existence of highly deformed or connected

bubbles

We have presented that the sound speed is not

efficiently decreased by the presence of bubbles in a

high-viscosity magma assuming the spherical bub-

bles. On the other hand, it has been shown for

porous solids that a small amount of thin pores can

significantly decrease the elastic moduli and seismic

velocities, which are rather insensitive to the rounder

or spherical pores (Toksöz et al., 1976). It is because

the thinner pores are more deformable due to the

stress concentration along the arc with the highest

curvature. Furthermore, in a system consisting of

connected bubbles, another kind of slow wave con-

trolled by the permeable gas flow exists (Biot, 1956;

Shoenberg, 1983). It is certain that these matters are

involved in the volcanic systems and should be

studied in more detail. However, observations of

natural porous volcanic rocks have shown that the

amount of interconnected irregular network of bub-

bles is drastically reduced below a void fraction of

50% (Spieler et al., 2004). Therefore, we consider

that, in the actual volcanic processes, there are a

number of situations where the present formulation

and analyses are useful.
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5.2.4. Inhomogeneous bubble distribution and the

hydrostatic pressure gradient

The actual magma column is supposed to be

spatially inhomogeneous. The hydrostatic pressure

gradient and the resultant variation of the void

fraction cannot be ignored. Wave propagation in

such a vertically inhomogeneous two-phase system

is treated in the companion paper (Marchetti et al.,

2004).
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6. Summary

(1) The effective acoustic properties of a liquid–

bubble mixture are represented by Eqs. (13)–(16)

with Eq. (4) representing the effective bulk modulus

of a bubble. These equations include effects of the

bubble resonance, the heat and the mass transfer

between the liquid and bubbles, and the viscoelasticity

of the liquid. Using these equations, the phase veloc-

ity and attenuation factor of the pressure wave in the

mixture are calculated by Eqs. (36)–(38) as functions

of the frequency.

(2) We defined seven characteristic times and

frequencies associated with the internal processes

controlling the dispersion and attenuation of the

pressure waves in the bubbly magmas: the relaxa-

tion time of the melt (ss: Eq. (9)), that of the

volumetric deformation of the mixture (sm: Eq.

(21)), the characteristic time of the viscosity-con-

trolled bubble expansion (contraction) (sb: Eq.

(40)), that of the heat transfer in the bubble

(sT:Eq. (29)), that of the volatile transfer (sg: Eq.

(35)), and the resonance frequency of the bubble in

the relaxed or the unrelaxed condition (xo: Eq.

(17) or xl: Eq. (18)). They are all represented by

simple functions of the material and condition

parameters.

(3) The phase velocity of the pressure wave

agrees with cmo (Eq. (39)) only in the limited range

of the frequency, though it is often used to represent

the sound speed of the liquid–bubble mixture. In

most of the cases with the magmatic systems, sg
� 1

and sb
� 1 determine the lower and upper limits of the

frequency range.

(4) Resonance behavior of a bubbly layer of

magma is caused by the impedance contrast between

the layer and the surrounding medium. It is noted
that such resonance can occur on condition that the

resonance frequencies are within the range bounded

by sg
� 1 and sb

� 1.

The present study demonstrated that the frequency

dependence of the phase velocity and attenuation of

the pressure waves is considerable in the bubbly

magma. However, it is not always easy to include

such effects in the existing mathematical framework

to calculate the wave field in the elastic medium.

Therefore, we propose the following simple way to

use the present result in constructing a model for the

seismo-acoustic phenomena of volcanoes:

(1) Assume that the bubbly magma is an elastic

medium with the slow sound speed, cmo, and calculate

the wave field.

(2) Calculate the characteristic frequencies for

volatile diffusion (H g
� 1) and bubble expansion (sb

� 1)

in the system.

(3) Make sure that the natural phenomenon to

which the model is applied is in the frequency range

of sg
� 1 <N < sb

� 1, where the sound speed of cmo is

applicable.
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Appendix A. Derivation of the equations to

calculate the effective bulk modulus of a bubble

A.1. Equations for pressure and temperature in the

bubble

When the bubble radius changes periodically, dif-

fusion layers of temperature and volatile concentration

are formed around the bubble. It is assumed that

distances between the bubbles are much larger than

the thickness of the layers and we consider a single

bubble in an infinite body of a liquid.
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A mass conservation equation for the gas is:

Bqg

Bt
þ 1

r2
B

Br
ðr2qgugÞ ¼ 0; ðA1Þ

where r is the distance from the center of the

bubble, qg is the density, and ug is the radial

velocity of the gas.

We assume that the gas in a bubble is an ideal gas:

Pg ¼ qgRgT ; ðA2Þ

where Rg is the gas constant, and T is the temperature.

Energy conservation of the gas in a bubble is

represented as:

d

dt

Pg

c � 1

� 
þ 1

r2
B

Br
r2

Pgug

c � 1

� 

¼ � 1

r2
B

Br
½r2Pgug� þ kg

1

r2
B

Br
r2

BT

Br

� 
; ðA3Þ

where kg is the heat conductivity of the gas.

Considering a wave field in which the wavelength

is much larger than the size of the bubbles, it is

assumed that Pg is uniform in the bubble. Then Eq.

(A3) is integrated from r = 0 to r as:

ug ¼
1

cPg

ðc � 1Þkg
BT

Br
� r

3
Ṗg

� �
; ðA4Þ

where the superimposed dot indicates d/dt. Substitut-

ing Eqs. (A2) and (A4) into Eq. (A1), a differential

equation for the temperature is obtained:

BT

Bt
þ ug

BT

Br
¼ jT

1

r2
B

Br
r2

BT

Br

� 
þ c � 1

c
T

Pg

Ṗg;

ðA5Þ

jT ¼ kg
qg

c � 1

cRg

; ðA6Þ
where jT is the thermal diffusivity of the gas and cRg/

(c� 1) is the heat capacity of an ideal gas at a constant

pressure.

Mass flux of the volatile through the bubble wall

(Ṁg) is defined as:

qgðug � ṘÞ ¼ �Ṁg; ðA7Þ

where R is the bubble radius. Substituting Eq. (A7)

into Eq. (A4) at r =R, a differential equation for the

pressure is obtained as:

Ṗg ¼
3ðc � 1Þ

R

� kg
BT

Bt

� 
w

� c
c � 1

PgṘþ c
c � 1

TRgṀg

� �
;

ðA8Þ

where the subscript w indicate the value at r =R.

A.2. Equations for heat and mass transfer in the

liquid and at the bubble wall

The temperature of the liquid is assumed to be

constant (To), because the heat conductivity and the

heat capacity of liquid are much larger than those of

the gas. Moreover, the latent heat associate with the

volatile transfer between the gas and liquid phases is

neglected. Then the boundary condition for the tem-

perature at the bubble wall (r=R) is:

Tw ¼ To: ðA9Þ

Transfer of the volatile in the liquid is described

by:

BCg

Bt
þ u1

BCg

Br
¼ jgl

1

r2
B

Br
r2

BCg

Ar

� 
; ðA10Þ

where ul is the radial velocity, and Cg and jgl are the

concentration and the diffusivity of the volatile in the

liquid. The mass flux of the volatile at the bubble

wall is:

Ṁg ¼ qljgl

BCg

Br

� 
w

: ðA11Þ
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We assume that gas concentration at the interface

is in equilibrium with the gas phase and determined

by the pressure in the bubble according to the

Henry’s law:

Cgw ¼ CeqðPgÞ: ðA12Þ

A.3. Linear analysis

We define dimensionless variables, which are

denoted with asterisks:

t ¼ x�1t*; r ¼ Ror*;

R ¼ Roð1þ R*Þ; Pg ¼ Poð1þ P*Þ;

T ¼ Toð1þ T*Þ; Cg ¼ Cgoð1þ C*Þ;
g ðA13Þ

where the center of the oscillation for each variable is

denoted with subscript o, and x is the angular

frequency of the oscillation. The following dimen-

sionless parameters are defined:

Q2 ¼ 2R2
ox

jT

; ðA14Þ

ag ¼
jgl

jT

ðA15Þ

Xg ¼
qlCgo

qgo

; ðA16Þ

Hn ¼
Po

Cgo

BCeq

BP
: ðA17Þ

The dimensionless variables (Eq. (A13)) are sub-

stituted into Eqs. (A8), (A5) and (A10) and the

equations are linearized with respect to the perturba-

tions. Using relations (A2), (A6), (A11) and (A14)–

(A17), we obtain:

Ṗ* ¼ 6c
Q2

BT*
Br*

� 
w

�
Q2Ṙ*
2

þ Xgag
BC

l*
Br*

� 
w

" #
;

ðA18Þ
BT*
Bt*

¼ 2

Q2

1

r2
*

B

Br*
r2*

BT*
Br*

� 
þ c � 1

c
Ṗ*; ðA19Þ

BC*
Bt*

¼ 2ag
Q2

1

r2
*

B

Br*
r2*

BC*
Br*

� 
: ðA20Þ

The dimensionless boundary conditions at r* = 1 are:

T* ¼ 0; ðA21Þ

C* ¼ HnP*: ðA22Þ

We consider a periodic system in which all the

variables are proportional to e� it*. The pressure and

the bubble radius, which are independent of r*, are:

P* ¼ e
�it* P̃; ðA23Þ

R* ¼ e
�it* R̃: ðA24Þ

Equations are solved with the constraint that the

perturbation variables are finite at the center of the

bubble (r* = 0), and vanishes far from the bubble

(r* =l):

T* ¼ e�it P̃ T̃

sinh r*Q

ffiffiffiffiffiffi
�i

2

r !

r*sinh Q

ffiffiffiffiffiffi
�i

2

r !
2
66664 þ c � 1

c

#
; ðA25Þ

C* ¼ e
�it* P̃C̃

exp �r*Q

ffiffiffiffiffiffiffiffi
�i

2ag

s !

r*exp �Q

ffiffiffiffiffiffiffiffi
�i

2ag

s ! : ðA26Þ

Here, note that
ffiffiffiffiffiffiffiffiffiffi
�i=2

p
¼ ð1� iÞ=2.

The coefficients T̃ and C̃ are determined from the

boundary conditions (A21) and (A22) as:

T̃ ¼ � c � 1

c
; ðA27Þ

C̃ ¼ Hn: ðA28Þ
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Substituting solutions (A23) – (A26) into Eq.

(A18), we obtain:

P̃ ¼ �3FðQÞR̃; ðA29Þ

FðQÞ ¼ �i

2
cQ2=

�i

2
Q2 þ 3ðc � 1Þ

"
� 1þ

(

Q

ffiffiffiffiffiffi
�i

2

r
tanh�1 Q

ffiffiffiffiffiffi
�i

2

r !#

q3pt þ 3cXgHn ag þQ

ffiffiffiffiffiffiffiffiffiffi
�iag
2

r !)
: ðA30Þ

Comparing Eqs. (A18) and (1), F(Q) is regarded as

the dimensionless bulk modulus of the bubble:

Kg

Po

¼ FðQÞ: ðA31Þ

Eq. (4) is obtained by transformation of Eq. (A30).
Appendix B. The effective transmission coefficient

of the layers

We consider a wave field depending on time

through e� iNt. According to Appendix A in Marchetti

et al. (2004), the transmission coefficient of the layered

medium (Fig. 8) is expressed as follows. The terms

Ka + (4/3)la (a =x, m) in the following equations

correspond to qc2 + ix(4/3)geff in the other paper. It

is noted that the wave field is assumed as~ eiNt in the

other paper. Namely, all the expressions are complex

conjugate with each other in the two papers:

TUðz�0 ; zþb Þ ¼ q11 � q12q
�1
22 q21 ðB1Þ

q11 q12

q21 q22

0
@

1
A ¼ D�1ðz�0 ÞDðzþ0 ÞEðzþ0 ; z�t ÞD�1ðz�t Þ

�Dðzþt ÞEðzþt ; z�b ÞD�1ðz�b ÞDðzþb Þ
Dðz�0 Þ ¼
1 1

�iqaircair iqaircair

0
@

1
A

Dðzþ0 Þ¼Dðz�t Þ¼Dðzþb Þ

¼

1 1

�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ql

�
Kxþ

4

3
lx

s
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ql

�
Kxþ

4

3
lx

s
0
BB@

1
CCA

Dðzþt Þ ¼ Dðz�b Þ

¼

1 1

�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm

�
Kmþ

4

3
lm

s
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm

�
Kmþ

4

3
lm

s
0
BB@

1
CCA

Eðzþ0 ; z�t Þ ¼
e�ikxðzþ0 �z�t Þ 0

0 eikxðzþ0 �z�t Þ

0
@

1
A

Eðzþt ; z�b Þ ¼
e�ikNðzþt �z�

b
Þ 0

0 eikxðzþt �z�
b
Þ

0
@

1
A

where the complex wave number in the magma is

given by kx ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ql=ðKx þ 4

3
lxÞ

q
with KN and lN

given in Eqs. (7) and (8), respectively, and km is given

in Eq. (36).
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