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Abstract. Geological information can be used to solve many practical and theoretical 
problems, both within and outside of the discipline of geology.  These include analysis of 
ground stability, predicting sub-surface water or hydrocarbon reserves, and assessment of risk 
due to natural hazards. In many cases, geological information is provided as an a priori 
component of the solution (that is, information that existed before the solution was formed 
and which is incorporated into the solution). Such information is termed ‘geological prior 
information’.  
     The key to the successful solution of such problems is to use only reliable geological 
information. In turn this requires that (a) multiple geological experts are consulted and any 
conflicting views reconciled, (b) all prior information includes measures of confidence or 
uncertainty  (without which their reliability and worth is unknown), and (c) as much 
information as possible is quantitative, and qualitative information or assumptions are clearly 
defined so that uncertainty or risk in the final result can be evaluated. This paper discusses 
each of these components, and proposes a probabilistic framework for the use and 
understanding of prior information 
     We demonstrate the methodology implicit within this framework with an example: this 
shows how prior information about typical sequence stacking patterns allows aspects of 2-D 
platform architecture to be derived from 1-D geological data alone, such as that obtained from 
an outcrop section or vertical well. This example establishes how the extraction of 
quantitative, multi-dimensional, geological interpretations is possible using lower dimensional 
data. The final probabilistic description of the multi-dimensional architecture could then be 
used as prior information sequentially for a subsequent problem using exactly the same 
method. 
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Introduction 

 

For decades, specific geological information has been transferred to other domains, helping 

solve applied and theoretical problems. These include, for example: 

 information about typical geological architectures in a particular environment allows 

sub-surface properties to be estimated away from drilled observation wells in order to 

assess hydrocarbon or water reservoir potential (e.g. Mukerj et al. 2001; Schon 2004); 

 assessments of predicted geohazzard risks contributes to the pricing of life and 

property insurance (e.g. Rosenbaum & Culshaw 2003) 

 the distribution of ancient reef corals, combined with the relationship between coral 

growth and sea-level, allows prediction of both past sea-level oscillations, and how 

future sea-level change might affect the distribution of modern reefs (e.g. Potts 1984; 

Budd et al. 1998); 

 historical knowledge of slope stability in different geological environments allows 

proposed building projects to include appropriate remedial action against such risk 

(e.g. Selby 1982), and 

 estimates of regional tectonic stability contribute to allowing toxic waste to be stored 

underground with minimal risk of future leakage (e.g. Pojasek 1980). 

          For each of these problems, geological information is not only provided as an a priori 

component of the solutions, but is central to their creation. This information pre-existed to the 

formation of the solution, and so in this context is termed ‘geological prior information’ 

henceforth, GPI. 

          The special volume from the Geological Society of London, of which this paper is a 

part, is devoted to understanding the use of geological prior information in order to solve 

problems in both geological and other domains. As such, it spans research in several aspects 

of GPI: how GPI can be captured, quantified, ascribed an associated uncertainty or reliability, 

and then how this might be used to provide solutions to other problems. The purpose of 

research into the creation and use of GPI is therefore to make geology more accurate, useful 

and transferable to scientists and problem solvers. 

      In this paper, we begin by constructing a Bayesian, probabilistic framework that precisely 

defines GPI.  We then define the various components of information that must be either 

assembled or assumed in order to solve problems using GPI, and demonstrate how uncertainty 

in such assembled information propagates to create uncertainty in the solutions found. This 
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framework also allows a useful categorisation of methods that use GPI to solve geoscientific 

problems: we demonstrate this by placing the papers of this volume into this framework and 

stating the principal ways in which each contributes to the field. We then present an example 

of the use of GPI: in this case, how it might be used to extract and extend geological 

information away from a single point in space at which data was collected. This example 

serves to illustrate definitions given in the probablistic framework, and highlights some of the 

issues and difficulties involved in using GPI.  

 

 

A framework for using and analysing geological prior information 

     In all that follows we use P(Q) as a general notation for the probability of an event or 

hypothesis Q being true (or the value of the probability density function at Q if the event 

space is continuous). We also make use of conditional probability notation P(Q|R), meaning 

the probability that Q is true given that we know R is true, for some event or hypothesis R. 

Finally, we will make use of Bayes Rule which is obeyed by all probability distributions. For 

any events or hypotheses Q and R it may be stated: 

)(

)()|(
)|(
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QPQRP
RQP = .     ……………………. (1) 

     Now, say we would like to answer a geoscientific question upon which geological 

information might have some bearing, and assume further that the question can be posed in 

such a way that its answer is given by constraining some model vector m. Model m might 

represent a predicted sea level curve, a set of charges for insurance against geohazzards, or the 

distribution of fluids in a sub-surface reservoir, for instance. Examples of the types of 

pertinent background knowledge might include: knowledge of regional geologic, diagenetic, 

tectonic or climatic history; inferences from previously acquired data; typical problems 

experienced when acquiring data; expected data uncertainties; generally accepted geological 

theory which might be assumed in a geological model, and existing methods that may be used 

to tackle different types of problems. We represent all such background knowledge by symbol 

B.  

     We will assume that B can be decomposed into geological knowledge G and other 

knowledge 'G , and further that the geological knowledge can be decomposed into 
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quantitative and non-quantitative components, qG and 'qG  respectively. This results in a 

description of all background knowledge by the partition B = [ qG  , 'qG  , 'G ].  

     Say a new data set d is acquired which was designed to place more focussed constraints on 

model m. Bayes Rule allows constraints on m both from the new data d and from pre-existing 

background information B to be quantified. This is useful because the relationships between 

m, d and B are complicated in which case it is not easy to calculate or weight the relative 

constraints offered by d and B in other ways. Since all data and background information will 

be uncertain to some extent, so our knowledge of m will always be uncertain. One way to 

express available information about m is to use a probability distribution. Substituting m, d 

and B appropriately into equation (1) we obtain: 
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     The totality of information about the model given data sources d and B is called the 

posterior distribution and is described by the probability distribution on the left of equation 

(2). This can be calculated for any particular model m by the product of two terms on the right 

of equation (2). The first is called the relative likelihood term, and is the ratio of the 

probability of measuring data d if model m was true (numerator) to the probability when no 

knowledge about m is available (denominator). Notice that both the numerator and 

denominator must therefore implicitly incorporate information about the uncertainty in the 

measured data d. The second term on the right is called the prior distribution of model m, and 

describes all information about m that existed prior to data d having been acquired (since data 

d does not feature in this term). Hence, this term includes all information about m from 

background information B alone. 

     At this point it helps to have a particular example in mind, and the following example will 

be illustrated in detail later in this paper. Consider the situation in which we would like to 

constrain the stacking pattern of a parasequence set observed on a laterally constrained but 

vertically extensive outcrop exposure surface in some particular location (assuming that the 

exposure is too restricted to reveal the stacking patterns directly). Let model m represent the 

various possible stacking patterns of the observed parasequence set. Hence, m may represent 

one of the following patterns: regressive (R), progradational (P), aggradational (A), or 

retrogradational (G). Pertinent background information B might include: regional geological 

history and age of the sequence, approximate location of the parasequence set within the 

overall succession, and the sedimentary composition. The prior information term P(m|B) then 
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represents all possible constraints on the stacking pattern given only this pre-existing 

background information. 

     Now say the relative vertical thicknesses of the parasequence set observed on the vertical 

outcrop section were measured to provide a data set d. In principle, this data set contains 

some information about the stacking pattern that would be observed laterally (a particular, 

precise relationship is given later). The numerator of the relative likelihood term P(d|m,B) is 

the probability that we could have recorded data set d if we knew that a particular value of 

model m was true (e.g., if we know that the stacking pattern was regressive) and given 

background information B. The denominator P(d|B) is the probability that data d could have 

been recorded with no knowledge of the true stacking pattern but still given background 

information B, and is a normalising term that ensures that the integral of the posterior 

distribution equals unity.  

     To give a numerical demonstration, say we know from background information B that the 

age of deposition occurred during a period of general sea level rise. Then a priori we may 

wish to assign a low probability that regression G occurred (i.e., m=‘G’ in reality) since this is 

often associated with a relative sea level fall, but equal probability that progradation P, 

aggradation A or retrogradation R occurred. Hence, we might define the following prior 

distribution: 

P(m=‘R’ | B) = 
10

1
     and     P(m=‘P’ | B)   =   P(m=‘A’ | B)   =   P(m=‘G’ | B)   =   

10

3
. 

Say that the probabilities of recording data d given each of the possible values for m are: 

P(d | m=‘R’,B)   =   P(d | m=‘P’,B)   =   P(d | m =‘G’,B)   =   
5

1
      and 

P(d | m=‘A’,B)   =   
5

2
. 

That is, the probability of the data having been recorded in an aggradational setting is twice 

that in all of the other settings.  

     Thus far we have completely defined the likelihood in the numerator, and the prior 

information term on the right of equation (2). It is now possible to work out the other two 

terms in this equation: since the left of equation (2) is a probability distribution it must 

integrate to unity (that is, the sum of the probabilities for each of the possible values of model 

m - R, P, A and G - must be one). Hence, the denominator on the right must assume a value 



6 

that normalises the right side of the equation similarly. This gives (with terms in order m = R, 

P, A, then G): 

P(d|B)      =     P(d | m=‘R’,B) P(m=‘R’|B)  +  P(d | m=‘P’,B) P(m=‘P’|B)  +   

  P(d | m=‘A’,B) P(m=‘A’|B)  +  P(d | m=‘G’,B) P(m=‘G’|B) 

     =     
10

3

5

1

10

3

5

2

10

3

5

1

10

1

5

1 ⋅+⋅+⋅+⋅  

     =     
50

14
. 

Finally, we can work out the posterior distribution on the left of equation (2), 

P(m=[R,P,A,G] | d,B)   =   





14

3
,

14

6
,

14

3
,

14

1
, 

where the numbers in the square brackets on the right are the probabilities of each of the cases 

for m listed in the square brackets on the left. Thus, we show that the probability of 

aggradation A is still twice that of progradation P or regression G, as was the case above 

when we considered only the likelihood distribution (data information). However, in the 

posterior distribution when prior information is also taken into account, the probability of 

aggradation A is shown to be three times that of retrogradation. This is due to the relatively 

low probability of retrogradation given our prior knowledge that the sequence was deposited 

in a period of general sea level rise. 

 

     Let us now expand the prior distribution in equation (2) using the partition of background 

information B made above, to obtain, 

)',,|()|( ' GGGPBP qqmm =     ……………………. (3) 

Since probabilities are inherently quantitative, it is often difficult to use uncertain, qualitative 

information or hypotheses to constrain their distributions. For instance, in the prior 

information term (equation (3)), the value of the perceived probability of model m being true 

will be influenced by both quantitative and qualitative geological information qG and 'qG , 

respectively. However, it will be more difficult to assess the exact, quantitative influence of 

'qG  on this probability than the influence of qG . Returning to the stacking pattern example 

for illustration, it is reasonably easy to assess the probability of each stacking pattern m given 

quantitative information qG  about the relative proportion of the various stacking patterns 

observed in other outcrops if we assume the truth of the qualitative hypothesis 'qG , “that 
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these are good analogues for the outcrop in question”. It would be far more difficult to assess, 

however, exactly how that information on stacking patterns might be enshrined within a prior 

probability distribution if we also allowed within 'qG  that there is a certain positive 

probability that this hypothesis might be false. Although we have only discussed the prior 

distribution here, such arguments also apply to each probability term in equation (2). 

     As a result, it is always the case that in practise it will be necessary to make an 

approximation of the posterior distribution by limiting the uncertainty in some qualitative 

information and hypotheses in 'qG  (i.e., by adding extra, assumed information) to give 

approximation '
ˆ

qG . This results in an approximation of the background information 

]',ˆ,[ˆ
' GGGB qq=      ……………………. (4) 

and the following application of Bayes Rule: 

)ˆ|(
)ˆ|(
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BP
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d
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dmdm =≅  ……………. (5) 

The accuracy with which )ˆ,|( BP dm  approximates ),|( BP dm  depends on the nature of the 

approximations made in the background information B̂ , and in particular on the truth of the 

assumptions added. 

     To summarise the discussion so far, all practical, calculable posterior distributions are 

approximations (equation (5)), all are conditional on background information, and in practise 

it is also always the case that some of this background information must be assumed to be true 

for expediency rather than because it is known to be so (equation (4)). This implies that all 

estimates of prior and posterior uncertainty are likely to be optimistic, as they cannot account 

for the full, true range of uncertainty. 

     We differentiate here between static and dynamic quantitative prior information. The 

former denotes quantitative information about the present day (static) observed or inferred 

geology; the latter denotes quantitative information about either time-dependent (dynamic) 

geological processes, or geologies that existed at some point in the past (which implicitly 

requires the use of a dynamic model). 

     Static prior information about a succession might comprise statistics of the geological 

geometries observed in one or more outcrops from formations of analogous settings and 

origin. In the example given later we use a Uniform prior distribution of typical parasequence 
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architectures of platform carbonate formations, but any other, more accurate prior distribution 

could also be used. 

     Dynamic prior information might be derived, for example, from climatological data since 

climate affects parasequence formation by influencing carbonate production rate, and by 

affecting sea level oscillations and hence accommodation space. Consequently, some have 

postulated that fourth-order parasequence geometries are observed to be less ordered in 

icehouse compared to greenhouse episodes (Lehrmann & Goldhammer 1999). An example of 

prior information derived from this argument is therefore: given that a specific formation is 

carbonate (with no other information, e.g., of the geological age), the prior probability that 

deposition occurred during icehouse, transitional or greenhouse episodes is approximately 

0.31, 0.19 or 0.5, respectively (calculated by integrating global carbonate accumulation rates 

provided by Bosscher & Schlager 1993) over time spanned by each episode (as defined by 

Sandberg 1985). In the example given later we demonstrate the method using only static 

information. Note, however, that dynamic information can be treated in exactly the same way.  

      If prior information comes from multiple independent sources (e.g., static and dynamic) it 

can be combined as follows: let B1 represent background information from, for example, static 

sources as described above, and B2 represent background information from dynamic sources 

derived, for example, from a geological forward process model (e.g., Tetzlaff & Priddy 2001; 

Tetzlaff this volume; Burgess & Emery this volume). Let us assume that the sources of 

background information and hence B1 and B2 are independent. Then, )|( 1BP m denotes static 

prior information and )|( 2BP m  denotes dynamic prior information on model m. The correct 

way to combine these to derive the total resultant prior information )|( BP m , where B is the 

total state of background information [B1 , B2], is to use Bayes Rule again : 

 
)(

)|()|(
)|( 21

m

mm
m

P

BPBP
BP = .    ……………………. (6) 

Here )(mP  is called the null probability distribution and is the state of information about m 

when no background information at all is available. The null distribution describes the 

minimum possible information about the model m (Tarantola & Valette 1982). We assume 

that )(mP  is a Uniform distribution and hence is constant with respect to m. 

     Curtis & Lomax (2001) have shown that even weak prior information is often sufficient to 

make computationally tractable those problems that would otherwise be impossible to solve. 

Notice the implication of equation (6); that no matter how weakly constrained the dynamic 
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process model used, adding the extra information cannot create more uncertainty than existed 

using static information alone. The worst possible situation is that the dynamic model 

provides the minimum possible information so )()|( 2 mm PBP = , in which case equation (6) 

gives )|()|( 1BPBP mm = . Thus, by using our method the addition of even weak dynamic 

(or additional static) information always improves knowledge of geological architecture, 

which in turn can render significantly improved computational efficiencies in constraining 

models from measured data. 

     A pitfall that might occur in practise when combining information using equation (6) is 

that incompatible approximations to background knowledge B1 and B2 are made. For 

example, if the dynamic information in B2 is produced using a geological process model, then 

that information may be predicated on the assumption that the process model is sufficiently 

detailed to represent reality. Thus, an approximation 2B̂  to background information B2 would 

be used (see Curtis & Wood this volume, for further discussion). Such an assumption would 

not be required in order to incorporate geostatistical, static information in )|( 1BP m , which 

could be measured directly from outcrops in the field; such information would therefore be 

conditional on different and incompatible approximations, 1B̂ , to the background information, 

B1. Combining information )ˆ|( 1BP m  and )ˆ|( 2BP m  using equation (6) directly would be 

incorrect since the two distributions are based on incompatible information. Typically this 

would again result in an optimistic assessment of the uncertainty in )|( BP m . An example of 

one correct way of combining such sources of information would be to use the static, 

statistical information to constrain the range of process model outputs that should be 

considered (Curtis & Wood this volume; Tetzlaff this volume; Wijns et al. this volume). 

Thus, both static and dynamic sources of information are combined using the more restrictive 

assumptions implicit in the conjunction of 1B̂  and 2B̂  - that the outcrops used to measure 

static information were valid analogues, and that the geological process model assumptions 

were valid. 
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Towards a probabilistic framework 

 

     Geological Prior Information, can now be defined more precisely as the field devoted to 

making geological background information qG and 'qG  explicitly, or at least practically 

available, and to using such information to solve geoscientific problems. As such, this field 

makes geology a useful tool to solve problems in other fields of geoscience.  

      We may use equations (4) and (5) to create a two-step framework within which most work 

in the field can be described. Step 1 is defined as the quantification of geological knowledge, 

and is implicit within the partition on the right of equation (4). As explained above, this is 

often necessary in order for uncertain, yet correctly calculated inferences to be made. 

Research in this area quantifies previously qualitative information, and thus, information is 

moved from 'qG  to qG . Step 2 is defined to be the use of such information to solve other 

geoscientific problems, and is associated with the use of equation (5) for Bayesian inference 

(or with the use of some other system of inference). 

     Table 1 summarises how each of the papers within this volume contributes to these two 

steps within this probabilistic framework, and whether a paper presents a new method, 

application, or general discussion. We also differentiate between papers that contribute to 

either static or dynamic quantitative prior information within Step 1.  The papers in this 

volume are therefore ordered roughly so as to begin with two introduction and discussion 

papers, of which this is one, then to progress logically through the various stages of Step 1 

and then Step 2. 

     Notice that only two technical papers (Pschenichny this volume; Stephenson et al. this 

volume) address the issue of calculating distribution )|( BP d  in the denominator of equation 

(2), and of these only Stephenson et al. (this volume) addresses this directly. In most 

applications, this term, called the evidence or marginal likelihood, serves merely to normalise 

the posterior distribution and is ignored in the calculation. This is usually because relative 

rather than absolute values of the posterior distribution are perceived to be sufficient. 

However, Malinverno (2000) and Malinverno & Briggs (2004) show how the value of this 
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term can be used to determine the complexity of model m that is justified by the data 

available. In other words, this term quantifies the ‘evidence’ for any particular model 

parameterisation, and allows the evidence for different possible model parameterisations to be 

compared. 

 

 

Example: Extraction of 2-D Stratigraphic Information from 1-D Data   

     Parasequences forming over ~ 100 k.y. periods, nested within sequences that form over ~ 

1-3 myr, are usually considered to be the fundamental depositional units of marine platform 

systems, especially in carbonate successions. Yet the shape, size, and stacking pattern of 

parasequences and sequences within any given basin, as well as details of their internal 

architectures and facies distribution, are usually poorly known in two- or three-dimensions. 

This is due either to the sparsity of outcrop, or to lack of sufficient resolution afforded by 

remote sensing techniques, such as seismic data (a good example of the latter is given in 

Tinker et al. 1999). It has been postulated, however, that under certain conditions the stratal 

order observed within any given parasequence includes vertical and lateral lithofacies changes 

that are at least semi-predictable at certain scales (e.g. Lehrmann & Goldhammer 1999), 

although this is far from accepted (see Wright 1992; Drummond & Wilkinson 1993; 

Wilkinson et al. 1999; Burgess 2001). There are, however, many general principles that 

govern degrees of predictability in sedimentary successions, and these are enshrined within 

the discipline of stratigraphy (e.g. Walther’s Law).  

      In the example given here, a method is described that uses GPI gained from sedimentary 

successions (with some additional, explicit assumptions) to obtain probabilistic information 

about the stratigraphic architecture of platform successions at the parasequence scale. We 

demonstrate the method on a simple model of Transgressive System Tracts (TSTs) and show 

that (i) data describing only the depths of parasequence or sequence boundaries intersected by 

a 1-D data profile may be sufficient to provide significant spatial constraints on the far-field 

(2- or 3-D) geology when combined with prior information, and (ii) the probabilistic results 

obtained are consistent with those derived from independent geological reasoning.  
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Methodology 

     The method combines (1) data from a single 1-D profile, that could be derived from either 

an outcrop stratigraphic section or well (henceforth, a well), (2) prior information about the 2-

D (or 3-D) stratigraphic architecture that might be expected, and (3) knowledge of the 

relationships between the 1-D data and the 2-D architecture of which it is a part. Components 

(1) to (3) include all possible information pertinent to the problem considered – that is, of 

estimating 2-D parasequence architecture from 1-D data profiles alone.  

       Using some additional assumptions, information in (1), (2) and (3) individually may be 

described by independent probability distributions. These distributions are combined using 

Bayes Rule. The result is a distribution that represents the state of knowledge that includes all 

possible information about the 2-D parasequence architecture conditional on the assumptions 

made.  

      In the example given here we will demonstrate the method on a 2-D representation of 

shallow platform parasequence architecture formed during a TST, as defined by a simple 

model (Fig. 1). Although highly simplified, this model may approximate the architecture of at 

least some real examples, and the probabilistic methodology established can be applied 

similarly to more complex, 2- or 3-D geologic models, and may also be extended to include a 

further variety of data types and distributions. That this model may be sufficient to explain 

architectures in question is a qualitative hypothesis, and hence is in 'qG . The explicit 

assumption that this is the case (i.e., that we may neglect the possibility that the model is 

insufficient) is made for convenience so that we need not consider the range of all other 

possible types of models, and results in the approximation '
ˆ

qG , and hence B̂  in equation (4). 

 

 

Probability distributions      

     We now describe the required probability distributions (1)-(3) and the various components 

of the method: 

 

1. Data distribution: Data from the well must include an estimate of the data uncertainty. 

This is used to define the data probability distribution (or simply the data distribution) )(dρ  

where d is the vector of data. In our example, d  contains only the observed depths of 
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intersection of a well with parasequence boundaries (Fig. 1); )(dρ  describes uncertainties in 

those depth observations. Note that )(dρ  is not explicitly included in equation (5), but will be 

used below to construct the likelihood term. 

 

2. Models and the Prior Distribution: We call the range of all possible geologies the model 

space M. Any particular geology is called a model, which we assume can be described by a 

vector m. In our example, m comprises the 7 parameters in Fig. 1 (ramp dip is not included in 

m), and although this model is particularly simple, it suffices to illustrate our method. 

Geological prior information includes only information about models that is independent of 

the current well data )(dρ . Prior information is described by the prior (probability) 

distribution )ˆ|( BP m that describes the uncertainty in model parameter values given only the 

available, approximate, background information B̂ .  

 

3. Model-data relationship and the likelihood function: In theory, the relationships 

between data d  and models m  can be described by an independent probability distribution 

(e.g., Tarantola & Valette 1982; Tarantola 1987). In practise, however, the relationship is 

usually used in the form of a likelihood function, a non-normalised probability distribution 

since normalisation can be difficult. This function describes the relative probability of 

occurrence of any geological model in the model space given the information contained in the 

current data set alone, and therefore incorporates the data distribution )(dρ . Below this 

function will be used to construct the relative likelihood in equation (5). 

     The likelihood is often calculated as follows: for any geological model m  we assume that 

we can calculate synthetically data )(0 mfd =  that would have been recorded if m  

represented the true geology ( 0d  is the expected data). These are calculated using modelling 

techniques or assumptions represented here by function f. In our example, given particular 

model parameter values m we can define a set of parasequence boundaries, as shown in 

Figure 1. Function f(m) represents the calculation of the intersection depths 0d  between the 

well and these ‘synthetic’ parasequences. We calculate the consistency of 0d  with the 

measured current data distribution )(dρ  by evaluating )( 0dρ . In turn, variations in 

( )( )mfd ρρ =)( 0  reflect the relative probability of occurrence of different models m given the 

current data distribution alone, and hence ( )( )mfρ  defines the likelihood function.  



14 

 

 

Bayesian Inference 

     We use Bayes Rule in equation (5) as follows: term ( )BP ˆ,| md  is the (normalised) 

likelihood function described above, and ( )BP ˆ|m  is the prior distribution in the model space. 

In this example we estimate neither the value of ( )BP ˆ|d  (the probability of the measured data 

occurring at all under the assumptions inherent in our modelling) nor the normalisation factor 

for the likelihood. That is because these are both constant with respect to model m. Hence, in 

this example (as is commonly the case), Bayes Rule is used to estimate the posterior 

distribution ( )BP ˆ,| dm  up to an unknown multiplicative constant. This is sufficient to find the 

best-fitting model, and the range of possible 2-D models that fit the 1-D data to any desired 

accuracy. 

 

 

Application 

     In this example, we consider the placement of hypothetical vertical sections or wells within 

a succession of parasequences. Figure 2 shows the intersection of each successive 

parasequence boundary given at three locations, for both progradational and regressive phases 

of a cycle. Notice that, due to the similarity of shape and progressive horizontal offset of 

successive parasequences, a single, vertical section through multiple parasequences is similar 

to multiple sections through a single parasequence at different horizontal locations (Fig. 3). 

Intuitively then, intersection depths alone from a single, 1-D vertical well contain information 

about 2-D parasequence shape.  

      Also, different stacking patterns result in different patterns of depths of intersection 

between a vertical well and parasequence boundaries. For example, in the progradational 

situation in Fig. 2A, parasequences become relatively thinner (that is, intersection points 

become increasingly dense) towards the base of a section taken on the flank (right hand well). 

In the regressive situation in Fig. 2B, the reverse is true. Hence, vertical intersection depth 

data also contain information about the parasequence stacking patterns. The proposed 

methodology allows the degree and nature of these constraints to be explored and quantified.  
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     In this example the specific data distribution used was constructed by placing uniform 

uncertainties of +/-0.5 m on the synthetic intersection depth data from the right well of the 

regressive representation (Fig. 2B), representing, for example, uncertainty in the interpretation 

of parasequence boundaries given available well data. Our static prior information consists of 

a joint Uniform distribution over the parameters given in Figure 1, and this distribution is 

defined in Table 2. This includes examples of all possible stacking patterns (regressive, 

aggradational, progradational, or retrogradational), and the parameters in Table 2 are derived 

from background information B̂  that includes case studies in published literature (Bosscher & 

Schlager 1993; Lehrmann & Goldhammer 1999). 

     An example of the type of far field information embedded intrinsically within the prior 

distribution is constructed as follows: the prior distribution is simply a Uniform distribution 

with parameters given in Table 2. A Monte Carlo procedure was used to sample the prior 

distribution ( )BP ˆ|m  of equation (5) across model parameters m. Each Monte Carlo sample is 

a model consisting of seven parameters. For each, the parasequence flank gradient g, defined 

to be flank dz/dx (Fig. 1), is calculated, and a histogram of the gradient values is created. Fig. 

5A shows this histogram, which is an approximation to the (non-normalised) prior marginal 

probability distribution of parasequence flank gradient g. Gradient g is defined using 

parameters related to the geological architecture up to hundreds or thousands of metres 

laterally away from the well since it depends on the lateral extent (length) of the 

parasequences. This length is not observable at the well. Hence, the non-Uniform nature of 

the distribution in Figure 5 shows that the prior distribution contains significant far-field 

geological information that cannot be derived from well data alone. 

     A Monte Carlo procedure was then used to sample the posterior distribution of equation 

(5) across model parameters m using Bayes Rule. Marginal histograms of these samples over 

each model parameter are shown in Figure 4. These are (non-normalised) approximations to 

the posterior probability distribution of each parameters given all prior and data-derived 

information. These histograms are highly non-uniform despite the fact that both prior and data 

distributions were Uniform. This indicates that there is significant nonlinearity in the model-

data relationship since linear relationships would result in Uniform posterior distributions.  

     Also, for at least half of the parameters, both mean and the maximum likelihood parameter 

values proved to be poor indicators of the ‘true’ model parameter values used in Figure 2B. 

Hence, there is no easy way to infer a single, best estimate for each parameter: the complete 

7-D posterior distribution should be considered in any subsequent interpretation. 
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      The posterior marginal histogram over flank gradient g can be estimated by calculating 

flank dx/dz for each Monte Carlo sample of the posterior distribution (Fig. 5B). Differences 

between the prior and posterior histograms represent exactly the information gained by adding 

the well intersection depth data from the right well in Figure 2B to the prior information 

(compare Figs 5A and 5B). Clearly, adding only the depth data from a single well has reduced 

uncertainty in the distribution considerably since the distribution in Figure 2B is narrower 

than that in Figure 2A (the range of possible gradients has been reduced). Also, the addition 

of the well data has shifted the maximum likelihood estimate of the gradient close to the value 

of 0.07 - the correct value for the true architecture as shown in Figure 2B. 

     Similarly, marginal prior and posterior distributions over the various stacking patterns 

(retrogradational, progradational, aggradational, or regressive,) can be calculated (Fig. 6). The 

stacking pattern is intrinsically a global parameter, which is not observable at the well since it 

is defined by geometries of the entire succession. Vertical depth data almost excludes the 

possibility that the true pattern was either progradational or aggradational. The result, that 

either regressive or retrogradational stacking patterns are almost equally likely.  

 

 

Discussion of the Example 

     In this example we have combined simple geological prior information (geometrical 

information about the possible distribution of parasequence or sequence shapes) with 1-D 

depth data to obtain significantly improved constraints on the parasequence architecture and 

stacking pattern away from a single outcrop or well (Figs 5 and 6). These constraints were 

impossible to obtain from either the well data or the prior information alone, and the results in 

Figure 6 were shown to be consistent with the experience of field geologists. 

     The method in the example could be used similarly with a combination of more complex 

data types, and is easily generalised to include multiple outcrop sites or wells. For example, 

the use of vector data (e.g., dip and azimuth) along the vertical profile would constrain 3-D 

models in a similar way to the 2-D examples above.  

     In order to use Bayes Rule to combine information about the data with prior information 

about the model it was necessary to construct a model relating data and model parameters. 

The model used here was certainly an over simplification for many geological scenarios, but 
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serves as an example for the Bayesian method.  In principle, it is straightforward to use a 

more realistic and complex model. For example, the introduction of more detailed stratal 

shape models or parameter prior information could extend the examples to Low Stand and 

High Stand successions and result in significantly improved far-field interpretations. 

However, several studies have suggested that stratal patterns may be far less ordered that 

those predicted by our assumed model (see Wright 1992; Drummond &Wilkinson 1993; 

Wilkinson et al. 1999; Burgess 2001; Burgess et al. 2001; Burgess & Emery this volume). 

This is clearly a contentious topic, and hence in principle our prior information B̂  (that the 

model given in Fig. 1 holds true) might better be regarded as prior assumption, and should 

properly be assigned a significant uncertainty. This uncertainty would be manifest in the 

likelihood function, creating more broad distributions. Thus, the example above also 

illustrates the common phenomenon in practical problems of under-estimating uncertainty in 

the posterior distribution. 

     Bayesian inference is explicitly a means to incorporate the prior beliefs of whoever is 

solving the problem, in a probabilistic, quantitative, and rigorous way. The method forces the 

scientist to be as thorough and as objective as possible in specifying his/her uncertainties, but 

also implicitly recognises the fact that all solutions to inference or inverse problems contain 

subjectivities (that is, assumptions). It is false to assume that one can ever fully overcome this 

problem in any study. Provided that assumptions are made clear, however, the solution must 

simply be interpreted with their full acceptance.  

     While the assumptions made in our example may be overly stringent, the principle of 

obtaining information away from the well remains proven as long as one has a model relating 

data and model parameters that can be believed with less than infinite uncertainty. If no such 

model exists then Bayes Rule simply results in a posterior distribution that equals the prior 

distribution (i.e., the model and data added nothing to our prior knowledge) as shown above 

using equation (6). Replacing our simple model with a more realistic one in a particular 

situation would not, therefore, invalidate the method; it would almost certainly enhance it. 

     Despite the uncertainties and approximations discussed above, the conclusions of this 

example are that a) geological prior information and Bayes Rule allows data from a 1-D 

profile to be propagated laterally both quantitatively and probabilistically, and b) quantitative, 

multi-dimensional, but uncertain far-field log interpretation is possible from a single 1-D 

profile of scalar data. 
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Conclusions 

     In this contribution, we have constructed a Bayesian, probabilistic framework that clarifies 

the definition and applications of Geological Prior Information.  We introduce Bayesian 

inference as an explicit means to incorporate prior beliefs in a probabilistic, quantitative, and 

rigorous way. This method forces a scientist to be as objective as possible in specifying 

uncertainties, but also implicitly recognises that while all solutions to inverse problems 

contain assumptions that can never be fully overcome, it is possible to interpret these in the 

light of their full acceptance.  

    Various components of information must be assembled or assumed in order to solve 

problems using Geological Prior Information, and uncertainty in such assembled information 

will propagate to create uncertainty in the solutions found. We have created a two-step 

framework with which most work in the field can be described. Step 1 is defined as the 

quantification of geological knowledge; Step 2 is defined as the use of such information to 

solve other geoscientific problems, using Bayesian inference or another system of inference. 

     We also present an example of how Bayes Rule can be used to combine simple geological 

prior information with limited data to obtain significantly improved constraints on a solution 

by the construction of a model relating data and model parameters that can be believed with 

less than infinite uncertainty. These constraints were impossible to obtain from either data or 

prior information alone.  
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Tables 

 

Table 1. The contribution of each paper in this volume placed within a geological prior 
information framework (see main text for details).  
 
 

 
Contribution 

 
STEP 1 

 
STEP 2 

Contribution 
Type 

 
Quantify 
Gq’  Gq 

Static 

Quantify 
Gq’  Gq 
Dynamic 

Calculate 
Prior 

)ˆ|( BP m  

Calculate 
Evidence 

)ˆ|( BP d  

Calculate 
Likelihood 

)ˆ,|( BP md  

Calculate 
Posterior 

),|( BP dm  

M
ethod 

A
pplication 

D
iscussion 

Wood & Curtis * * * * * * *  * 
Baddeley et al. *  *      * 
Verwer et al. *       *  
Jones et al. *       *  

Hodgetts et al. *  *     *  
Burgess & Emery  *     *   

Tetzlaff  *     *   
Curtis & Wood * * *    *   

Wijns et al. * *      *  
Pshecnichny * * * * * * *   

Bowden * * *  * * *   
Shapiro et al. *  *  * * * *  

Stephenson et al. * * * * * * *   
White     *  * *  
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Table 2. Typical ranges of model parameter distributions appropriate for carbonate 
formations. Minimum and maximum values for each parameter are sufficient to define the 
joint Uniform prior probability distribution. Distributions for all parameters other than ramp 
dip were used to illustrate the prior and posteriori distributions in Figs 5 and 6.  Published 
sources: Bosscher & Schlager (1993); Lehrmann & Goldhammer (1999). 
 
 
 
Parameter     Min Value  Max Value 
flank dx     25 m   1 km 
flank dz     0 m   50 m 
basindz     0 m   2 m 
lagoondz     1 m   10 m 
ramp dip        1 degree  5 degrees 
trend      -50 degrees  180 degrees 
wloc      0 km   1 km 
number of boundaries    1   10 
 

 

 
 

 

 
 
 
 
 



24 

 
Figures 
 
 
Fig. 1. Model and parameters describing the boundaries of parasequences within a TST, 
using half a sine curve with horizontal terminations.  All parameters are defined graphically 
except for nc (the total number of boundaries), and wloc (horizontal location of well relative 
to geological architecture). The depositional trend is given as an angle. All parameters other 
than ramp dip are included in model vector m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

Well location wloc

Total number of
boundaries nc

Trend

Lagoon dz

Basin dz

Flank dz

Ramp dip



25 

Fig. 2. Modelled parasequence successions. The uppermost models show the parasequence 
boundaries and three vertical sections or well locations. Dashed lines on the lower six plots 
show the depths of intersection of each well with parasequence boundaries (top and bottom 
figures are left and right wells, respectively). All dimensions are given in metres. A: 
Progradational sequence where the depositional trend (trajectory) is 10 degrees basinwards. 
B: Regressive sequence where the depositional trend (trajectory) is -10 degrees basinwards. 
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Fig. 3. Sections of different parasequences sampled at a well are approximately equivalent to 
sections of the same (e.g., lowermost) parasequence taken at successively horizontally offset 
locations. Intersections refer to the parasequence boundaries; Available cross sections are 
horizontally offset points where parasequence thicknesses occur that are equivalent to those 
found in the well. The double arrows indicate to which well section each available cross 
section is similar. 
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Fig. 4. 1-dimensional marginal histograms for each of the parameters controlling both well 
location and stratigraphic scenario. Diamonds indicate the mean value in each graph; circles 
represent the ‘true’ value in Figure 2. 
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Fig. 5. Histograms over flank gradient g, defined in the text, for A: Prior distribution; B: 
Posterior distribution. 
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Fig. 6. Histograms over different depositional regimes (R: Retrogradation; P: Progradation; 
A: Aggradational; B: Regressive; arrows show corresponding trend directions) for A: Prior 
distribution; B: Posterior distribution. 
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