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S U M M A R Y
Relying on basic physics, laboratory and field evidence, and accounting for the different
timescales involved, we derive an approximate energy function for earthquakes. The frac-
ture term is disregarded because virtually all earthquakes occur on pre-existing faults and
because fault gouge has a very low fracture energy. Disregarding also the gravitational term,
the importance of which depends on the type of seismic focal mechanism, yields that the
energy function has only thermal and radiative terms. The self-similarity ranges in the bulk
rocks and gouge suggest taking the basic element as two cubes of 10 m side, with in common
one face, over which slip occurs. An earthquake is a cascade of such slip processes on a series
of neighbouring elements and the volume involved can be self-similarly defined as the two
megacubes embedding the set of elements participating in the slip. Dimensional analysis sug-
gests that the slip process is composed of three stages. The first stage consists of a stick-slip
episode with an average velocity v ∼ 10−1 m s−1 over a time t ∼ 10−2 s. In this first stage,
stage I, virtually all energy is converted into heat, with a temperature increase of the order of
102 K on the sliding surface. The second stage, stage II, in which the occurrence of further
slip episodes is hardly relevant, consists of the propagation of the thermal wave generated in
stage I to the whole shear zone, with a characteristic time of the order of 102 s. In light of the
comparatively low permeability of fault gouge with respect to heat diffusivity, this temperature
increase induces a pore fluid pressure increase. When the transition from hydrostatic to litho-
static pressure is completed over the whole shear zone, a third stage, stage III, is entered, in
which, provided that the pressurization is maintained, virtually frictionless high-velocity slip
occurs, converting all the available energy into elastic radiation. The duration of this purely
radiative stage, the amount of slip and the size of the earthquake depend on the number of
elements cooperatively participating in the cascade slip, which is ruled, just as in the usual
single-stage cellular automata models, by the correlation length over which the strain level is
near the rupture threshold. At odds with the classical single-stage cellular automata, the model
does not require the introduction of strong jumps in stress to be ignited and appears thus also
capable of explaining the Coulomb failure stress quandary of very small triggering stresses,
with the ignition of large events requiring excess stresses of just 10−2 to 10−3 MPa. The global
seismic efficiency, under the assumption that granular effects and viscous resistance are disre-
garded, is ∼ 1. Assuming then statistical self-similarity on the fault plane for the patches that
slip cooperatively and approximating their pattern as a Sierpinski carpet, yields partial and
approximately constant stress drop values independent of event size. These emerge from the
fractal nature of the slip surface interpreted according to the seismological assumption of con-
stant homogeneous slip on the Euclidean rectangular plane fault, which embeds the slipping
patches.

Key words: Coulomb failure stress, earthquake source mechanism, earthquake triggering,
fluid pressure, ignition slip, self-similarity.

1 I N T RO D U C T I O N

In physics, the common approach to describe a phenomenon is to
write its energy equation. Writing this equation for an earthquake

is difficult for both its direct inaccessibility and its complex phe-
nomenology. Earthquake models do exist that are satisfactory for
what regards the far-field elastic radiation (Ben-Menahem 1995),
but these are incapable of describing event recurrence, so that the
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prediction of single earthquakes is an untenable goal (Geller et al.
1997a,b). In addition to this, even the basic physical phenomenon,
which is the stick-slip of two crustal rock blocks, appears to be
incompatible with the heat flow measurements on active fault sys-
tems. In fact, according to current earthquake models, very large
amounts of frictional heat should be generated by seismic fault slip,
but the heat flow measurements along the San Andreas and other
faults have consistently reported only modest heat values (Brune
et al. 1969; Lachenbruch & Sass 1980), leading to what is termed
the fault strength paradox (cf. Ben-Zion 2001).

Here, relying on simple dimensional analysis and accounting for
the very different timescales involved, we attempt first of all to
write an approximate earthquake energy function. Secondly, based
on this energy function, we cast a three-stage self-similar earthquake
model able to accommodate the above as well as the other basic
phenomenology.

2 E A RT H Q UA K E B A S I C
P H E N O M E N O L O G Y

Earthquake phenomenology is complex. Its basic features are:

(i) Earthquakes are rare events.
(ii) Earthquakes are clustered in both space and time (Kagan &

Jackson 1991).
(iii) Earthquakes are rupture and slip events, which occur mostly

on pre-existing faults.
(iv) Earthquakes have an approximately constant stress drop,

which is considerably smaller than ambient stress (Abercrombie
& Leary 1993).

(v) The external forcing function, that is tectonic strain, is small
and constant, inducing extremely low strain rates.

(vi) Faults are rough surfaces, with power-law scaling suggestive
of fractal geometry, albeit with fractal dimension close to 2 (the
Euclidean plane) in the range 102 to 104 m (Okubo & Aki 1987).

(vii) The spatial distribution of earthquake hypocentres and lab-
oratory acoustic emission locations are power law in both space and
time (Kagan & Knopoff 1980; Hirata et al. 1987).

(viii) Earthquakes are power-law distributed in size in terms of
a variable 10m , where m is magnitude (Gutenberg–Richter law).

(ix) Earthquakes have aftershock sequences that decay as a power
law in time (Omori law).

The latter features share a generalized power-law behaviour,
which in statistical mechanical terms is equivalent to the intrinsic
self-similarity of the process (cf. Bak & Tang 1989; for a compre-
hensive view see Mulargia & Geller 2003).

3 T H E S E L F - S I M I L A R S O U RC E

Let us consider a portion of crust containing a fault patch that is
large enough to disregard grain size. Because virtually all earth-
quakes occur on pre-existing faults, the grain size will be that of the
fabric of fault gouge, which is the crushed and reworked incoherent
material that surrounds the faults. This fabric has a power-law dis-
tribution with no apparent upper cut-off for lengths up to the order
of a few 10−3 m (Sammis et al. 1986). Consistent with this, we take
the thickness of the shear zone of the order of a few 10−2 m. We
aim at a self-similar description over a finite range with the upper
cut-off given by crustal thickness, which means that our self-similar
description will include all but the largest earthquakes. As a lower
cut-off we take a geometrical entity of linear dimension of ∼ 10 m,

Figure 1. The self-similarity relation, with slip occurring at the contact
face. Strain remains constant. The linear dimension of each cell is ∼ 10 m.

above which the scale invariance of crustal rocks appears reason-
ably well satisfied (cf. Ouillon et al. 1996). We will therefore define
our basic element as two cubes of 10 m side, with the face in com-
mon representing the fault patch over which slip occurs (see Fig. 1).
Self-similarity will be accommodated by letting this geometry re-
peat identically up to a 10 km side, with the obvious constraints
imposed by the fact that self-similarity occurs on a finite range of
approximately 3.5 decades, the details of which are discussed later
in the paper. In the following, we first describe the process relative
to the basic element.

4 E A RT H Q UA K E E N E RG Y F U N C T I O N

Disregarding the gravitational term, the importance of which varies
depending on individual fault mechanism and geometry, four terms
can be considered in the earthquake energy function �:

� = EE + EF + ER + ET , (1)

where EE is the available elastic energy, EF is the fracture energy,
ER is the radiated energy and ET is the thermal energy.

4.1 The elastic energy

Earthquakes are produced by shear deviatoric stresses. The most
simple case restricts the discourse to a single shear strain component
ε and from the theory of elasticity, the elastic energy stored in the
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volume V is

EE =
∫

V

1

2
µε2 dV , (2)

where µ is modulus of rigidity. The largest coseismic crustal strains
are of the order of 10−3, so that, because in the Earth’s crust µ ∼
1010 Pa, the maximum available deviatoric elastic energy per unit
volume is approximately 104 J m−3.

In order to proceed, we need to introduce a seismic source model.
The standard seismic source model is a plane dislocation (Brune
1968) of linear dimension r and area A proportional to r 2. We ap-
proximate the crust as a 3-D lattice composed of our basic elements
of side r and apply the standard seismic model to the sliding patch
of a basic element, which is subject on the sliding plane to a shear
stress σ , assumed constant. Let us also assume that the friction stress
is a material constant equal to σ f .

Consider a slip s on the patch, where s is a small fraction η � 1
of r , η ∼ 10−3. Consistent with the assumed value for r (10 m)

s = ηr � 10−2 m. (3)

According to Volterra’s theorem, the work done by this slip is
(Landau & Lifshitz 1970; Ben-Menahem & Singh 1981)


W = 〈σ 〉s A = EE , (4)

where 〈σ 〉 is the average stress during the slip. This slip involves
contributions in the radiated, fracture and thermal energies. Let us
analyse how the work is partitioned among them by estimating the
different contributions produced by a slip s.

4.2 The radiated energy

The radiated energy ER can be directly estimated from the recorded
seismic waves by considering that the ground displacement x at a
given point reached at the time t by a seismic wave of amplitude a
and period T is (Gutenberg & Richter 1956)

x = a cos

(
2π t

T

)
. (5)

The average kinetic energy Ekin imposed by the passing wave in a
medium of density ρ per unit volume is then (cf. Kasahara 1981)

Ekin = ρ

2
ẋ2 = ρ

2T

∫ T

0
ẋ2dt

= ρ

2T

(
2πa

T

)2 ∫ T

0
sin2

(
2π t

T

)
dt = ρπ2

( a

T

)2 (6)

and the total energy is twice as much because it includes an identical
amount of potential energy (ibid.). Integration over the boundary
surface of a volume containing the source then gives the measure of
the total energy of the radiated waves. In practice, it is convenient
to rely on more readily measured quantities. Considering the slip of
the patch as whole, the basic quantity is the scalar seismic moment
M ,

M = µs A, (7)

in terms of which the total radiated energy can be written as

ER = 
WR = (〈σ 〉 − σ f )
M

µ
, (8)

where σ f is the average friction stress. Disregarding the difference
between static and dynamic stress, considering the stress values be-
fore and after the slip, σ init and σ end, respectively, the above formula

can also be written as

ER = (〈σ 〉 − σend)
M

µ
= 
σ M

2µ
, (9)

where 
σ is the stress drop.

4.3 The fracture energy

The estimates of the fracture energy traditionally rely on energy
conservation (Griffith 1920). If a new crack is formed or an exist-
ing crack propagates, free surfaces are created by the breaking of
bonds. It would appear tempting to generalize the Griffith approach,
which works reasonably well on homogeneous and isotropic labora-
tory brittle specimens of simple geometry and with a single crack, to
include real systems, which regard a generic material with a popula-
tion of cracks. Unfortunately, in the general case the simple Griffith
picture does not work as a result of the presence of dissipative terms
and (at propagation velocities comparable to those of the elastic
waves) kinetic effects, which are often more important than the
elastic terms themselves (cf. Herrmann & Roux 1990). In addition
to this, seismic faults occur in fault gouge, which has mechanical
features very different than those of bulk rock (cf. Mora et al. 2000).

As a consequence, the estimates of fracture energy EF made using
the approximation of a single propagating mode III crack in an elas-
tic brittle continuum (Kostrov 1966; Eshelby 1969; Dahlen 1977;
Freund 1998), which are popular in the seismological approach to
earthquake physics, must be regarded as restrictive. Physically, it
appears more appropriate to rely directly on experimental fracture
energy data relative to sliding experiments with realistic fault gouge.
The latter indicate a fracture energy 3 to 4 orders of magnitude
smaller than the total energy (Yoshioka 1986), so that, because we
are not considering the case of fresh faulting, fracture energy can
be comfortably disregarded.

4.4 The thermal energy

For energy balance we have


WT = σ f s A = ET , (10)

where the average friction stress σ f is equal to

σ f = σnφ, (11)

with σ n indicating the stress normal to the fault surface and φ the
coefficient of friction, which, under static and kinetic configuration
for a variety of rocks at seismogenic depth conditions, falls in the
range ∼ 0.6–0.9 according to both laboratory (Byerlee 1978) and
borehole in situ stress measurements (McGarr & Gay 1978; Brudy
et al. 1997). The values of σ n in the crust can be taken to be of the
order of 108 Pa (ibid.).

The rate of heat q generated per unit area by fault slip can be
roughly calculated by using the equation for a plane surface in an
infinite medium

q = σnφv, (12)

where v is the slip velocity and σ n is the stress normal to the fault
plane. If pore fluids are present, as it is the general case of water in
fault gouge (Morrow et al. 1984), eq. (12) reads as

q = (σn − Pp)φv, (13)

where Pp is the fluid pore pressure, which is hydrostatic at equilib-
rium.
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Assuming that heat generation starts at time t = 0 as a step func-
tion with a constant heat flux q, the temperature rise 
T at a distance
x from the emitting plane surface after a time t is, calling C the spe-
cific heat and K the thermal diffusivity (Carslaw & Jaeger 1986),


T = q

ρC

(√
t

π K

)
e− x2

4K t −
[(

q

ρC

) ( |x |
2K

)
erfc

( |x |
2
√

K t

)]
,

(14)

which, close to the fault surface, i.e. when |x | <
√

K t , can be
approximated as (Sibson 1975)


T = q

k

√
K s

πv
, (15)

where k is the thermal conductivity and s = vt is the displacement
at time t. Combining the last equation with eq. (13)


T = φ(σn − Pp)

k

√
K sv

π
. (16)

Based on laboratory evidence, reasonable values of the parame-
ters involved are K = 10−6 m2 s−1, k = 2 J/(m s◦C) (Clark 1966).
This yields that temperatures should raise locally above 103 K for
velocities and displacements typical of seismic events because, as
indicated by the size of the shear zone, sliding seems to be concen-
trated in a zone of a few 10−2 m. However, the presence of melting
products like pseudotachylites appears to be rare (Sibson 1975) and
therefore some mechanism capable of substantially reducing fric-
tion and frictional heating must exist. Note that melting itself might
in principle reduce friction (Kanamori & Heaton 2000), but there
are basic difficulties for this (see discussion in Section 5.4).

5 E A RT H Q UA K E S A S
A T H R E E - S TA G E P RO C E S S

Let us relax the assumption shared by all the proposed mechanisms
of friction reduction that slip occurs at a single timescale (cf . Ben-
Zion 2001) and consider a first stage of high friction stick-slip similar
to that encountered in the laboratory.

5.1 Stage I

The process starts when strain build-up induces on the fault patch a
stress σ such that

σ > σ f . (17)

Sliding occurs, doing work


W = 
WR + 
WT , (18)

because, as we have seen, the fracture energy can be disregarded.
This work is also equal to


W =
∫

�

σ Ads, (19)

where � is the propagation domain in which

σ > σ f , (20)

because slip stops when the elastic force is less than the friction
force.

According to eqs (10)–(13) the thermal work is


WT =
∫

�

(σn − Pp)φ Ads, (21)

which can be approximated as

(σn − Pp)φs A. (22)

In agreement with laboratory phenomenology, slip occurs in
stick-slip episodes, with φ � 0.6–0.9, average velocity values of
the order of 10−2 m s−1, peak velocity values of the order of 10−1

m s−1 and a radiated elastic energy that is a fraction of order 10−2

of the thermal energy (e.g. Lockner & Okubo 1983), so that


W � 
WT . (23)

In other words, virtually all the work done according to eq. (21)
is transformed into heat


WT = 
Q = C Awρ
T ∼ Cr 2wρ
T, (24)

where w the width of the thermal zone, the latter being the volume
surrounding the fault plane in which temperature increases. Rewrit-
ing eq. (16), slip is accompanied by a temperature 
T increase of
the matter surrounding the slip plane equal to


T � (σn − Pp)
φ

k

√
Kv2t

π
, (25)

where t is time, which yields that temperatures of the order of 102 K
are attained by a stick-slip episode with an average v2 t ∼ 10−4 m2

s−1. Considering laboratory experiments, such an episode is likely to
be constituted by a cluster of stick-slip events, with an average veloc-
ity v ∼ 10−1 m s−1 over a time of 10−2 s, implying a total slip of the
order of 10−3 m. On the unit patch this corresponds to a strain release
of the order of 10−4 and, because the maximum accumulated strain
is of the order of 10−3, stage I consumes a strain energy ∼ 
WT ,
which leaves the total strain energy almost intact (cf. eq. 2). The
released strain decreases the stress from σ > σ f to σ < σ f , thus
stopping the slip.

5.2 Stage II

Stage I has raised the temperature on the friction surfaces within
the shear zone to a value of the order of 102 K with a slip episode
of a duration of 10−2 s. The width w over which heat is carried by
thermal diffusion is

w(t) = 2
√

K t, (26)

which means that the heat wave will propagate to the whole shear
zone, which has a width w of the order of a few 10−2 m, in a time
of the order of 102 s after the slip event. Experimental values for
permeability in fault gouge after a sliding of the order of 10−3 m
are around 10−9 Darcy (or <10−21 m2) (Morrow et al. 1981, 1984;
Zhang & Tullis 1998) and the resulting Darcy diffusivity KD, of the
order of 10−8 m2 s−1, is smaller than thermal diffusivity K (of the
order of 10−6 m2 s−1). Therefore, the temperature increase resulting
from frictional sliding diffuses faster than the thermally expanded
pore fluid and, when it extends to the whole shear zone, it raises the
fluid pressure from hydrostatic to lithostatic, decreasing the effec-
tive normal stress, and thus (static) friction, towards zero. Because in
frictional sliding the largest asperities dominate the process (Scholz
1990), only when the whole shear zone has been pressurized a tran-
sition to friction values near zero occurs. Further stick-slip episodes
may take place during this stage, but they can reduce the time re-
quired to heat the whole shear zone only if their position is such that
they generate thermal waves that travel ahead of the original one.
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Figure 2. The temperature rise required to increase water pressure from
hydrostatic to lithostatic (data are from Burnham et al. 1969).

While propagating, the temperature of the heat wave decreases,
but this is hardly a problem because thermal energy is abundant
compared with the heat necessary to bring water pressure, which
is the main pore fluid constituent, from hydrostatic to the litho-
static transition by differential thermal expansion (see Fig. 2; cf. also
Sibson 1977; Lachenbruch 1980; Mase & Smith 1987). For example,
considering a depth of 10 km, a temperature rise of approximately
70 ◦C produces a pressure increase ∼ 0.2 GPa, which is sufficient
to decrease friction towards zero in the approximation that dynamic
effects can be disregarded. These are essentially granular and vis-
cous resistance effects. The first ones can be traced to transgranular
friction induced by dilatancy and are likely to be overcome by a
slight fluid overpressure. The second ones are small because sliding
velocities should be at most of the order of 1 m s−1.

5.3 Stage III

The stick-slip episode of stage I has generated a frictional heat wave,
which in stage II propagates to the whole shear zone inducing a
transition of pore pressure from hydrostatic to lithostatic. Once the
shear zone has been pressurized, slipping can occur in a completely
different way and the process enters stage III. Note that because the
grains in the gouge follow a power-law distribution (cf. Section 3),
slipping will be a threshold process ruled by the largest grains, which
have a size comparable to that of the shear zone. In other words, no
slip will occur until the whole shear zone is pressurized.

Propagation was stopped at the end of stage I by reaching the
boundary of the set � on which

σ = σ f = (σn − Pp)φ, (27)

with φ � 0.6–0.9. However, the thermalization of the shear zone,
which occurred in stage II, has brought the coefficient of friction φ

to ∼ 0, so that σ is largely unbalanced and slip starts again.
The energy function is now

� = EE − 
WT > 0 (28)

and, disregarding granular effects and viscous resistance, slip will
occur with

EE � ER (29)

Figure 3. The phase diagram of water. The roman numbers indicate the
different structures of ice. (Redrawn from IAPWS Release on the values
of temperature, pressure and density of ordinary water substance, 1976 and
1994; http://www.iapws.org/release.htm).

virtually radiating all the residual deviatoric elastic energy in seis-
mic waves. In light of this, seismic efficiency is ∼ 1. The total
accumulated strain, which is of the order of 10−3, is released. On a
single patch, the latter corresponds to a slip of 10−2 m, which occurs
at velocities that seismology allows to estimate as of the order of 1
m s−1 (cf. Ben-Menahem & Singh 1981), yielding a characteristic
time ∼ 10−2 s.

Note how the assumption upon which stage III is based is that
no reduction in the pressure of the shear zone occurs before the
radiative slip is completed. This assumption is unfortunately very
difficult to verify for experimental reasons: the current knowledge
of frictional sliding in fault gouge material at velocities larger than
10−2 m s−1 is extremely limited even at room pressure (Tsutsumi &
Shimamoto 1997; Hammerberg et al. 1998; Roder et al. 1998, 2000)
and at the 10 MPa pressures of the seismic focal regions, when slip
velocity increases, high-friction–high-velocity slip possibly occurs
at some spots. On the latter, high temperatures are locally attained,
which possibly induce a water-vapor transition producing a local
abatement in friction, as well as a decrease in temperature as a result
of the latent heat of evaporation, preventing the formation of melting
products. Data are lacking also in this respect, because the phase
diagram of water is virtually unknown in the region above 600 K
and 10 MPa (see Fig. 3), in which water is probably in a supercritical
phase, with liquid-like hydrogen-bonded clusters dispersed within
a gas-like phase. The physical properties of the latter, such as gas-
or liquid-like behaviour, are likely to vary abruptly in response to
changing density (Hasegawa et al. 2003). Another possibility is that
a gel is formed (Iler 1979).

5.4 Parallel with the classical single-stage case

All the current earthquake models, including the cellular automata
of the complex physics approach (Main 1996; Rundle et al. 2000;
Mulargia & Geller 2003), assume a single stage. This is similar
to our stage I, but has the fast slip of our stage III. To start such
a single-stage process on a patch, the value of σ should suddenly
jump to a value

σ � σ f (30)

C© 2004 RAS, GJI, 158, 98–108



Earthquakes as three stage processes 103

to produce a slip large enough to emit significant elastic radiation,
because this is proportional to the slip s (cf. eq. 9), while our model
requires much smaller stress jumps to be ignited. Stress variations in
the Earth’s crust are related to several factors. The largest changes
are caused by tectonic loading, which acts at constant and very
low strain rates lower than ∼ 10−15 s−1. Tidal stresses are periodic
with strain rates of 10−13 s−1 and similar values are attained also
by atmospheric loads, albeit with no periodicity (e.g. Ohtake &
Narakahara 1999). In addition to these, there is the stress transfer
induced by the occurrence of other earthquakes [e.g. the Coulomb
failure stress; cf. Harris (1998); cf. also Section 6.2], which may
reach similar strain values, but with shorter insertion times and thus
higher rates. Disregarding tectonic load for its constant low rate,
stress jumps are thus induced by the superposition of mostly non-
periodic functions. The probability of a stress jump 
σ of energy
E 
σ can therefore be assumed as random and taken to follow a
Boltzmann statistic

p(E) ∝ e−(E
σ /kB T ), (31)

or (cf. eq. 2)

p(
σ ) ∝ e−(C−1
σ )2/kB T , (32)

where C and kB are respectively the elastic and Boltzmann con-
stants. The last equation suggests that the large jumps required by
single-stage models are (square-)exponentially less likely than those
required by the three-stage model.

Another possibility is that no large jump occurs, but there exist
alternative single-stage processes capable of abating friction. There
seem to be two candidates. The first one is a roller bearing effect
resulting from generalized rolling processes in the fault gouge grains
(cf. Mora et al. 2000). However, this effect appears at best capable
of reducing the friction coefficient φ to 0.3 (ibid.), which according
to eq. (13) merely implies a factor of ∼ 2 reduction in the heat
produced, insufficient to accommodate the heat flow paradox.

The other candidate is that local melting, produced by initial slid-
ing, acts as a lubricant for further slip (cf. Kanamori & Heaton 2000).
There are basic difficulties in applying such a mechanism. First, at
the timescale involved by a single-stage process (eq. 26) all thermal
processes regard only a thin zone of <10−3 m around the sliding
plane. Melting can therefore possibly act as a lubricant only on slid-
ing surfaces flat with <10−3 m accuracy. While the latter is easily
attained on 10 m machined blocks with good industrial equipment,
such an accuracy is unthinkable in natural materials, particularly in
fault gouge, where the power-law distribution of grain size makes
the larger grains, with size ∼ 10−2 m, control the slipping. Secondly,
the presence of melting products (i.e. pseudotachylites) is so scarce
in exhumed faults (Magloughlin & Spray 1992; Sibson 1992) that
frictional melting appears to be a secondary effect, occurring only
locally in a highly fractured and crushed environment, (cf. McKenzie
& Brune 1972; Sibson 1973; Spray 1987). Some further discussion
on this point is given in Section 6.3 below.

This concludes our elementary description relative to a single
patch. However, earthquakes are cooperative phenomena and a num-
ber of patches will always be involved. We will now therefore discuss
the process for a set of patches.

6 E A RT H Q UA K E S A S C O O P E R AT I V E
P H E N O M E N A

Let us first of all analyse the number of patches that cooperatively
take part in the slip. If we were to apply strict self-similarity to our

basic element (Fig. 1), we would have an earthquake represented by
the simultaneous slip of all the patches within the two megacubes
of side R with 10 m ≤ R ≤ 104 m, where R2 gives a direct measure
of event size. We will rather assume self-similarity as a statistical
property so that not all the patches on the domain R × R slip,
but R × R defines the characteristic size of the slipping domain.
Recall also that our assumption of self-similarity, just as any real
self-similarity, regards a finite range (cf. Section 3). In our case this
is limited below by the characteristic length of fault gouge and above
from the vertical dimension of the seismogenic crust.

6.1 Earthquake size

Assuming self-similarity as a statistical property, the size of the
earthquake is given by the number of patches that undergo together
a stage III slip, which are primarily (but not only, see strain transfer
in Section 6.3 below) the geometrically connected patches that have
simultaneously entered stage I. This means that the size of the event
will be determined ∼ 102 s before the start of stage III in which
the radiation of elastic waves occurs. The patches simultaneously
entering stage I are those for which at the instant t = t 0 there is a
transition with a stress level just above the friction stress σ f

σt<t0 < σ f → σt=t0 > σ f . (33)

The occurrence of such a transition over a set of patches as a result
of random fluctuations (generally superimposed to a deterministic
evolution function) is described in statistical mechanics by the cor-
relation length �, which represents the length over which cooperative
effects occur. This length depends on the laws defining the model
and its evolution, which are generally based on local threshold pro-
cesses (as it happens for our single patches) and this leads to strongly
non-linear dynamics.

The most simple description of such systems is provided by per-
colation theory (e.g. Stauffer & Aharony 1994), while more detailed
pictures are given by cellular automata (e.g. Burridge & Knopoff
1967; Bak & Tang 1989; Carlson & Langer 1989), which are com-
puter algorithms simulating a lattice of cells ruled by laws describing
their interaction and the external forcing. The general result of all
such models is that the correlation length is distributed according
to an inverse power (e.g. Stauffer & Aharony 1994; Castellaro &
Mulargia 2002), so that the probability of an event of given size fol-
lows a power law, reproducing the observed distribution for earth-
quake size, which is known as Gutenberg–Richter law. This be-
haviour, which is one of the main phenomenological features of
earthquakes, can possibly be derived by using simple mean-field
arguments (cf. Anton 1999). All these approaches concur in that
the probability of an event of given size is tied to the probability of
having the corresponding correlation length, which follows a neg-
ative power law. This happens in all single-stage cellular automata
models and also in the three-stage model we propose, with some
minor differences related to strain transfer discussed below.

6.2 Global radiative and ignition slips

The second effect produced by the cooperative nature of the process
is on global slip.

Relying on statistical self-similarity, we assume that the region
involved in the process is defined by the double cubic domain
embedding the set of patches that slip (see Fig. 4). The side l of
each cube is � times the unit patch and is equal to the correlation
length �. Consistently with our original self-similarity assumption,
we take the maximum strain on such volume as constant and equal to
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Figure 4. The 3-D square lattice that we assume for a portion of crust
containing the seismic fault, which is shown as a 2-D slice. The cells that
have slipped in a given event are shown in black. The linear dimension of
each cell is ∼ 10 m.

ε ∼ 10−3 so that the global volume involved in the release of elastic
energy (see Fig. 1) is ∝ �3. According to eq. (3), the global fault
slip s that releases this strain is ∝ � and the slip surface is ∝ �2.
The way in which self-similar strain release on the megacubes leads
to the addition of local slip contributions in each patch to give the
global (average) slip of eq. (3) is pictorially shown in Fig. 5. This

Figure 5. The self-similar way in which a constant and unitary shear strain release at each patch combines to produce global constant slip equal to � times
that on a single patch, under the assumption that boundary effects are disregarded.

yields a global slip of the order of 1 m for � ∼ 102, i.e. for correla-
tion lengths ∼ 103 m. Note how this would imply slip durations of
the order of 1 s, during which the pressurization of the shear zone
would have to stay at (or above) the lithostatic value.

Which portion of this slip is used for thermalization (from now
on we call this the ignition slip) and which for radiation (from now
on we call this the radiative slip)? Starting from stage I, we consider
that, because the ignition slip is fixed at ∼ 10−3 m irrespective of
correlation length, the strain release required to complete stage I and
the following stage II (the ignition strain), is 10−4�−1. This means
that each single patch contributes to the ignition strain proportion-
ally to �−1, i.e. spending for ignition a smaller proportion of the
accumulated strain, the larger is the domain entering stage I.

This argument makes large events energetically favoured by a
factor ∝ �. However, such events require also on the strain level a
correlation length ∝ �, which has probability

p ∝ �−β (34)

with β (cf. Stauffer & Aharony 1994) depending on the specific
model (for example, for a Bethe lattice β = 5

2 ). This yields that
large events are unfavoured by a factor ∝ �1−β (for a Bethe lattice
�−1.5 which incidentally matches the Gutenberg–Richter law, be-
cause taking event size 10m ∝ �2 requires that m is distributed as
log N = a − bm, with b � 1).

Because the strain release in stage III is ∼ 10−3, while the strain
required for thermalization is ∼ 10−4�−1, we can define the ratio
of ignition strain to the radiative strain as

γ � 10−1�−1, (35)
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Figure 6. Strain contours on the fault plane for a vertical strike-slip square fault with 5 km side, 5 km depth of the upper rim and slip equal to 5
3 m according

to the formulation of Okada (1992). The line (a) is related to Fig. 7.

so that for any sizable earthquake (i.e. with source size ≥103 m)
the energy required to start the process is some orders of magnitude
smaller than the later elastically radiated energy. The expression
η � 1 − γ is the seismic efficiency of the process, which increases
with earthquake size, and is in any case very close to 1, at odds with
classical models, where it is of the order of a few 10−2 (e.g. Shearer
1999).

Finally, note that the ignition stress of an event with � ∼ 100–
1000, i.e. with a source slip surface of 1 × 1 to 10 × 10 km is
∼ 3 × 10−2 to 3 × 10−3 MPa. Therefore, the model provides an
explanation for the fact that small values of stress transfer may
trigger seismic events, an issue that has been long questioned on
physical grounds (cf. Harris & Simpson 1992; Du & Aydin 1993;
Bennett et al. 1995; Dodge et al. 1995; Astiz et al. 2000). The
last two results appear capable to reconcile Coulomb failure stress
theory with experimental evidence.

6.3 Strain transfer

The third effect produced by the cooperative nature of the process
is the strain transfer that an element that slips induces on the neigh-
bouring elements. Let us consider a neighboring patch � on which
this strain transfer has increased the stress level of 
σ from the
value σ 0 to the value σ transf = σ 0 + 
σ . There are three possible
cases, considering that the radiated energy is proportional to the slip
s (cf. eq. 9):

(i) Case A:

σtransf < σ f ; (36)

nothing happens.
(ii) Case B:

σtransf ≥ σ f ; (37)

the element � exhibits a small slip sufficient to make it enter stage I
and after ∼ 102 s it undergoes a stage II–III transition.

(iii) Case C:

σtransf � σ f ; (38)

the element � exhibits a slip sufficient to make it enter stage I and
to continue slipping. If 
σ is large it may induce a slip s sufficient
to emit significant elastic radiation, albeit with high friction, low
efficiency and a strong production of heat that should show up in
melting products. After ∼ 102 s it undergoes a stage II–III transition
releasing the residual strain.

Disregarding the directional effects, cases A, B and C can be
expected to correspond approximately to 
ε values respectively

10−7 ≤ ε ≤ 10−5 and 10−4 ≤ ε. To estimate the importance of this
effect let us analyse a practical example.

Following our self-similar geometry, let us take the slip surface
as a dislocation on a square domain and estimate the local change in
strain from the (static) elastic solution of Okada (1992). The detail
of the spatial distribution of 
ε depends on the specific fault param-
eters, but the general behaviour is a strong decrease with distance r
from the fault (see Fig. 6), which is well approximated by a power
law r−α with α between 2 and 3 (cf. Cotton 1995). For example, tak-
ing a vertical strike-slip square fault with 5 km side, 5 km depth of
the upper rim and slip equal to 5

3 m (the reason for the latter choice
will be apparent in next section) and limiting the analysis to the fault
plane, yields a value of α = 2.2 (see Fig. 7). This stands for a fairly
short-range behaviour, with strain transfer perturbations extending
over comparatively small areas.

Note how the cascades in all the classical single-stage cellular
models are ruled by case C alone. This means that a large event
involving the slip of �2 patches requires a correlation length ∝ �

both in the classic single-stage model and three-stage model we
propose. The only difference is that in the model we propose small
perturbations are required to induce a case B behaviour, while in
the classic case (much less likely) large stress jumps are required to
induce a case C behaviour.

6.4 Self-similarity on the fault plane and stress drop

The fourth effect produced by the cooperative nature of the process
regards the geometry of the slip on the fault and the stress drop. In
the present section, let us for simplicity disregard border effects, so
that patches on the fault that are neighbour to non-slipping patches
experience no slip reduction.

Geometrically, a fault is a fractal, albeit not too far from a plane
(Okubo & Aki 1987), so that it can be roughly approximated as
a plane. Let us use this approximation and assume statistical self-
similarity for the slipping patches over the fault plane. In statistical
mechanical terms this is equivalent to the proximity to a critical state
(cf. Mulargia & Geller 2003). This also suggests a fractal geometry
with fractal dimension close to that of percolation, which is equal to
1.896. To set the discussion in the most simple possible terms, we
note that the latter is very similar to the fractal dimension of a square
Sierpinski carpet (see Fig. 8), which is equal to 1.893, and we take
this geometry as representative of the global slip on the fault surface,
disregarding any specific lacunarity problem. Obviously, the fractal
geometry has to be intended on a finite scaling range, as is customary
for all applications to the real world (e.g. Feder 1988). In other words,
geometrical self-similarity occurs over a finite domain, which in our
case is limited to approximately 3.5 decades, consistent with the
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Figure 7. The decay of shear strain with distance from the fault front rim along the line (a) for the fault of Fig. 6. The data are well fitted by a power law with
exponent −2.2.

Figure 8. A Sierpinski carpet, which has a fractal dimension very close to that of percolation and can thus be taken as roughly representative of criticality
(see text). The slipped patches are in black. Note that at zero order the whole patch seems to slip, as in the seismological model.

definition of our patch (cf. eq. 3) as well as with the constraint for a
correct fractal attribution (cf. Ciccotti & Mulargia 2002).

Assuming that slip occurs on the latter finite range fractal domain
(see Fig. 4) rather than on the entire fault surface implies first of all
that the total area of the slipped patches is approximately 2

5 that
of the embedding square. As a consequence, the stress drop calcu-
lated according to the standard average over the embedding square
fault gives a value that is ∼ 2

5 of what really occurs on each patch,
making it appear as a partial strain release. Border effects around
each slipping patch, which have been disregarded here, are likely
to further reduce this fraction. This apparent partial release is an
artefact of considering the slip averaged on the square embedding
the fractal set of the patches. The fraction of the apparent partial
release depends on the self-similarity range and fractal dimension,
but not on the embedding fault size. It is therefore independent of
event size, in agreement with the apparent stress drop approximate
constancy, which seems a well established phenomenological and

unexplained empirical result (Abercrombie & Leary 1993). In ad-
dition to this, one has to recall that the embedding fault area cannot
be accurately constrained by seismological and geodetic measure-
ments and is likely to be overestimated (cf. Hardebeck et al. 1998),
so that the usual average interpretation is likely to imply a further,
and possibly large, reduction of the apparent average stress drop.

Following the same reasoning also, the average slip will be appar-
ently reduced by the same factor. In fact, taking an event of seismic
moment M =µ sA, its value can be reconciled with the usual average
over the embedding fault by either reducing the apparent stress drop,
as we just did, or the slip s, or by reducing both by the appropriate
fraction. Note also how a set of patches of linear dimension 102 (with
a global length of 103 m) following Euclidean geometry would have
a total slip of the order 1 m, but following the above reasoning would
have an apparent average slip of a few tenths of a metre, in agree-
ment with field data (Purcaru & Berckhemer 1982; Jackson et al.
1982). For this reason we choose s = 5

3 m in our example, Fig. 6.
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In summary, the assumption of slip over a finite range that is a
fractal rather than Euclidean domain implies that only a fraction of
the patches on the fault plane slip and only a fraction of the available
stress is released. This fraction depends on the geometry ruling the
process alone and not on the event size.

7 VA L I DAT I O N

The model we propose is rooted in basic physics, but relies on a
number of assumptions. At odds with current seismic source mod-
els it agrees with the available phenomenology. However, as any
physical model, it is not credible without a strict validation. The
latter appears difficult, because it requires casting a stringent null
hypothesis on a system that is not directly accessible.

Such a null hypothesis can be hopefully formulated in terms of
observing two new effects, which are predicted by the model. The
first of them is that stage III should induce slip in the non-slipping
patches neighbouring the slipping ones within the main-shock fault
(Fig. 4) according to case C above. In the example fault we have
worked out, which disregards the fractal nature of the faulting and
therefore overestimates the strain field, the induced shear strain on
the fault plane is 10−4 only immediately outside the fault. The in-
duction of high-friction slip is therefore expected close to the border
of the slipping patches, where a stronger concentration of pseudo-
tachylites should be observed.

The second effect is that, because the induced strain is ∼ 10−6–
10−7 at distances equal to ∼ 3–6 fault lengths, a surge of aftershocks
should be observed in a quite large area with a delay of ∼ 102 s from
the main shock.

Neither of these effects appears easy to observe. The first one
because later-stage deformation and weathering tend to inhibit the
detection of pseudotachylytes. The second one because the coda of
the main event blurs the seismic records for an interval that has a
duration te (cf. Lee et al. 1972; Gasperini 2002)

log te � mC1 + C2, (39)

where m is magnitude and the constants C1 ∼ 2
5 , and C2 ∼ 4

5 , which
gives coda durations larger than 102 s for events with m ≥ 3.

8 C O N C L U S I O N S

Based on the physical arguments of self-similarity, energy balance
and scale analysis, we developed an earthquake source model in
which energy release occurs in three stages rather than in a single
stage and slip occurs over a fractal rather than Euclidean domain,
as it happens in all current models. Our model, which has a global
radiative efficiency close to unity, seems capable of reconciling the
available and apparently contradictory laboratory and in situ evi-
dence, including high- and near-zero friction values, lack of heat
flow anomaly, aftershock triggering according to Coulomb formu-
lation, self-similar strain release, partial and constant stress drop.
On the other hand, it relies on the assumption that the pressurization
of the shear zone can be sustained during the radiative slip process,
an issue that is experimentally very poorly constrained as a result of
the almost total lack of data on high-velocity slip and phase diagram
of water above 600 K and 10 MPa. The model lacks in any case a
strict validation, which may come from the observation of two addi-
tional effects it predicts: a higher concentration of pseudotachylites
near the border of slipping patches and a surge of aftershocks in a
wide area surrounding the main-shock fault with a ∼ 102 s delay.
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