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[1] The constitutive coupled equations describing ionic transport in a porous shale
are obtained at the scale of a representative elementary volume by volume averaging
the local Nernst-Planck and Stokes equations. The final relationships check the
Onsager reciprocity to the first order of perturbation of the state variables with respect
to the thermostatic state. This state is characterized by a modified version of the Donnan
equilibrium model, which accounts for the partition of the counterions between the
Stern and diffuse Gouy-Chapman layers. After upscaling the local equations the
material properties entering the macroscopic constitutive equations are explicitly related
to the porosity of the shale, its cation exchange capacity, and some textural properties
such as the electrical cementation exponent entering Archie’s law. This new model
is then applied to predict the salt filtering and electrodiffusion efficiencies of a shale
layer. INDEX TERMS: 0619 Electromagnetics: Electromagnetic theory; 5109 Physical Properties of Rocks:

Magnetic and electrical properties; 5112 Physical Properties of Rocks: Microstructure; 5134 Physical Properties

of Rocks: Thermal properties; 5139 Physical Properties of Rocks: Transport properties; KEYWORDS: diffusion,

electrokinetic, shale
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1. Introduction

[2] The inherent difficulty in the study of ionic transport
in shales concerns the modeling of the coupling effects
between the various thermodynamic forces and fluxes
existing in the open (permeable) thermodynamic system.
In shales, most of the coupling phenomena arise from the
intrinsic charge of clay minerals and their high specific
surface areas. The excess charge of clays is the result of
isomorphic substitutions inside their crystalline framework
and of chemical speciations between their surface reactive
groups (e.g., silanols and aluminols) and the ions in the
pore water. The excess charge of the clay minerals is
counterbalanced by charge carriers of opposite sign (the
‘‘counterions’’) located in the pore water. The resulting
disturbances of the ionic concentrations are described by
the ‘‘electrical triple layer’’ (TLM) model. In shales, the
size of the diffuse (Gouy-Chapman) part of the triple layer
can be on the same order of magnitude than the size of the
throats controlling transport properties through the
connected porosity. This is especially true when the ionic
strength of the fluid in equilibrium with the shale is low
(typically below 0.1 mol L�1). So models based on the
thin electrical diffuse layer assumption [e.g., Pride, 1994]
are not valid in this situation. The whole pore water of a
shale, and not only the fraction enclosed in the vicinity of
the mineral surface, does not follow the electroneutrality
condition. In other words, the electroneutrality condition in

the pore water must be modified to include the excess
charge of the clay minerals.
[3] There is a considerable number of works in the

literature dedicated to modeling coupled transport of ions
through charged porous materials. For example, Kedem
and Katchalsky [1961] and Michaeli and Kedem [1961]
postulated equations coupling current density, diffusion
flux, and solvent flux to their associated thermodynamic
forces, namely the electrical field, the gradient of chemical
potential of the brine, and the fluid pressure gradient.
Their model is based on thermodynamic arguments of
irreversible linear thermodynamics. However, this was
mainly a phenomenological theory in which the material
properties were not specified as functions of the constitu-
ent properties and microstructural parameters.
[4] To our knowledge, there has been no attempt yet to

model the coupling between the four thermodynamic
fluxes of interest in shales (e.g., ionic fluxes, current
density, solvent flux, and heat flow), explicitly based on
the underlying constituent properties and excluding the
thin electrical diffuse layer assumption. In this paper,
the continuum equations known to apply to the ions, the
solvent (water), and solid phase at the local scale are
volume averaged to obtain the macroscopic equations at
the scale of a representative elementary volume of the
porous shale considered as a granular charged porous
material. The Onsager reciprocity, valid at the macroscopic
scale, is consistent with a linearization of the local
constitutive equations.
[5] To keep our theory as simple as possible, we make the

following assumptions.
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[6] 1. At the local scale, the ionic concentrations in the
pore water are assumed to obey the Donnan distributions, an
alternative to the Poisson-Boltzmann distributions in the
equilibrium (thermostatic) state [e.g., Lai et al., 1991; Gu et
al., 1997]. This allows to refer to average concentrations,
osmotic pressure, and electrical potential in the pore space
while Poisson-Boltzmann distributions implies that these
quantities vary strongly with the distance to the pore water
mineral interface.
[7] 2. We only consider linear disturbances in the vicinity

of the thermostatic (equilibrium) state.
[8] 3. The pore water is assumed to be an ideal solution.

This is appropriate for dilute solution only (<0.1 mol L�1).
[9] 4. The porous medium is assumed to be isotropic and

homogeneous at the scale of the representative elementary
volume (however, we will briefly discussed anisotropy).
[10] 5. We assume local thermal equilibrium between the

grains and the pore water.
[11] 6. For the sake of simplicity, we assume that the

porous medium is rigid. However, the present theory could
be generalized to the case of deformable porous materials
by accounting for the Jacobian of the deformation tensor in
the Lagrangian form of the constitutive equations.
[12] Chemical reactions and multiphase flow modeling

are also kept for future investigations. Most of the param-
eters introduced in this paper are defined in Tables 1–3. The
subscript and superscript zero describes the parameters in
their thermostatic state.

2. Equilibrium State

[13] The system consists of two infinite brine reservoirs
(hereinafter referred to as reservoirs I and II) separated by
a water-saturated shale layer. The degree of compaction of
the shale is high enough so that the macropores are not
interconnected (Figure 1). We assume that the brine is

dilute enough so that the thickness of the diffuse layer is
comparable to the size of the micropores (Figure 1). For
the sake of simplicity, the two reservoirs contain a single
binary monovalent (1:1) salt (like NaCl or KCl) fully
dissolved in water (the solvent). The (thermostatic) situa-
tion is characterized by the absence of any thermodynamic
fluxes. In this equilibrium situation, we examine the
concentrations of salt ions in the connected pore space
of a representative elementary volume (REV) of a shale
layer.

2.1. Excess Charge of Shales

[14] The matrix of shales is composed essentially of clay
minerals and possibly some fine grains, which can play an
important role (for example, carbonate grains would act as
a buffer and control the pH of the pore water). Clay

Table 1. Properties of the Brine, Pore Water, and Ions

Property Meaning Unit

Cf (Cf
0) salinity of the brine in the reservoirs m�3

Cw (Cw
0) concentration of water in the reservoirs m�3

Cw(Cw
0) concentration of water in the shale m�3

C(±) (C (±)
0) concentrations of ions in the reservoirs m�3

C(±)(C(±)
0 ) concentrations of ions in the shale m�3

Deff
f effective (electro) diffusivity of the

salt in the brine
m2 s�1

D(±)
f self-diffusion coefficients of the ions

in the brine
m2 s�1

M(±) molecular weight of the ions kg
t(±) microscopic Hittorf numbers of the ions dimensionless
sf (sf

0) conductivity of the solution in the
reservoirs

S m�1

sf(sf
0) conductivity of the pore fluid in the shale S m�1

Qf heat of transport of the pore fluid J m�3

ef dielectric constant of the pore water F m�1

lf thermal conductivity of the pore fluid J m�1 s�1 K�1

rf bulk density of the pore fluid kg m�3

Cu
f specific heat per unit mass of the

pore fluid
J kg�1 �C�1

hf dynamic viscosity of the pore fluid Pa s
vf local velocity of the pore water m s�1

b(±) electromigration mobilities of the ions m2 s�1 V�1

Q(±) partial molar heats of transport of the ions J mol�1

W(±) molecular volumes of cations and anions m3

Ww molecular volume of the water molecules m3

Table 2. Material Properties of the Porous Shale

Property Meaning Unit

Cu specific heat per unit mass of the
porous shale

J kg�1 K�1

CEC cation exchange capacity C kg�1

Deff (Deff
0 ) (electro) diffusivity of the salt in the shale m2 s�1

F intrinsic electrical formation factor dimensionless
f intrinsic thermal formation factor dimensionless
k intrinsic permeability of the shale m2

q charge per unit mass of the saturated shale C kg�1

QV(QV
0) total charge per unit pore volume of

the shale
C m�3

QV(QV
0) effective charge per unit pore volume

of the shale
C m�3

R electrical conductivity dimensionless
number

dimensionless

T(±) (T(±)
0 ) macroscopic Hittorf numbers dimensionless

e brine filtration efficiency of the shale dimensionless
g diffusivity efficiency of the porous shale dimensionless
l intrinsic thermal conductivity of the shale J m�1 s�1 K�1

lg thermal conductivity of the grains J m�1 s�1 K�1

s(s0) electrical conductivity of the shale S m�1

s(±) (s(±)
0 ) ionic contributions to the electrical

conductivity
S m�1

L(L0) electrokinetic coupling term A Pa�1 m�1

rg bulk density of the grains kg m�3

f connected porosity dimensionless
L characteristic length scale of the pore space m
Q thermal conductivity dimensionless number dimensionless

Table 3. Fluxes and Thermodynamic Potentials

Property Meaning Unit

H macroscopic heat flux J m�2 s�1

h local heat flux J m�2 s�1

J(±) macroscopic ionic fluxes mol m�2 s�1

j(±) local ionic fluxes mol m�2 s�1

J(±) macroscopic ionic fluxes in the
connected porosity

mol m�2 s�1

J macroscopic current density A m�2

J current density in the connected porosity A m�2

U Darcy or filtration velocity m s�1

~m(±)(~m(±)
0 ) gravielectrochemical potentials of the ions J

m(±)(m(±)
0 ) local effective potentials of the ions J

y electrical potential (macroscopic disturbances) V
j (j0) electrical double layer microscopic potential V
p (p0) intrinsic fluid pressure in the pore space Pa
p effective fluid pressure in the pore space Pa
p (p0) osmotic pressure Pa
T (T0) temperature K
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minerals are usually negatively charged due to isomorphic
substitutions inside the crystalline framework as well as
chemical speciation between the surface reactive sites and
the ions from the pore water [e.g., Revil and Leroy, 2001;
Leroy and Revil, 2004]. An excess of charge of opposite
sign counterbalances the charge deficiency of the clay
minerals. This excess of charge is formed by a majority
of counterions (e.g., Na+) and a minor amount of ‘‘coions’’
(e.g., Cl�). The cation exchange capacity, CEC (usually
expressed in meq g�1, where 1 meq g�1 = 96 320 C kg�1

in SI units [e.g., Patchett, 1975]) represents the excess of
surface charge per unit weight of the minerals [e.g., Ma
and Eggleton, 1999]. It is proportional to the specific
surface area of the clay aggregate (surface area per unit
weight) (Figure 2) and can be estimated from potentio-
metric adsorption measurements usually performed at
pH 7. The CEC of the main clay minerals are given in
Figure 2. For mixed layer clays, the CEC is a linear
combination of the CEC of the end-members weighted by
their relative proportions [Gier, 1998]. A more convenient
way to express the CEC is to normalize the excess of charge
per unit pore volume, which is noted QV (in C m�3) [e.g.,
Revil, 1999]:

QV ¼ rg
1� f
f

� �
CEC; ð1Þ

where rg represents the density of the grains and f is the
connected porosity. The charge density of the mineral

grains (usually negative) is counterbalanced by a ‘‘counter-
charge’’ (generally positive) located in the pore network of
the shale.
[15] There is however an additional complexity arising

from the fact that the countercharge is partly located in the
Stern layer directly at the surface of the minerals and
partly in the diffuse (Gouy-Chapman) layer (Figure 1). We
note fQ the fraction of charge located in the Stern layer and
QV � (1 � fQ)QV the net excess of charge per unit pore
volume in the shale excluding the Stern layer (fQQV

represents the part of the countercharge located in the
Stern layer, (1 � fQ)QV represents the fraction of the
countercharge located in the Gouy-Chapman layer). We
note QV

0 the value taken by QV in the thermostatic state.
The overall electroneutrality condition of the shale writes
rq = 0, where

rq � 1

V

Z
Vp

Q
0

VdVp þ
Z
Sw

QSdS þ
Z
Sw

Q0dS

0
B@

1
CA; ð2Þ

where r is the bulk density of the shale and q is the charge
per unit mass (so rq represents the charge density of the
shale), dVp is an integration over the connected pore space,
dS denotes an integration over the grain/pore water
interface, QS represents the surface charge density in the
Stern layer, and Q0 represents the grain surface charge
density (including a contribution associated with substitu-

Figure 1. (a) Sketch of a silty shale. The porous composite comprises the pore space, the clay particles,
and the other mineral grains. The pore space comprises the macroporosity, the microporosity, and the
interlayer porosity for 2:1 clays like smectite. We assume that the macropores are isolated. In addition, we
assume that the Gouy-Chapman diffuse layer extends over the entire microporosity. (b) Sketch of the
electrical double-layer model. M represents the metal cations (e.g., Na+ or K+) and A represents the
anions (e.g., Cl�). The double layer comprises the Stern layer of sorbed counterions and the Gouy-
Chapman diffuse layer. The total charge of the Stern and diffuse layers compensates the net charge of the
mineral surface plus the net charge of the mineral framework associated with isormorphic substitutions in
the mineral lattice.
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tion in the crystalline framework). The electroneutrality
condition yields

ef C
0

ðþÞ � C
0

ð�Þ


 �
þ e

V

Z
Sw

G0
ðþÞ � G0

ð�Þ


 �
dS þ rgð1� fÞCEC ¼ 0;

ð3Þ

where e represents the elementary charge (positive, 1.6 �
10�19 C), G(±)

0 is the surface density of counterions and
coions (number of counterions per unit surface area) in the
Stern layer, C(±)

0 represents the concentrations of counter-
ions and coions in the pore space of the shale [Leroy and
Revil, 2004]. The partition coefficient fQ can be computed,
in principle, from a TLM model and an iteration procedure
from the following relationship:

fQ ¼

R
Sw

G0
ðþÞ � G0

ð�Þ


 �
dS

Vp C
0

ðþÞ � C
0

ð�Þ


 �
þ
R
Sw

G0
ðþÞ � G0

ð�Þ


 �
dS

: ð4Þ

Using the recent model by Leroy and Revil [2004], we
obtain very high values for fQ above 085. This means
that most of the countercharge is located in the Stern
layer. However, we point out that fQ is difficult to
constrain.

2.2. Low Salinity Limit

[16] The shale layer is in contact with two uncharged
porous bodies containing a 1:1 brine (NaCl, for example) at
salinity Cf

0 (Figure 3). The cations and anions of the brine
penetrate the connected porosity of the shale until a ther-
modynamic equilibrium is reached. Note that the establish-
ment of this equilibrium state is not instantaneous. The
electrical field associated with charge deficiency of the clay
minerals is shielded very efficiently by the countercharge.
The macroscopic average of the local electrical field is zero,
but there is a net electrical potential in the pore space of the
shale.

Figure 2. Specific surface area of clay minerals (inm2g�1)
versus the CEC (in meq g�1 with 1meq g�1 = 96,320 C kg�1

in SI units) for various clay minerals. The ratio between the
CEC and the specific surface area gives the equivalent total
surface charge density of the mineral surface. Experimental
data are from 1, Patchett [1975] (small solid circles, shales
with >50 clays; open triangles, montmorillonite; large open
circles, illite; open squares, kaolinite); 2, Lipsicas [1984]
(solid triangles, Vermiculite); 3, Zundel and Siffert [1985]
(large solid circles, illite; large solid squares, kaolinite; solid
losange, chlorite); 4, Lockhart [1980] (inverted open
triangles, kaolinite); 5, Sinitsyn et al. [2000] (stars, illite);
6, Avena and De Pauli [1998] (grey solid circles: smectite);
7, Shainberg et al. [1988] (small squares, smectite); 8, Su et
al. [2000] (crosses, shaly sands); and 9, Ma and Eggleton
[1999, Table 3] (inverted solid triangles, kaolinite). The
grey areas represent the domains of variations for kaolinite
and chlorite, illite, and smectite.

Figure 3. Sketch of the filtration of a 1:1 salt through a shale. The direction of the Darcy velocity U, the
electrokinetic component of the electrical field E, and the electrokinetically induced ionic density fluxes
are shown on the right side. The salinity of the effluent is noted ~Cf, while the salinity of the pore water
forced into the shale is noted Cf.

B03208 REVIL AND LEROY: TRANSPORT PROPERTIES IN SHALES

4 of 19

B03208

 21562202b, 2004, B
3, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/2003JB
002755 by C

ochrane R
ussian Federation, W

iley O
nline L

ibrary on [24/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



[17] In the uncharged porous bodies the chemical
potentials of the ions and water (i.e., the solvent) are
defined by

m0ð�Þ ¼ mRð�Þ þ kbT0 lnC
0
ð�Þ ð5Þ

m0w ¼ mRw þ Wwp0 þ kbT0 lnC
0
w; ð6Þ

where kb is the Boltzmann constant (1.381 � 10�23

J K�1), T0 is the temperature (in K), and m(+), m(�), mw
represent the chemical potentials of cations, anions, and
water respectively, C(+), C(�), Cw are the volumetric
concentrations of cations, anions, and water, respectively,
Ww is the molecular volume of water, p is the pressure of
water (p0 = rf gz is the pressure due to the gravity body
force), and the superscript and subscript 0 and R in
equations (5) and (6) refer to the thermostatic state and a
distinct reference state, respectively. The reference state
corresponds to unit molar concentrations of the ionic
species and to the isoelectric point for the shale, i.e.,
conditions for which the effective surface electrical
potential of the clays is equal to zero (i.e., Q0 = 0, the
shale becomes an uncharged material).
[18] In the shale, the electrochemical potentials of the

ions and water are given by

m0ð�Þ ¼ mRð�Þ þ kbT0 lnC
0

ð�Þ � ej0 ð7Þ

m0w ¼ mRw þ Wwp0 þ kbT0 lnC
0

w; ð8Þ

where j0 and p0 are the electrical potential and pore fluid
pressure in the pore water of the shale (in the
thermostatic state). The overbar refers to the pore water
of the shale, and the superscript 0 and R indicate that
the concerned quantities are taken in the thermostatic
and reference states, respectively. Note that electrical
potential and pore fluid pressure refer to a single
electrical potential and fluid pressure rather than a spatial
distribution of these.
[19] Thermodynamic equilibrium between the brine in the

reservoirs and the pore water of the shale takes the form of
an equality between the chemical potential of the pore water
of the shale and that of the brine in both the thermostatic
and reference states,

m0ð�Þ ¼ m0ð�Þ; ð9Þ

mRð�Þ ¼ mRð�Þ; ð10Þ

m0w ¼ m0w; ð11Þ

mRw ¼ mRw: ð12Þ

Conservations of charge and mass in the pore water of the
shale and in the brine reservoir are

C
0

ðþÞ ¼ C
0

ð�Þ þ Q
0

V=e; ð13Þ

C0
ð�Þ ¼ C0

ðþÞ ¼ C0
f ; ð14Þ

WwC
0

w þ WðþÞC
0

ðþÞ þ Wð�ÞC
0

ð�Þ ¼ 1; ð15Þ

WwC
0
w þ WðþÞ þ Wð�Þ

 �
C0
f ¼ 1; ð16Þ

where Cf
0 is the salinity of the brine in the reservoirs, and

W(±) are the molecular volumes of cations and anions.
Equation (13) is a consequence of equations (3) and (4).
After some algebraic manipulations, equations (5), (7), (9),
and (10) yield a modified version of the Donnan
equilibrium conditions accounting for the partition of the
counterions between the Stern and Gouy-Chapman layers:

C0
ðþÞC

0
ð�Þ ¼ C

0

ðþÞC
0

ð�Þ; ð17Þ

C
0

ð�Þ ¼ C0
f exp �ð�eÞj0

kbT0

� �
; ð18Þ

j0 ¼ � kbT0

2e
ln

C
0

ðþÞ

C
0

ð�Þ

0
@

1
A: ð19Þ

Combining equations (13) and (17) yields a second-order
equation:

C
0 2

ðþÞ � Q
0

V=e

 �

C
0

ðþÞ � C0
ðþÞC

0
ð�Þ ¼ 0: ð20Þ

The solution of (20) combined with (18) yields

C
0 2

ð�Þ ¼
Q

0 2

V

4e2
þ C0 2

f

 !1=2

�Q
0

V

2e
; ð21Þ

j0 ¼ � kbT0

2e
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

0 2

V þ 4e2C0 2

f

q
þ Q

0

Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

0 2

V þ 4e2C0 2

f

q
� Q

0

V

2
64

3
75: ð22Þ

Equations (21) and (22) characterize the thermostatic state.
Equation (21) corresponds to a modified version of the
Teorell-Meyer-Siever (TMS) model [Teorell, 1935; Meyer
and Sievers, 1936]. It provides the mean ionic concentra-
tions inside the charged material, in the equilibrium state, as
a function of the concentrations of the ionic species
contained in the brine reservoir. Let us consider for example
kaolinite with f = 0.30 (30% porosity), CEC = 0.04 meq
g�1 (Figure 2), in contact with a reservoir containing a
sodium chloride solution at 10�3 mol L�1. The grain mass
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density is expected to be higher than the measured value
reported in the literature (typically rg = 2580 kg m�3),
which includes the two hydration layers of the clay
mineral. Taking into consideration the unit cell parameters
of a perfect kaolinite hexagonal crystal (Al4[Si4O10]
(OH)8): a = 0.5139 nm, b = 0.8932 nm, c = 0.7371 nm,
a = g = 90�, and b = 104.8�, the volume of this
elementary cell is (a b c sin b) = 0.3271 nm3, its molecular
weight 516.4 g mol�1, and therefore its density is equal to
rg = 2620 kg m�3. With this grain density, this yields QV

0 =
2.38 � 107 C m�3. Taking fQ = 0.90, this corresponds to
2.47 � 10�2 mol L�1 equivalent charge. Use of equation
(21) yields C(+)

0 = 2.474 � 10�2 mol L�1and C(�)
0 = 4.04 �

10�5 mol L�1 for the concentrations of counterions and
coions, respectively. So the amount of coions contained in
the pore water of the shale is extremely small by
comparison with the number of counterions. Such a state
is characteristic of clay-rich materials.
[20] The osmotic pressure is given by the Van’t Hoff

relationship

p0 � p0 � p0 ¼ � kbT0

Ww

ln
C

0

w

C0
w

 !
; ð23Þ

p0 	 kbT0 C
0

ðþÞ þ C
0

ð�Þ � 2C0
f


 �
; ð24Þ

p0 	 2kbT0C
0
f cosh

ej0

kbT0

� �
� 1

� �
; ð25Þ

where we have neglected the difference between the
molecular volume of the water and that of the ions. For
very dilute pore water, the osmotic pressure is given by p0 	
kbT0QV

0 /e. Taking, for example, QV
0 = 2.38 � 106 C m�3,

kb = 1.381 � 10�23J K�1, and T0 = 298 K yields p0 	
61 kPa. A possible value of QV

0 = 23.8 � 106 C m�3 yields
p0 	 0.61 MPa. So the osmotic pressure can reach very
high values in shales. For smectites the osmotic pressure
can be higher than 5 MPa. Note that there is another osmotic
pressure contribution due to hydration forces between
surfaces [Besseling, 1997]. However, the strength of the
hydration force decreases rapidly with the distance between
adjacent surfaces and affects only the interlayer porosity of
2:1 clays like smectites.

2.3. High Salinity Limit

[21] In the high salinity limit (typically >0.5 mol L�1) the
diffuse layer disappears and the counterions are packed in
the Stern layer. Outside the Stern layer the pore water has
the same salinity as the pore water in the reservoir in contact
with the shale layer. In this situation, which is not analyzed
in this paper [see Revil, 1999] we expect the transport
properties to be rather different than in the dilute limit
considered here.

3. Volume-Averaging Approach
and Local Equations

[22] We specify now the local equations in the vicinity
of the thermostatic equilibrium state. We also describe

the volume averaging approach used in the following
sections.

3.1. Volume-Averaging Approach

[23] We consider the shale to be a random porous
medium of volume V composed of the connected pore
region of volume Vp and the grains of volume Vg (V =
Vp + Vg). We note Sw the surface area between the grain
and the connected pore space. The characteristic functions
of the pore region q and pore-solid interface M are
defined by

qðrÞ ¼ 1; r 2 Vp;
0; r 2 Vg;

�
ð26Þ

MðrÞ ¼ rqðrÞj j; ð27Þ

respectively. The volume average of a vector a (or a scalar)
is defined by

ah i � A � 1

V

Z
V

qðrÞaþ 1� qðrÞ½ �af gdV ; ð28Þ

ah i � A � 1

V

Z
Vp

adVp þ
Z
Vg

adVg

2
64

3
75: ð29Þ

The pore water phase average is defined by

A � 1

Vp

Z
Vp

adVp: ð30Þ

[24] The porosity and specific surface area are defined as
the volume average of the function q(r) and M(r), respec-
tively, i.e.,

f � qðrÞh i; ð31Þ

a � S=V ¼ MðrÞh i; ð32Þ

where a is the average interfacial area per unit total volume.
Although we assume isotropy in this paper, a few words on
extension to anisotropic situations is needed since this
model involves shales, which are usually anisotropic.
Bercovici et al. [2001] define a fabric tensor as

A � 1

V

Z
V

rqðrÞrqðrÞ
rqðrÞj j dV ; ð33Þ

which is symmetric by construction. The trace of this tensor
is Tr(A) = a and if the system is isotropic A = (a/3)I, where
I is the identity matrix. In anisotropic media, transport
properties like permeability, electrical conductivity, and
thermal conductivity are related to the fabric tensor A.
However, the isotropic model developed hereafter is already
complex enough (10 independent material properties to
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determine) to keep a rigorous anisotropic theory for future
investigations.
[25] Slattery’s theorem yields [e.g., Slaterry, 1981; Howes

and Whitaker, 1985]

rah i ¼ r ah i þ 1

V

Z
Sw

andS ð34Þ

r � ah i ¼ r � Aþ 1

V

Z
Sw

n � adS; ð35Þ

where n is the unit vector normal to the pore-solid
interface and directed from the pore solution to the solid
when a is defined in the connected pore space and from
the solid to the pore solution when a is defined in the
matrix.
[26] Each state variable characterizing the system is

considered as the sum of a term corresponding to the
thermostatic state and a perturbation. For example, the
concentrations, the electrical field, the electrical poten-
tial, and the temperature in the bulk pore water are
written as

Cð�Þ ¼ C
0

ð�Þ þ cð�Þ; ð36Þ

E ¼ E0
f þ ef ; ð37Þ

j ¼ j0 þ dj; ð38Þ

T ¼ T0 þ dT ; :: ð39Þ

where Ef
0 = �r j0, ef = �rdj � ry(y is the local

potential associated with the existence of a macroscopic
electrical field at the scale of the system, see below) and so
on. The first term represents the thermostatic state while the
second term represents deviation from equilibrium. The
determination of the variation dj = j � j0 can be obtained
from the TLM approach by solving the TLM equations in
the new set of thermodynamic conditions [Leroy and Revil,
2004].
[27] The next step is to upscale the local equations. We

consider that the driving forces are sufficiently weak so
we can linearize the local equations and keep only first-
order terms for which linear thermodynamics applies and
Onsager’s reciprocal relationships hold. As a conse-
quence, all dispersive phenomena are ignored in the
present model.
[28] To complete the averaging procedure, we define the

representative elementary volume as an averaging disk of
porous shale delimited by two large plane-parallel circular
faces of area A separated by distance H (V = A H) (Figure 3).
The disk is comprised between the two reservoirs defined in
section 2. A potential difference can be defined between the
two reservoirs. By dividing each potential difference by H,
one obtains the appropriate macroscopic field in the direc-
tion normal to the disk faces (e.g., temperature gradient,
pressure gradient, electrical field). The normal to the disk

faces is defined as the z direction of unit vector ẑ such that
we have

ẑ � E ¼ �Dy
H

; ð40Þ

Dy � yðHÞ � yð0Þ; ð41Þ

for the macroscopic electrical field, for example. Similar
macroscopic boundary conditions can be defined for the
ionic concentrations, the pore fluid pressure, and the
temperature.
[29] The final purpose of the volume-averaging approach

is to show that the constitutive relationships for the fluxes
obey linear relationships with respect to the thermodynamic
forces:

JðþÞ
Jð�Þ
U

H

2
664

3
775 ¼ �L

r~mðþÞ
r~mð�Þ
rp

rT=T0

2
664

3
775; ð42Þ

where L is a 4 � 4 matrix with components Lij, J(±) are the
macroscopic ionic fluxes, U is the filtration (Darcy) velocity
(in m s�1), H is the heat flux, ~m(±) is the gravielectrochem-
ical potentials, and p is the effective fluid pressure including
osmotic and gravitational contributions.

3.2. Local Equations in the Connected Porosity

[30] In a Newtonian fluid the local ionic densities j(±) and
heat flux h are related to the gradient of the electrochemical
potentials r~m(±) and to the gradient of the temperature rT
by the generalized Nernst-Planck equations [Nernst, 1888;
Planck, 1890; De Groot and Mazur, 1984, Chapter XI]

jðþÞ � CðþÞvf

jð�Þ � Cð�Þvf

h� Qf vf

2
64

3
75

¼ �

bðþÞCðþÞ

e
0

bðþÞCðþÞQðþÞ

e

0
bð�ÞCð�Þ

e

bð�ÞCð�ÞQð�Þ

e

bðþÞCðþÞQðþÞ

e

bð�ÞCð�ÞQð�Þ

e
lf T0

2
66666664

3
77777775

�
r~mðþÞ

r~mð�Þ

rT=T0

2
64

3
75; ð43Þ

where vf is the local velocity of the pore water and the other
properties are defined in Table 1. Some values of the
mobilities b(±) and partial molar heats of transport Q(±) are
given in Table 4. The heats of transport represent the heats
transported along with a unit diffusion flux of anions and
cations. The heat of transport Qf = rfCu

fT0 is defined as the
heat flux that occurs during isothermal water flow [Chu et
al., 1983]. The gradients of the electrochemical potentials are

r~mð�Þ ¼ kbTr lnCð�Þ � ð�1ÞeE: ð44Þ

Note that for the ions the gravitational component can be
ignored by comparison with the strength of the other
contributions.
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[31] The equation for the velocity of the pore fluid is the
Navier-Stokes equation

rf
@vf
@t

þ vf � rvf

� �
¼�rp� Qf

T0

� �
rT þ hfr2vf þ Fw þ FðþÞ

þ Fð�Þ; ð45Þ

where t is time and Fi is the external (body) force per unit
volume acting on the component i. Equation (45) is nothing
else but a force balance equation for a representative
elementary volume element of the pore fluid. We consider
that the viscosity of the pore water is not altered by the
existence of a net electrical field inside the pore network of
the shale. Indeed, except for the two first hydration layers of
the mineral surface, thermal motion in the pore water
dominates electroviscous effects.
[32] The bulk forces applied to water are the gravity

force, the electrical force (as the free charge density is
unbalanced in the bulk pore water of the shale), and the
thermal force. Indeed, a temperature gradient gives rise to
an equivalent pressure gradient called the thermomolecular
or thermo-osmotic pressure. This pressure is usually diffi-
cult to observe because it is easily obscured by thermome-
chanical and convective effects. The thermomolecular
pressure is produced by an increase, in a temperature field,
of the number of collisions between molecules. Each
molecule receives a higher number of collisions from the
direction where the temperature is the highest than from the
opposite direction. This creates a global motion of the pore
fluid, by viscous coupling, in the direction of the temper-
ature field. This phenomenon has nothing to do with
convection associated with buoyancy.
[33] The body forces that apply to the pore water and to

the ions are

Fw 	 rf gþ QfrT=T0; ð46Þ

Fð�Þ ¼ rð�Þg� eCð�ÞE 	 �eCð�ÞE: ð47Þ

In the assumption of slow incompressible viscous flow with
a vanishingly small Reynolds number (Stokes fluid), the
local fluid velocity is a solution of the Stokes problem
described by the Stokes equation plus the continuity (mass
balance) equation

�rpþ hfr2vf þ Ff ¼ 0; ð48Þ

r � vf ¼ 0; ð49Þ

Ff ¼ Fw þ FðþÞ þ Fð�Þ ¼ rf gþ QVEþ QfrT=T0; ð50Þ

and vf = 0 on SW. In equation (50), QV = (1 � fQ)QV =
e(C(+) � C(�)) represents the excess of charge per unit

volume in the pore space of the shale in the thermo-
dynamic state (section 2.1). Using the Hodge decomposi-
tion for an arbitrary vector F arising in the Stokes
problem, Avellaneda and Torquato [1991] showed that the
hydrodynamical response of the Stokes fluid is identical to
the response obtained if F is replaced by uE, where u is a
constant and E is the electrical field. This means that the
expected hydrodynamic response for a temperature field
will be similar to that given by the application of an
electrical field. The reason for this is that, for steady state
conditions, the gradient of the scalar potential in the
Hodge decomposition of F corresponds to a fluctuation of
the pore pressure that does not affect the pore fluid
velocity field.
[34] We summarize now the key equations of the elec-

trodynamic problem. The electrical field is a solution of the
local Poisson problem

efr � E ¼ QV ð51Þ

E ¼ �ry; ð52Þ

where ef is the dielectric constant of the pore water. The
combination of the local Stokes and Poisson problems
yields

r � sf þ rf g ¼ 0; ð53Þ

sf ¼ �pI þ sVf þ T
M

f � rf C
f
uTI ; ð54Þ

T
M

f ¼ ef E� E� E2I=2

 �

; ð55Þ

where sf is the Cauchy stress tensor of the pore fluid, sf
Vand

Tf
M (positive in tension) represent the viscous contribution

to the Cauchy stress tensor and the Maxwell stress tensor
in the pore fluid, respectively (with the property r � Tf

M =
QVE), and E � E represents a dyadic product between
vectors.

3.3. Effective Electrical Potential and Fluid Pressure

[35] The electrical potential in the pore space is the sum
of two contributions. The first is due to the electrical double
layer and the second results from the existence of macro-
scopic thermodynamic disequilibrium conditions resulting
in ions migration. This yields y = j + y, where j results
from (microscopic) electrical double layer effects, whereas
y results from macroscopic disturbances affecting the
migration of the ionic species. So the electrical body force
(F(+) + F(�)) entering the Stokes equation is split into two
contributions

FðþÞ þ Fð�Þ ¼ �QVry; ð56Þ

FðþÞ þ Fð�Þ ¼ �QVrj� QVry: ð57Þ

The first contribution is responsible for swelling pressure
whereas the second contribution is responsible for various

Table 4. Properties of Some Selected Ions at 25�C at Infinite

Dilution

Ion Na+ K+ Cl�

b(±), m
2 s�1 V�1 5.19 � 10�8 7.61 � 10�8 8.47 � 10�8

Q(±),
a J mol�1 3.46 � 10�3 2.59 � 10�3 0.53 � 10�3

aFrom Lin [1991].
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electro-osmotic contributions in the Stokes equation.
Equating the chemical potentials of the ions present in the
pore space with that of a fictitious salt solution locally in
equilibrium with the local pore water solutions yields [e.g.,
Moyne and Murad, 2002]

Cð�Þ ¼ Cf exp �ð�eÞj
kbT

� �
ð58Þ

QV ¼ e CðþÞ � CðþÞ
 �

¼ �2eCf sinh
ej
kbT

� �
; ð59Þ

which extends equation (18) to the thermodynamic state.
Incorporating � QV r j and the body force due to gravity
into the pore fluid pressure gradient term define an effective
pore fluid pressure as

p ¼ pþ
Zj
0

QVdj
0 þ rf gz; ð60Þ

p ¼ p� 2eCf

Zj
0

sinh
ej0

kbT

� �
dj0 þ rf gz; ð61Þ

p ¼ p� 2Cf kbT cosh
ej
kbT

� �
� 1

� �
þ rf gz; ð62Þ

p ¼ p� kbT CðþÞ þ Cð�Þ � 2Cf

� �
þ rf gz; ð63Þ

p ¼ p� pþ rf gz; ð64Þ

(z positive upward by convention) and r p = r (p � p) �
rf g. The swelling pressure is given by the Van’t Hoff
relationship, as in the thermostatic case

p ¼ kbT CðþÞ þ Cð�Þ � 2Cf

 �
; ð65Þ

and in the dilute case, p 	 kbTQV/e. Note that the osmotic
pressure is a natural consequence of the overlapping
between the diffuse layers of adjacent mineral surfaces in
the microporosity. Similar to the electrical potential, the
pore fluid effective pressure is the sum of the pore fluid
pressure of a fictitious solution in local equilibrium with the
pore water and a swelling pressure term due to electrical
double layer interaction effects. The motivation for the
introduction of the effective fluid pressure lies in the fact
that gradients in both hydrostatic and osmotic pressure can
produce flow of the pore fluid. The Stokes problem
becomes

�rpþ hfr2vf þ rf C
f
urT � QVry ¼ 0 ð66Þ

r � vf ¼ 0: ð67Þ

4. Conductivity Terms

[36] We first specify here a set of relationships between
the texture that we wish to characterize by a minimum set of
textural parameters, and the four macroscopic conductivity
terms entering the macroscopic constitutive equation (42).

4.1. Electrical Conductivity

[37] The conductivity terms L11 and L22 are obtained by
upscaling the ionic fluxes in absence of all the driving
forces except the electromotive force (i.e., the electrical
potential difference applied on the two reservoirs). The pore
water phase average of the macroscopic current density (see
equation (30)) is

Jð�Þ ¼
1

Vp

Z
Vp

jð�ÞdVp; ð68Þ

Jð�Þ ¼
�ð�1Þbð�Þ

Vp

Z
Vp

Cð�ÞEdVp; ð69Þ

Jð�Þ ¼
�ð�1Þbð�ÞC

0

ð�Þ

Vp

Z
Vp

ef dVp; ð70Þ

Jð�Þ ¼
ð�1Þbð�ÞC

0

ð�Þ

Vp

Z
Vp

rydVp; ð71Þ

Jð�Þ ¼
ð�1Þbð�ÞC

0

ð�ÞDy
VpH

Z
Vp

rGdVp; ð72Þ

where we have kept only first-order terms and where the G
field satisfies the following boundary value fundamental
problem [Pride, 1994]:

r2G ¼ 0; r 2 Vp; ð73Þ

n:rG ¼ 0; r 2 Sw; ð74Þ

G ¼ H ; on z ¼ H ;
0; on z ¼ 0:

�
ð75Þ

Using Slaterry’s theorem (equation (34)) yields

Jð�Þ ¼
ð�1Þbð�ÞC

0

ð�ÞDy
fH

r 1

V

Z
Vp

GdVp

0
B@

1
CAþ 1

V

Z
Sw

nGdS

2
64

3
75;
ð76Þ

Jð�Þ ¼
ð�1Þbð�ÞC

0

ð�Þ

f
fþ ẑ

V
:

Z
S

nGdS

2
4

3
5 Dy

H

� �
ẑ; ð77Þ

Jð�Þ ¼ �ð�1Þ
bð�ÞC

0

ð�Þ

Ff
ry; ð78Þ
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where F is the so-called electrical formation factor defined
by

1

F
¼ fþ ẑ

V
:

Z
S

nGdS: ð79Þ

The formation factor can be also determined by averaging
the Joule dissipation of energy. This yields the representa-
tion formula 1/F = he.eiwhere angle brackets represent the
volume average (29) and e � �E/(Dy/H) is a normalized
electrical field, i.e., the local electrical field divided by the
modulus of the volume-averaged electrical field given by
equations (40) and (41). In both case, the formation factor
represents the fraction of the connected porosity that
controls migration of the charge carriers through the
connected pore space. The tortuosity a1 (� 1) is defined
by a1 � Ff.
[38] The ionic contributions s(±)

0 to the electrical conduc-
tivity sf

0 of the pore fluid in the shale are defined by

Jð�Þ ¼ �
ð�1Þs0ð�Þ

ea1
ry; ð80Þ

s0ð�Þ ¼ C
0

ð�Þbð�Þe: ð81Þ

The pore water phase average of the electrical current
associated with the connected porosity is

J ¼ e JðþÞ � Jð�Þ
 �

¼ � s0f =a1


 �
ry: ð82Þ

We introduce the key dimensionless number

R � Q
0

V

2eC0
f

¼
1� fQ
 �

Q0
V

2eC0
f

; ð83Þ

which represents the excess of counterions contained in the
pore water of the shale divided by the brine concentration. In
the low salinity domain we use the results obtained in
section 2.3 using the Donnan equilibrium assumption.
Taking equations (21), (78), (82), and (83) yields the
electrical conductivity of the shale and its ionic contributions:

s0f ¼ C0
f e Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p
 �
bðþÞ

h
þ �Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p
 �
bð�Þ

i
ð84Þ

s0ð�Þ ¼ C0
f ebð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p
þ ð�1ÞR


 �
: ð85Þ

The electrical conductivity of the brine in the reservoir in
contact with the shale is sf

0 = e(C(+)
0 b(+) + C(�)

0 b(�)),
where b(±) represents the mobility of cations or anions
(Table 4) and Cf

0 = C(+)
0 = C(�)

0 (salinity in the two
reservoirs). If the mobility of cations and anions are
similar, as is the case for NaCl and KCl solutions, the
electrical conductivity of the pore water in the shale is
given by sf

0 	 sf
0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p
, i.e., the conductivity of the

pore water of the shale is always higher than the
electrical conductivity of the brine in the reservoir in

contact with the shale. In addition, we observe that the
electrical conductivity of the pore water in the shale is a
nonlinear function of the dimensionless number R. The
asymptotic behavior of these equations yields a low
salinity limit sf

0 (R � 1) = QV
0 b(+). Taking b(+)(Na

+,
25�C) = 5.19 � 10�8 m2 s�1 V�1 (Table 4) and QV

0 =
2.38 � 106 C m�3 yields sf

0 (R � 1) 	 0.123 S m�1.
With QV

0 = 23.8 � 106 C m�3, we obtain sf
0 (R � 1) 	

1.2 S m�1. Both are very high value indicating that the
pore water of shale is always very conductive even when
the shale is in contact with an ion depleted electrolyte.
[39] The macroscopic current density and its contribu-

tions are

J ¼ fJ ¼ �s0ry ð86Þ

Jð�Þ ¼ fJð�Þ ¼ �s0ð�Þry; ð87Þ

where s0 is the DC electrical conductivity of the porous
shale (in the thermostatic state) and s(±)

0 represent the
contributions to s0 (s0 = s(+)

0 + s(�)
0 ). It follows that we have

s0 ¼ s0f =F ð88Þ

s0ð�Þ ¼ s0ð�Þ=F ¼ C0
f ebð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p
þ ð�1ÞR


 �
=F: ð89Þ

Equation (88) can also be obtained directly from the
differential effective medium theory assuming that the
porous material is composed of insulating grains immersed
in a continuous fluid of conductivity sf

0. Such type
of analysis yields F = f�m, where the cementation exponent
m can be related to the shape distribution of the grains
[Mendelson and Cohen, 1982].
[40] We introduce the Hittorf numbers T(±)

0 for the cations
and the anions. The Hittorf numbers represent the fraction
of electrical current transported by the cations and anions in
the pore water of the shale. This definition immediately
yields

T0
ð�Þ �

s0ð�Þ

s0
ð90Þ

T0
ð�Þ �

bð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p
þ ð�1ÞR

 �
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p �
bðþÞ þ �Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p �
bð�Þ

h i ; ð91Þ

with the property T(+)
0 + T(�)

0 = 1, 0 � T(±)
0 � 1, in the limit

R � 1, T(±)
0 = 0, and in the limit R = 0, T(±)

0 = t(±) where
t(±) are the Hittorf numbers of the ions of the brine in the
reservoir in contact with the shale. They are defined by t(±) =
b(±)/(b(+) + b(�)) [MacInnes, 1961].
[41] Finally, the components L11 and L22 of L in equation

(42) are

L11 ¼ s0ðþÞ=e
2; ð92Þ

L22 ¼ s0ð�Þ=e
2: ð93Þ

Note that in the modeling of surface conductivity, we have
not accounted for the contribution of the Stern layer. This is
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because this contribution, while being important at a
frequency of few kilohertz where electrical conductivity
measurements are usually performed, could be essentially
negligible in the DC domain [e.g., Arulanandan, 1969].

4.2. Permeability

[42] The Darcy filtration velocity is obtained by volume
averaging the local water velocity vf in the connected pore
space:

U ¼ 1

V

Z
Vp

vf dVp: ð94Þ

The pore fluid velocity vf and the effective pore fluid
pressure p (which encapsulates the gravity and osmotic
contributions) are local functions of the position r in the
connected pore space. They are related to the macroscopic
fluid pressure gradient by [Pride, 1994]

vf ðrÞ ¼
gðrÞ
hf

Dp

H
ð95Þ

pðrÞ ¼ hðrÞDp
H

: ð96Þ

The local Stokes equation (66) reduces to hf r2vf = rp.
Equations (67), (95), and (96) yield

r2g ¼ rh; r 2 Vp; ð97Þ

r � g ¼ 0; r 2 Vp; ð98Þ

g ¼ 0; r 2 Sw; ð99Þ

and the field g and h are null in the matrix. From equations
(94) and (97)–(99) the Darcy filtration velocity is governed
by the Darcy’s law:

U ¼ � k

hf
rp ð100Þ

k ¼ � 1

V

Z
Vp

ẑ:gðrÞdVp: ð101Þ

The permeability can be also determined by averaging the
viscous dissipation of energy in the pore fluid. This
yields the representation formula k = hsfV: sf

Vi/(Dp/H)2
where angle brackets represent the volume average given by
equation (29), sf

V is the viscous contribution to the Cauchy
stress tensor of the pore fluid (see equation (54)), and the
colon indicates a tensor dot product (a:b = aijbij with the
Einstein convention). The coefficient L33 of L in equation
(42) is

L33 ¼
k

hf
: ð102Þ

By replacing the boundary condition (101) by the less
restrictive one n�g = 0, r 2 Sw (implying g 6¼ 0, r 2 Sw), Pride

[1994] obtained an approximate expression relating the DC
permeability to a characteristic pore length L and to the
electrical formation factor F (defined by equation (81)),

k 	 L2

8F
ð103Þ

L ¼ 2

R
V

rGj j2dVpR
Sw

rGj j2dS
; ð104Þ

where G is solution of the boundary value problem (73)–
(75). The parameter L, introduced by Johnson et al. [1987] is
a weighted pore volume-to-surface ratio that provides a
measure of the dynamically connected part of the pore
network [Avellaneda and Torquato, 1991; Kostek et al.,
1992]. For a network of capillaries of radius R, L = R. For a
granular material with grain diameter d, Revil and Cathles
[1999] obtained L = d/2m(F � 1), where F = f�m is the
electrical formation factor. The length scale L is also closely
related to the characteristic pore throat diameter lc determined
from mercury intrusion and percolation concepts by lc/2L 	
2.66 [Wong, 1994].

4.3. Thermal Conductivity

[43] In absence of any driving forces other than the
application of a thermal gradient between the two reser-
voirs, the macroscopic heat flux is obtained by volume
averaging the local heat flux,

H � 1

V

Z
Vp

hdVp þ
Z
Vg

hdVg

2
64

3
75 ¼ �lrT ; ð105Þ

where l is the thermal conductivity of the water-saturated
porous shale. The boundary conditions for the thermal
conductivity problem are given by Revil [2000, and
references therein]. A simple phase average yields L44 =
l = (1 � f)lg + flf, where lg and lf are the thermal
conductivities of the grains and pore fluid, respectively.
Despite the fact that this expression works rather well, a
more precise relationship is sometimes needed. Revil [2000]
derived an equation for the effective thermal conductivity of
a water-saturated granular composite based on the differ-
ential effective medium approach

l ¼ lf

f
f Qþ 1

2
ð1�QÞ 1�Qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�QÞ2 þ 4f Q

q� �� �
ð106Þ

f � f
m

1�m: ð107Þ

where the dimensionless number Q � lg/lf is the ratio
between the thermal conductivity of the grain to the thermal
conductivity of the pore fluid and m is the electrical
cementation exponent. The dimensionless parameter f is a
‘‘thermal formation factor’’ for the thermal conductivity
problem. It is related to the electrical formation factor F by
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f = F1/(m�1) [Revil, 2000]. Equation (106) is equivalent to a
single phase average only if m 	 2.

4.4. Summary of the Key Parameters

[44] The influence of the texture upon the evaluation of
the four conductivity terms depends on three independent
properties, the porosity f, the cementation exponent m (m
and f allow to determine the electrical and thermal forma-
tion factors, F and f ), and the length scale L. In addition,
the effective charge per unit pore volume QV

0 plays a
critical role in the electrical conductivity problem. In section
5 we show that no other textural parameters are needed to
evaluate the influence of the texture upon the coupling
terms.

5. Coupling Terms

[45] We determine now the 12 coupling terms (six terms
if Onsager reciprocity holds). The first assumption made
here is related to the interdependency of ionic transport
inside the connected pore volume except for electrical
coupling. In other words, there is no diffusion flux of ionic
species that is not controlled by solvent transfer. This leads
directly to

L12 ¼ L21 ¼ 0 ð108Þ

in equation (42). This assumption is valid in the dilute case
<0.1 mol L�1 [e.g., Newman, 1967].
[46] We turn our attention to the determination of the ionic

flux densities associated with fluid flow under a fluid
pressure gradient (electrokinetic contributions). We consider
vf = 0 at the interface between the Stern and the Gouy-
Chapman diffuse layers. So only the ions contained in the
Gouy-Chapman diffuse layer are dragged along with the flux
of the pore water. The fluid pressure gradient is considered to
be the unique driving force here and again we linearize the
flux. This yields

Jð�Þ ¼
1

V

Z
Vp

Cð�Þvf dVp; ð109Þ

Jð�Þ ¼
C

0

ð�Þ

V

Z
Vp

vf dVp; ð110Þ

Jð�Þ ¼ � k

hf
C

0

ð�Þrp; ð111Þ

L13 ¼
k

hf
C

0

ðþÞ; ð112Þ

L23 ¼
k

hf
C

0

ð�Þ: ð113Þ

[47] The conjugated effect is called electro-osmosis. The
electro-osmotic flow is obtained by volume averaging the

local Stokes equation with a source term associated with the
free charge density of the pore space:

hfr2vf

D E
¼ Q

0

VE
D E

: ð114Þ

We rewrite the local fluid velocity as the sum of two
contributions, one is associated with the cations and the
other to the anions. We assume that the movement of
cations and anions are independent of each other except
through the influence of the electrical field, so vf = v(+) +
v(�) and

hfr2vð�Þ

D E
¼ �eCð�ÞE
# $

: ð115Þ

Using equations (36) and (37) and using the fact that in the
thermostatic state hEf

0i = 0, we obtain

hfr2vð�Þ

D E
¼ �eC

0

ð�Þ ef
# $

; ð116Þ

where we have kept only first-order perturbations in the
product of the state variables. The pore fluid velocities v(±)
and the local electrical potential y are local functions of the
position r in the connected pore space:

vð�ÞðrÞ ¼
gð�ÞðrÞ
hf

Dy
H

ð117Þ

yðrÞ ¼ GðrÞDy
H

; ð118Þ

where the functions g(±)(r) obey the following boundary
value problem

r2gð�Þ ¼ �eC
0

ð�ÞrG; r 2 Vp; ð119Þ

r � gð�Þ ¼ 0; r 2 Vp; ð120Þ

n:gð�Þ ¼ 0; r 2 Sw: ð121Þ

Note that the boundary conditions (121) are consistent with
the use of the approximation leading to equation (103). This
yields

Uð�Þ ¼
�eC

0

ð�Þ

hf
ẑ:gð�ÞðrÞ
D E

ry: ð122Þ

The net filtration velocity of the brine is obtained by U =
U(+) + U(�). This yields U = �(QV

0k/hf) ry. As U(+) =
L31 r~m(+) and U(�) = L32 r ~m(�) in equation (42), we
obtain

L31 ¼
k

hf
C

0

ðþÞ ð123Þ

L32 ¼
k

hf
C

0

ð�Þ: ð124Þ

Comparison between equations (112), (113), (123), and
(124) shows that L13 = L31, L23 = L32.
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[48] We determine now the terms L41 and L42 in equation
(42). Thermal diffusion and the ‘‘diffusional thermoeffect’’
result from the coupling between ionic and heat transport in
the pore water of the shale. The underlying physics of this
coupling is related to the relative motion of ions associated
with a change in the local intensity of the intermolecular
forces. The adjustment occasioned by such relative motion
of the ions also result in a finite heat effect. We consider
here the case of a solute ion transported from reservoir II at
temperature T to reservoir I at temperature T0 in a stationary
solvent. In this case, a quantity of heat is absorbed from
reservoir II corresponding to the heat Q(±) transported by the
ions (Dufour effect). The heat flux associated with migra-
tion of anions and cations in a stationary solvent is approx-
imately given by

H ¼ QðþÞJðþÞ þ Qð�ÞJð�Þ ð125Þ

H ¼ �
QðþÞs0ðþÞ

e2
r~mðþÞ �

Qð�Þs0ð�Þ

e2
r~mð�Þ; ð126Þ

and L41 = s(+)
0 Q(+)/e

2 and L42 = s(�)
0 Q(�)/e

2 in equation
(42).
[49] The symmetrical effect is called thermodiffusion or

Soret effect. The macroscopic ionic densities are given by
J(±) = hj(±)i, and therefore

Jð�Þ ¼ � 1

V

Z
Vp

bð�ÞCð�Þ

eT0
Qð�ÞrT

 !
dVp ð127Þ

Jð�Þ ¼ �
s0ð�ÞQð�Þ

e2T0
rT þ . . . ; ð128Þ

keeping again only first-order terms. Onsager reciprocity is
again satisfied (L14 = L41, L24 = L42).
[50] The last coupling terms to define are the coefficients

L34 and L43 in equation (42). The heat flow associated with
the application of a fluid pressure gradient applied between
the two reservoirs is proportional to the flux of matter. The
proportionality coefficient corresponds to the heat trans-
ferred by unit mass. It is called the ‘‘heat of transfer of the
thermomechanical effect’’ (note, however, that this expres-
sion should be avoided because, strictly speaking, there is
no mechanical effect involved here). The heat flux is carried
along with pore water during transport of the solvent
through the porous material:

H ¼ 1

V

Z
Vp

Qf vf dVp; ð129Þ

H 	 Qf

V

Z
Vp

vf dVp; ð130Þ

H ¼ �Qf k

hf
rp; ð131Þ

where we have used equations (94), (100), and (101). This
yields L43 = Qf k/T0hf for the thermomechanical coefficient.

[51] The conjugated effect is called thermo-osmosis. In
thermo-osmosis the driving force is a temperature gradient
between the two reservoirs. This temperature gradient
causes the ions to migrate, setting up a flow of the solvent
through viscous coupling. Volume averaging the Stokes
equation yields

hfr2vf

D E
¼ QfrT=T0
# $

: ð132Þ

The pore fluid velocity vf and the pore fluid temperature T
are local functions of the position r in the connected pore
space:

vðrÞ ¼ gðrÞ
hf

DT

H
ð133Þ

TðrÞ ¼ GðrÞDT
H

; ð134Þ

and the vector g(r) obeys to

r2gðrÞ ¼ Qf =T0
 �

rG; r 2 Vp; ð135Þ

r � gðrÞ ¼ 0; r 2 Vp; ð136Þ

n:g ¼ 0; r 2 Sw: ð137Þ

Note that the boundary conditions (137) are consistent with
the approximation (103). This yields

U ¼ Qf

hf T0
ẑ:gðrÞh irT ð138Þ

U 	 Qf k

hf T0
rT ; ð139Þ

and therefore L34 = Qfk/T0 hf = rfCu
fk/hf and L34 = L43. The

term L34 is called the thermo-osmotic coefficient.

6. Final Form of the Constitutive Equations

[52] An explicit form of the phenomenological linear
flux force equations and the macroscopic continuity equa-
tions is

JðþÞ
Jð�Þ
U

H

2
664

3
775 ¼ �L

r~mðþÞ
r~mð�Þ
rp

rT=T0

2
664

3
775 ð140Þ

r �

MðþÞJðþÞ
MðþÞJð�Þ

rfU
H

2
664

3
775 ¼ � @

@t

MðþÞCðþÞf
Mð�ÞCð�Þf

rf f
rCuT

2
664

3
775þ

MðþÞRðþÞ
Mð�ÞRð�Þ

rf F
QS

2
664

3
775; ð141Þ

where M(±) = r(±) W(±) are the molecular weight of the ions,
Cu is the specific heat (per unit mass) of the porous shale (in
J kg�1 K�1), R(±)(r) are the production rates of cations and
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anions per unit volume of the porous shale (in mol m�3 s�1),
QS is the source term per unit mass for heat, and F(r)
represents the volumetric bulk production rate of the pore
fluid (water plus ions) per unit total volume (in s�1) (F(r) is
positive in the case of injection and negative in the case of
abstraction). The matrix L is given by

L ¼

s0ðþÞ

e2
0 C

0

ðþÞ
k

hf

s0ðþÞ

e2
QðþÞ

0
s0ð�Þ

e2
C

0

ð�Þ
k

hf

s0ð�Þ

e2
Qð�Þ

C
0

ðþÞ
k

hf
C

0

ð�Þ
k

hf

k

hf

k

hf
rf C

f
u

s0ðþÞ

e2
QðþÞ

s0ð�Þ

e2
Qð�Þ

k

hf
rf C

f
u lT0

2
66666666666664

3
77777777777775
: ð142Þ

Now that the petrophysical model for the full set of the
material properties is complete, we proceed in the next
section to an application to brine filtration and diffusion
processes through shales. An alternative form of the
constitutive equations is discussed in Appendix A.

7. Filtration and Diffusion Efficiencies

[53] It has been known for a long time that rocks
containing large amounts of clay minerals exhibit permse-
lective brine filtration properties [e.g., Russel, 1933;
Hanshaw and Coplen, 1973]. As a result of anion (and
sometimes cation) depletion from the connected porosity,
the effluent is observed to be less saline than the original
solution entering the clay-rich material. This property of
clay-rich rocks has receive several names in the literature
like salt filtering, reverse or negative osmosis, hyperfiltra-
tion or ultrafiltration (Figure 3). This process could influ-
ence partly salinity profiles in siliciclastic-filled sedimentary
basins like in the Gulf Coast of Mexico.
[54] In isothermal conditions a straight application of the

model developed in section 6 yields

Jð�Þ ¼ �ð�1Þ
s0ð�Þ

e
ry�

s0ð�Þ

e2
rmð�Þ þ C

0

ð�ÞU; ð143Þ

where we have neglected the various electro-osmotic
contributions occurring in the Darcy filtration velocity in
regard to the flux associated with the imposed fluid pressure
gradient. The electrical current density is then given by

J ¼ e JðþÞ � Jð�Þ
 �

ð144Þ

J ¼ �s0ryþ kbT

e
s0ð�Þ � s0ðþÞ


 �
r lnCf þ

hf L0
k

U: ð145Þ

The electrokinetic coefficient L0 is defined by

L0 ¼ e L13 � L23ð Þ ¼ k

hf
C

0

ðþÞ � C
0

ð�Þ


 �
ð146Þ

L0 ¼
Q

0

V k

hf
: ð147Þ

The condition J = 0 yields

ry ¼ kbT

e
T0
ð�Þ � T0

ðþÞ


 �
r lnCf þ

hf L0
ks0

U; ð148Þ

where T(±)
0 = s(±)

0 /s0 are the Hittorf numbers of the porous
shale layer. They are given by equations (90) and (91).
They are therefore controlled by the dimensionless number
R only. The electrical field through the shale layer is given
by

�ry ¼ � kbT

e
1� 2T0

ðþÞ


 �
r lnCf �

hf L0
ks0

U: ð149Þ

The first contribution corresponds to the membrane
potential [Jin and Sharma, 1994], while the second
contribution corresponds to the streaming potential.
Combining equations (143), (145), and (149) yields

Jð�Þ ¼ ð�1ÞT0
ð�Þ

hf L0
ke

U�
2kbTs0ð�Þ

e2
T0
ð�Þr lnCf þ C

0

ð�ÞU:

ð150Þ

The salt flux through the membrane is defined by

Jd ¼
1

2
JðþÞ þ Jð�Þ
 �

ð151Þ

Jd ¼
1

2
C

0

ðþÞ þ C
0

ð�Þ


 �
U

h
þ
hf L0
ke

T0
ð�Þ � T0

ðþÞ


 �
U

�

� 2kbT

e2

s0ðþÞs
0
ð�Þ

s0

 !
r lnCf : ð152Þ

In absence of pore water flow (U = 0 in equation (152))
the diffusion flux is defined by Fick’s law

Jd ¼ �D0
effrCf : ð153Þ

So by comparing the last term of equation (152) with
equation (153), the effective electrodiffusion coefficient of
the salt is simply given by

D0
eff ¼

2kbT

e2Cf

s0ðþÞs
0
ð�Þ

s0ðþÞ þ s0ð�Þ

 !
; ð154Þ

which generalizes the Nernst-Hartley equation of salt
diffusivity in electrolytes to charged composites.
[55] From equations (152) to (154) the flux of the salt is

given by

Jd ¼
1

2
C

0

ðþÞ þ C
0

ð�Þ


 �
U

h
þ
hf L0
ke

1� 2T0
ðþÞ


 �
U

�
� D0

effrCf :

ð155Þ

The flux of the salt is the sum of two contributions. The first
one is related to brine transport associated with the filtration
flux, which leads to brine filtration effects. The second is
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the diffusion of salt in the salinity gradient. We investigate
these two terms separately in sections 7.1 and 7.2.

7.1. Salt Filtration Efficiency

[56] If we assume that the convective flux of salt associ-
ated with the solvent transport is much greater than the
diffusion of the salt through the porous shale, the flux of salt
is

Jd 	
1

2
C

0

ðþÞ þ C
0

ð�Þ


 �
Uþ

hf L0
ke

T0
ð�Þ � T0

ðþÞ


 �
U

� �
: ð156Þ

The salinity of the effluent ~Cf is defined by

Jd ¼ ~CfU: ð157Þ

Equations (156) and (157) yield

~Cf ¼
1

2
C

0

ðþÞ þ C
0

ð�Þ þ
L0hf
ek

� �
T0
ð�Þ � T0

ðþÞ


 �� �
ð158Þ

~Cf ¼
1

2

Q
02

V

e2
þ 4C2

f

 !1=2

þ
L0hf
ek

� �
1� 2T0

ðþÞ


 �2
4

3
5; ð159Þ

using T(�)
0 = 1 � T(+)

0. Equation (159) provides the
fundamental relationship between the concentration of the
effluent and the salinity of the brine at the entrance of
the shale. According to equation (159), the salinity of the
ultrafiltrate is independent of the thickness of the shale
layer and independent of the Darcy filtration velocity. It
depends on the transport numbers of the ionic species in
the porous material. We check two limiting cases. The
first case corresponds to an uncharged material, QV

0 = 0.
This yields ~Cf = Cf; that is, the salinity of the effluent
is equal to the salinity of the brine at the entrance of
the shale as it should be. The second case is that of
a ‘‘perfect’’ membrane with T(+)

0 = 1 and T(�)
0 = 1 �

T(+)
0 = 0 and QV

0/e � Cf. This yields

lim
Q

0

V�Cf

T0
ðþÞ¼1

~Cf ¼ 0: ð160Þ

For a perfect membrane, the salinity of the effluent is
null. Note that according to the two previous limits, the
salt filtration efficiency depends on the salinity of the
pore water. The less the salinity of the brine is, the more
efficient the salt filtration process. This is in agreement
with the experimental results of Malusis et al. [2003].
From equation (159), we have

~Cf ¼ Cf

Q
02

V

4e2C2
f

þ 1

 !1=2

þ
L0hf
2ekCf

� �
1� 2T0

ðþÞ


 �2
4

3
5: ð161Þ

The shale filtration efficiency e is defined by

e � Cf � ~Cf

Cf

¼ 1�
~Cf

Cf

; ð162Þ

with 0 � e � 1 (e = 1 corresponds to a perfect
membrane). Combining equations (161) and (162) yields

e ¼ 1� 1þ R2
 �1=2�R 1� 2T0

ðþÞ


 �
: ð163Þ

The brine filtration efficiency is determined by the
transport number T(+)

0 (which is a function of R) and the
key dimensionless parameter R defined in section 4.1 by
equation (83), both being evaluated in the thermostatic
state. The model is consistent with experimental data (see
Figure 4).

7.2. Salt Diffusivity Efficiency

[57] Assuming now that diffusion is the main mechanism
of transport, the diffusive flux is related to the gradient of
the brine concentration by an apparent Fick’s law, which
encapsulates electrostatic effects:

Jd ¼ �D0
effrCf ; ð164Þ

where Deff
0 is given by equation (154). If the shale is

uncharged QV = 0 (e.g., at the point of zero charge), we
recover equation (1) of McDuff and Ellis [1979]:

D0
eff ¼

D
f
eff

F
; ð165Þ

D
f
eff ¼

2kbT

e

bðþÞbð�Þ

bðþÞ þ bð�Þ

 !
; ð166Þ

D
f
eff ¼

2D
f

ðþÞD
f

ð�Þ

D
f

ðþÞ þ D
f

ð�Þ
; ð167Þ

where Deff
f is the (electro) diffusivity of the salt in the brine,

D(±)
f = (kbT/e)b(±) (according to the Nernst-Einstein relation-

ship) are the self-diffusion coefficients of the ions in the
brine (e.g., Table 5 for NaCl), and F is the electrical
formation factor arising in the electrical conductivity
problem. In Table 5 we report the diffusivity of NaCl
determined using equation (167) and the values of the self-
diffusion coefficients of the ions (Na+ and Cl�) in the brine.
[58] Equations (166) or (167) represent various forms of

the so-called Nernst-Hartley equation for a 1:1 salt in water.
Equation (154), which is nothing else than a macroscopic
version of the classical Nernst-Hartley equation, is more
general than the models presented by McDuff and Ellis
[1979] and recently by Snyder and Marchand [2001].
Indeed, these models do not account for the membrane
behavior of the shale and the influence of the electrical
diffuse layer in the DC limit of the electrodiffusion equa-
tions. We define an (electro) diffusivity efficiency by

g ¼ D0
eff

lim
Q

0

V!0

D0
eff

 � ¼ D0
eff

D
f
eff=F

: ð168Þ

The diffusivity efficiency represents therefore the ratio
between the effective diffusivity of the salt through the
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porous shale divided by the effective diffusivity that would
exist if the porous material would be uncharged. From
equation (168) the effective diffusivity is

D0
eff ¼

D
f
eff

F
g; ð169Þ

where the diffusivity efficiency is obtained from equations
(154) and (169):

g ¼ F
T0
ðþÞ 1� T0

ðþÞ


 �
tðþÞ 1� tðþÞ
 � s0

s0f
; ð170Þ

g ¼
T0
ðþÞ 1� T0

ðþÞ


 �
tðþÞ 1� tðþÞ
 � s0f

s0f
; ð171Þ

g ¼
bðþÞ þ bð�Þ


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p
þ R

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p
� R

 �
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p �
bðþÞ þ �Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p �
bð�Þ

; ð172Þ

where we have used equations (84), (88), (91), and (154)
and T(±)

0 = s(±)
0 /s0. We have the following limits:

lim
R!0

g ¼ 1 ð173Þ

lim
R�1

g ¼ 1

tðþÞ

1

2R

� �
: ð174Þ

Therefore at high salinity, the (electro) diffusivity
efficiency is equal to one and the system behaves like
an uncharged membrane (by definition of the diffusivity
efficiency). At low salinity, the (electro) diffusivity
efficiency decreases like (1/R). This means that the shale
becomes less and less permeable to the diffusion of the
salt when salinity decreases. A comparison between the
self-diffusivity coefficient of sodium in a shale (D(+)

f /F)
and the electrodiffusivity of sodium in a concentration
field (equations (169) and (172)) is illustrated in Figure 5.
The model predicts that the diffusivity of the salt is
smaller for a smaller salinity in qualitative agreement
with the experimental results reported by Malusis and
Shackelford [2002].

8. Concluding Statements

[59] We have developed a model of ionic transport in
charged granular porous materials like shales. The model
contains a set of new features: (1) The model accounts for
the partition of the counterions between the Stern and the
Gouy-Chapman layers through the use of a partition
coefficient fQ. (2) New expressions are developed for
the electrokinetic properties, Soret and Dufour effects,

Figure 4. Filtration efficiency. Experimental data from
Malusis et al. [2003], geosynthetic clay liner, KCl.
Parameters used are grain density rg = 2.65 g cm�3,
fQ = 0.94, and CEC = 0.48 meq g�1 (measured). Note
that the partition coefficient fQ = 0.94 is consistent with
TLM computations (see discussion in section 2.1). Note
that the small discrepancy between the model and the
experimental data could come from the fact that the
partition coefficient is dependent on the ionic strength of
the pore water. Table 5. Diffusivity of NaCl at 25�Ca

NaCl, Cf, mol L�1

IDb 10�3 10�2 10�1 0.5 1

D(+)
f

(22Na)c 1.33 1.33 1.32 1.29 1.27 1.22
D(�)

f
(36Cl)c 2.03 1.99 1.97 1.96 1.86 1.78

Deff
f

(NaCl)d 1.60 1.60 1.58 1.56 1.50 1.44
aDiffusivity given in units of � 109 m2 s�1.
bInfinite dilution.
cFrom Turq et al. [1969].
dFrom equation (167).
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electrical conductivity, brine filtration efficiency, and
electrodiffusivity in shales. (3) Determination of the
material properties entering the constitutive flux equations
requires only four well-defined textural parameters (the
porosity, the cation exchange capacity, the cementation
exponent, and the length scale L) plus the partition
coefficient fQ, which can be computed from a triple-layer
model of the electrochemical properties of the mineral
surface. This makes the model particularly attractive for
practical applications.

Appendix A: M Matrix Form of the
Constitutive Equations

[60] Another choice of independent fluxes is to consider
the electrical current density, the diffusion flux, the Darcy
velocity, and the heat flux as independent fluxes. This is
actually a very practical choice when regarding what can be
easily measured in the laboratory. The electrical current
density and the diffusion flux are defined by J = e(J(+) �
J(�)) and Jd = (J(+) + J(�))/2, respectively. This choice lets
the dissipation function entering the continuity equation for
entropy invariant:

D ¼ �2Jdrmf � Jry� Urp�HrT=T0; ðA1Þ

where rmf = kbTrln Cf is the gradient of the chemical
potential of the brine. The first term corresponds to the
dissipation associated with diffusion, the second term is
the Joule dissipation associated with electrical conduction,
the third term is a dissipation associated with water flow
and viscous friction between the water and the grain
skeleton at their common interface, and the last term is a
dissipation contribution associated with heat flow through

the porous material. So the generalized phenomenological
equations are

2Jd
J

U

H

2
664

3
775 ¼ �M

rmf
ry
rp

rT=T0

2
664

3
775; ðA2Þ

where M is a 4 � 4 matrix of material properties. The
components obey to the Onsager’s reciprocity Mij = Mji

and Mij
2 � MiiMjj to insure D � 0. The straight

conductivity coefficients Mii are always positive while
the cross coefficients can be either positive or negative.
The generalized continuity equation associated with the M
form of the constitutive equations is

r �

Jd
J

rfU
H

2
664

3
775 ¼ � @

@t

Cf f
QVf
rf f
rCuT

2
664

3
775þ

RðþÞ þ Rð�Þ
 �

=2
e RðþÞ � Rð�Þ
 �

rf F
QS

2
664

3
775: ðA3Þ

The L and M forms are related through

M11 ¼ L11 þ L22 ¼
1

e2
s0ðþÞ þ s0ð�Þ


 �
¼ s0

e2
; ðA4Þ

M22 ¼ e2 L11 þ L22ð Þ ¼ s0; ðA5Þ

M33 ¼ L33 ¼ k=hf ; ðA6Þ

M44 ¼ T2
0L44 ¼ T0l; ðA7Þ

M12 ¼ e L11 � L22ð Þ ¼ 1

e
s0ðþÞ � s0ð�Þ


 �
; ðA8Þ

M13 ¼ L13 þ L23 ¼
k

hf
C

0

ðþÞ þ C
0

ð�Þ


 �
; ðA9Þ

M14 ¼ T0 L14 þ L24ð Þ ¼ T0

e2
s0ðþÞQðþÞ þ s0ð�ÞQð�Þ


 �
; ðA10Þ

M23 ¼ e L13 � L23ð Þ ¼ ek

hf
C

0

ðþÞ � C
0

ð�Þ


 �
; ðA11Þ

M24 ¼ eT0 L14 � L24ð Þ ¼ T0

e
s0ðþÞQðþÞ þ s0ð�ÞQð�Þ


 �
; ðA12Þ

M34 ¼ T0L34 ¼
k

hf
rf T0C

f
u: ðA13Þ

A1. Salt Diffusivity

[61] The salt diffusivity D (different from the effective
salt electrodiffusivity), is related to the coefficient M11 by

D ¼ M11kbT

2Cf

¼ s0kbT
2e2Cf

: ðA14Þ

This is an obvious result when one considers an uncharged
membrane. In this case the electrical conductivity of the

Figure 5. Diffusivity in a shale. Comparison between the
self-diffusivity of sodium (we use F = 30) and the
electrodiffusivity of the salt in a concentration field versus
the key dimensionless number R.
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porous material is given by s0 = sf /F, where F is the
electrical formation factor and the electrical conductivity of
the pore water is given by sf 	 2eCf bf (where bf =
(1/2)(b(+) + b(�)) is the mean mobility of the salt). The
diffusivity of the salt Df = bf kbT/e (which does not include
electrostatic effects) is related to the mean mobility bf
by a Nernst-Einstein relationship Df = bf kbT/e. This
yields to a well-known result D = Df /F.

A2. Salt Electrodiffusivity

[62] We consider now the electrostatic interaction term in
the diffusive equation and we rewrite the combined effect of
diffusion and electrostatic interaction as an equivalent
Fickian process. Neglecting the effect of pressure and
temperature gradients, the diffusion flux and the electrical
current density are given by

Jd ¼ �M11

2
rmf �

M12

2
ry; ðA15Þ

Jd ¼ �DrCf �
1

2e
s0ðþÞ � s0ð�Þ


 �
ry; ðA16Þ

J ¼ �M21rmf �M22ry; ðA17Þ

J ¼ � kbT

e
s0ðþÞ � s0ð�Þ


 �
r lnCf � s0ry; ðA18Þ

respectively. The condition J = 0 yields to an expression for
the so-called membrane potential:

ry ¼ � kbT

e
T0
ðþÞ � T0

ð�Þ


 �
r lnCf : ðA19Þ

Introducing equation (A19) into equation (A16) yields

Jd ¼ �DrCf þ
kbT

2e2s0
s0ðþÞ � s0ð�Þ


 �2
r lnCf : ðA20Þ

We define the electrodiffusivity of the salt through the
porous medium as

Jd ¼ �D0
effrCf : ðA21Þ

After some straightforward algebraic manipulations, it
follows that the electrodiffusivity is given by a generalized
Nernst-Hartley equation

D0
eff ¼ D� kbT

2e2Cf

s0ðþÞ � s0ð�Þ


 �2
s0

ðA22Þ

D0
eff ¼

2kbT

e2Cf

s0ðþÞs
0
ð�Þ

s0ðþÞ þ s0ð�Þ

 !
: ðA23Þ

Usually, the apparent diffusivity measured through a rock
sample in steady state conditions is the electrodiffusivity
and not the true diffusivity.

A3. Streaming Potential Coupling Coefficient

[63] In isothermal conditions and in absence of concen-
tration gradients, the streaming potential coefficient C (in V
Pa�1) is defined by

C � @y
@p

� �
J;H¼0

¼ �M23

s0
ðA24Þ

C ¼ � ek

hf s0
C

0

ðþÞ � C
0

ð�Þ


 �
¼ � kQ

0

V

hf s0
: ðA25Þ

The asymptotic developments of the electrical conductivity
equation yields the following low salinity limit s0 (R� 1) =
QV

0 b(+)/F, where b(+) is the mobility of the counterions and
F is the electrical formation factor. This yields in the low-
salinity limit (R � 1),

CðR � 1Þ ¼ � kF

hf bðþÞ
; ðA26Þ

where the C is independent of the salinity of the pore water.
Taking k = 10�18 m2, F = 30, hf = 10�3 Pa s, b(+)(Na

+,
25�C) = 5.19 � 10�8 m2 s�1 V�1 yields C = �580 mV
MPa�1.

A4. Electro-osmotic Coupling Coefficient

[64] In isothermal condition and in absence of concentra-
tion gradients, the streaming potential coefficient Co (in Pa
V �1) is defined by

Co �
@p

@y

� �
U;H¼0

¼ �M32

M33

¼ �Q
0

V : ðA27Þ

where QV
0 is the excess of charge per unit pore volume of

the porous medium in the reference state. So the measure-
ment of the electro-osmotic pressure provides a direct way
to evaluate QV

0 . Taking QV
0 = 2 � 106 C m�3 yields

an electro-osmotic coupling coefficient equal to 2 MPa V�1.
So the electro-osmotic coupling is extremely efficient in
shales.

A5. Thermo-osmotic Permeability

[65] The thermo-osmotic permeability kT (in m2 s�1

K�1) is defined by U = �kTrT with all the other
thermodynamic forces being negligible. Consequently,
using the expression of the matrix M, we have kT =
M34/T0 = (krf /hf )Cu

f. Taking k = 10�18 m2, rf = 1000 kg
m�3, hf = 10�3 Pa s, and a specific heat per unit mass of
water Cu

f = 4200 J kg�1 �C�1, yields kT = 10�9 m2 s�1

K�1. This can be compared with the value kT = 2.25 �
10�10 m2 s�1 K�1 measured by Shrivastava and Avasthi
[1975] on a kaolinite with a porosity of 0.5 at the average
temperature T = 38.4�C.
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