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S U M M A R Y
Magma properties are fundamental to explain the volcanic eruption style as well as the genera-
tion and propagation of seismic waves. This study focusses on magma properties and rheology
and their impact on low-frequency volcanic earthquakes. We investigate the effects of anelas-
ticity and topography on the amplitudes and spectra of synthetic low-frequency earthquakes.
Using a 2-D finite-difference scheme, we model the propagation of seismic energy initiated
in a fluid-filled conduit embedded in a homogeneous viscoelastic medium with topography.
We model intrinsic attenuation by linear viscoelastic theory and we show that volcanic media
can be approximated by a standard linear solid (SLS) for seismic frequencies above 2 Hz.
Results demonstrate that attenuation modifies both amplitudes and dispersive characteristics
of low-frequency earthquakes. Low frequency volcanic earthquakes are dispersive by nature;
however, if attenuation is introduced, their dispersion characteristics will be altered. The topog-
raphy modifies the amplitudes, depending on the position of the seismographs at the surface.
This study shows that we need to take into account attenuation and topography to interpret
correctly observed low-frequency volcanic earthquakes. It also suggests that the rheological
properties of magmas may be constrained by the analysis of low-frequency seismograms.

Key words: dispersion, finite difference, low-frequency volcanic earthquakes, topography,
viscoelasticity, wave equation.

1 I N T RO D U C T I O N

Magma properties are fundamental to the explanation of the volcanic eruption style as well as the generation and propagation of seismic
waves. This study focuses on magma properties and rheology and their impact on low-frequency volcanic earthquakes. The aim of this study
is to constrain magma properties and rheology by investigating their impact on low-frequency volcanic earthquakes.

The eruptive behaviour is dependent on many parameters, amongst which the rheology of the magma plays an important role (Dingwell
& Webb 1989; Barmin et al. 2002). In particular, the transition in the properties of the melt phase from a liquid-like to a solid-like response in
a cooling magma (glass transition) is one of the most fundamental phenomena that influences the eruptive style of volcanic rocks (Dingwell
& Webb 1989; Stevenson et al. 1995). Similar to many volcanoes around the world, Soufrière Hills volcano, Montserrat, presents a variety of
eruption styles ranging from dome grows and collapses (Young et al. 1998) to Vulcanian explosions.

The observation and modelling of seismic waves is one of several different ways to study volcanoes, aiming at a better understanding of
volcanic processes. Long-period earthquakes and tremor are important waveforms in volcano seismology (Chouet 1996a), as they have been
observed at many active volcanoes: e.g., Arenal, Costa Rica (Hagerty et al. 2000); Erebus, Antartica (Rowe et al. 2000); Galeras, Colombia
(Gil Cruz & Chouet 1997; Gómez & Torres 1997); Karymsky, Russia (Johnson & Lees 2000); Mount St Helens, USA (Fehler & Chouet
1982); Lascar, Chile (Hellweg 2000); Redoubt, Alaska (Power et al. 1994; Chouet et al. 1994); Soufrière Hills, Montserrat (Aspinall et al.
1998; Miller et al. 1998; Neuberg et al. 1998; White et al. 1998). At Montserrat, a continuum exists between long-period and hybrid events,
the latter having an additional high-frequency content (Neuberg et al. 2000). Throughout the paper, we refer to both types as low-frequency
earthquakes (Jousset et al. 2003). Low-frequency earthquakes, whose frequency content ranges from 0.2 to 5 Hz, last several tens of seconds
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Figure 1. Two examples of long-period earthquakes from Montserrat volcano recorded on the 1999 July 7 at (a) 22:28 h and (b) 23:15 h UT at the three-
component station MBBY (Güralp 40-T broad-band seismometer located 16◦41.′7N, 62◦12.′15E). Horizontal components were rotated in their radial and
tangential components, with respect to the dome. Spectra and spectrograms are displayed for the radial and vertical components only, for a better comparison
with our 2-D synthetic seismograms. We computed the spectrograms using a 0.8-s time window. Note that these events are very similar, suggesting that a
non-destructive source process produces them.

(e.g. Fig. 1) and often occur in swarms of multiplets. Their characteristics are very similar both in time and frequency domain, suggesting
that the processes generating these events are the same.

In recent years, good progress has been made in the understanding of the generation of the associated wavefield. Most models rely on the
excitation of normal modes in fluid–solid systems (Biot 1952; Kubotera 1974; Chouet 1985, 1986; Ferrazzini & Aki 1987; Chouet 1988, 1992).
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778 P. Jousset, J. Neuberg and A. Jolly

Neuberg et al. (1998) and Neuberg & O’Gorman (2002) propose a model where a source of seismic waves is triggered inside the volcanic
conduit filled with a gas–melt mixture with depth-dependent properties. The resulting synthetic wavefield matches well the characteristics of
observed low-frequency events at Montserrat. The seismic energy that forms a resonance by propagating as interface waves up and down the
conduit boundaries, is released at the ends of the conduit at regular time intervals, interacts with the free-surface and travels as surface waves
along the topography to the seismic stations (Jousset et al. 2003). Using realistic magma properties (Sturton & Neuberg 2003), this model
explains also the frequency properties of those earthquakes in swarms: their time dependence is observed as gliding spectral lines (Jousset
et al. 2003).

An interesting feature of low-frequency earthquakes is that they display dispersion characteristics including both normal and inverse
dispersion (Chouet 1986; Ferrazzini & Aki 1987), which has been successfully modelled in previous studies (Neuberg 2000; Jousset et al.
2003). However, wave dispersion may also be a result of wave propagation in anelastic media (Carcione et al. 1988). The volcanic conduit
is filled with a hot, viscous, multiphase medium and the volcano edifice is made of heterogeneous materials. Consequently, both amplitudes
and dispersion characteristics of seismic waves are affected by anelastic volcanic media (Kumagai & Chouet 1999, 2000a,b; Kumagai et al.
2002a). One objective of this study is to determine the impact that internal friction of volcanic media (both in the conduit as intrinsic dissipation
and in the solid as anelastic attenuation) has on properties of low-frequency earthquakes in time and frequency. Scattering of seismic waves
has also been shown to be a way to attenuate seismic energy (Hellweg 2003; Wegler 2003). However, intrinsic attenuation contributes
significantly higher to attenuation compared with scattering (Gudmundsson et al. 2004). Therefore, we do not address wave scattering in this
study.

Low-frequency earthquakes on Montserrat are observed as surface waves, which display complex elliptical particle motions at the free
surface (Miller et al. 1998). Ohminato & Chouet (1997) and Neuberg & Pointer (2000) pointed out the importance of the topography on
particle motions and wave forms. Moreover, topography affects the seismic amplitudes and must be taken into account if the effects of other
parameters on amplitudes, like attenuation, are to be investigated. Therefore, we present in this work a formulation for the computation of the
wave propagation allowing for topography.

Numerical models of low-frequency earthquakes to date (Chouet 1986; Neuberg 2000; Jousset et al. 2003) do not commit themselves
on the actual trigger mechanism of those earthquakes and its source spectrum. When using a source with merely low-frequency content up
to 10 Hz (Neuberg 2000), the resulting waveforms look similar to observed signals and the spectra match with the observed ones; however,
when using a source with a broad-band spectrum, which includes frequencies up to 20 Hz, the frequency spectrum reveals a broader content
than the observed spectrum of low-frequency earthquakes at Montserrat. We wonder whether high frequencies are produced at the source and
damped, or whether they are not produced at the source at all. This question is important as far as the source process is concerned, however
this study does not fully address the source mechanism of low-frequency earthquakes.

In summary, this study has four main objectives:

(i) to investigate the effect of anelasticity on characteristics of the frequency content and dispersion of low-frequency earthquakes;
(ii) to study the impact of topography on waveform and amplitude of low-frequency earthquakes;
(iii) to suggest a strategy to estimate intrinsic dissipation in the volcanic fluid and anelastic attenuation in the surrounding solid using

low-frequency earthquakes;
(iv) to provide constraints on the rheology of volcanic media on the basis of viscoelastic wave propagation.

First, we discuss a rheological model for volcanic media, then we describe the viscoelastic formulation of the seismic wave propagation. Next,
we apply this technique to the modelling of the wave field generated by the resonance in a closed system in a medium limited by a free-surface
topography.

2 AT T E N UAT I O N A N D D I S P E R S I O N O F S E I S M I C WAV E S I N V O L C A N I C M E D I A

As seismic waves propagate in Earth materials, their amplitudes attenuate and their phase spectra change (Liu et al. 1976; Carcione et al.
1988), as a result of various processes, summarized as internal friction (Aki & Richards 2002). The waves within volcanic media are affected
both in terms of amplitude attenuation and frequency dispersion. The glass transition is a major rheological change in the behaviour of silicate
melts: change of viscosity, wave velocities, density, etc... (Dingwell 1995). Which rheological model should we choose for the range of seismic
frequencies in volcanic media? Are there any S waves in the magma as a partially crystallized body, or when do they appear (Aki et al. 1978)?
What is the effect of the anelastic rheology on the wave dispersion of low-frequency earthquakes?

The equations describing wave propagation in viscoelastic media can be derived in terms of the creep compliance or the stress relaxation
function (Ben-Menahem & Singh 2000). In the following, we choose the stress relaxation function to describe completely the response of the
medium (Carcione et al. 1988). Before we derive the velocity–stress formulation of the viscoelastic wave equation in Section 3, we have to
choose a viscoelastic model for volcanic media. This choice will determine how the wave will attenuate and disperse. We justify in this section
why the standard linear solid (SLS) (Zener 1948) can be applied as a viscoelastic model to volcanic media for most seismic frequencies. We
first summarize basic concepts of rheology and the theory of viscoelasticity. We then recall some rheological models for various applications
in the Earth and then we focus on our model for volcanic media.
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Modelling low-frequency volcanic earthquakes 779

2.1 Basics concepts of rheology and linear viscoelasticity

The theory of linear viscoelasticity is based on Boltzmann’s superposition principle and is only valid for small changes in the stress and strain
(Barnes et al. 1989). The general differential equation for 1-D linear viscoelasticity (Oldroyd 1964) is:(

1 + α1
∂

∂t
+ α2

∂2

∂t2
+ · · · + αn

∂n

∂tn

)
σ (t) =

(
β0 + β1

∂

∂t
+ β2

∂2

∂t2
+ · · · + βm

∂m

∂tm

)
ε(t), (1)

where σ and ε are the stress and strain, respectively, α i and β j are parameters describing the material, i and j ranging from 0 to n and m,
respectively, with n = m or n = m − 1, and ∂n

∂tn designs the nth partial derivative with respect to time t.
The range of behaviours of materials on Earth is very wide and one defines two fundamental end-member models from this equation

(Barnes et al. 1989). If β 0 is the only non-zero parameter, we have Hooke’s law. The mechanical representation of this model is a spring of
rigidity β 0 = µ. If β 1 is the only non-zero parameter, we have Newton’s viscous law. The mechanical representation of this model is a dashpot
of viscosity β 1 = η. A viscoelastic body is defined by a superposition of the above, i.e., the stress depends on the strain (elastic behaviour)
as well as the rate of strain (viscous behaviour). By employing more parameters α i and/or β i, there is a wide range of so-called viscoelastic
models. Which property dominates and the values of the parameters depend on the duration of application of the stress. Consequently, a given
material can behave like a solid or like a viscous liquid, depending on the timescale of the deformation process. This is usually quantified using
the dimensionless Deborah number (Reiner 1945) De = τ/T , where T is the characteristic time of the deformation process being observed
and τ is the characteristic time of the material. τ is infinite for the Hookean elastic solid and is zero for a Newtonian viscous liquid. High
Deborah numbers correspond to solid-like behaviour and low Deborah numbers to liquid-like behaviour.

Two important viscoelastic bodies are the Kelvin–Voigt model (a spring and a dashpot in parallel) and the Maxwell model (a spring
and a dashpot in series) (Barnes et al. 1989). The differential equation of the Maxwell model is obtained by choosing α1 and β 1 as the only
non-zero material parameters in eq. (1), so that

σ + τM
∂σ

∂t
= η

∂ε

∂t
, (2)

where τ M = η/µ is called the relaxation time, η is the viscosity and µ is the rigidity. More complex models have been defined, which have
mechanical equivalents using springs and dashpots in series and/or in parallel. Roscoe (1950) showed that all models, however complex they
are, can be reduced to two fundamental forms. These are the generalized Kelvin model and the generalized Maxwell model (Barnes et al.
1989). As an example, the generalized Maxwell model may have a finite number of Maxwell elements in parallel, each with a different
relaxation time.

2.2 The quality factor Q and lag between stress and strain

Attenuation of seismic waves is often quantified in seismology by the quality factor Q, or equivalently by the internal friction Q−1, which
estimates quantitatively the transformation of mechanical energy into heat, as waves propagate in the anelastic medium. The Fourier transform
of the linear viscoelastic differential equation allows us to obtain a definition of the attenuation (O’Connell & Budiansky 1978) and to link Q
with the lag between stress and strain and with physical properties of the material, through the relaxation functions. The Fourier transform of
eq. (1) yields (Ben-Menahem & Singh 2000)

σ̃ (ω) = Y ∗(iω)ε̃(ω) = β0 + β1(iω) + β2(iω)2 + · · · + βm(iω)m

1 + α1(iω) + α2(iω)2 + · · · + αn(iω)n
ε̃(ω), (3)

where Y ∗(iω) is the complex relaxation modulus, σ̃ (ω) = ∫ +∞
−∞ σ (t)e−iωt dt, ε̃(ω) = ∫ +∞

−∞ ε(t)e−iωt dt, ω = 2π f, f is the frequency, t is the
time and i2 = −1. Let the input strain ε be harmonic, i.e. ε = ε0eiωt , and let the stress response be σ = σ 0ei(ωt+δ), where δ is the phase lag
between stress and strain. Inserting the Fourier transform of these expressions in eq. (3), we obtain

σ ∗

ε0
= Y ∗(iω) = Ỹ1(ω) + i Ỹ2(ω), (4)

where σ ∗ = σ0eiδ, Ỹ1(ω) = Re[Y ∗(iω)], Ỹ2(ω) = Im[Y ∗(iω)], with Re(Z) and Im(Z) the real and imaginary part of the complex number Z,
respectively. We have

σ0

ε0
= |Y ∗(iω)|, tan δ = Ỹ2(ω)

Ỹ1(ω)
. (5)

As δ represents the lag of the stress behind the strain, a measure of the attenuation is given by the quality factor Q defined as a function of
frequency by O’Connell & Budiansky (1978),

Q(ω) = 1

tan δ
= Ỹ1(ω)

Ỹ2(ω)
. (6)

Eq. (6) defines Q as the number of wavelengths a pulse may propagate before its amplitude drops by a factor of e−π (White 1992) and defines
it as a property of the material only (Madja et al. 1985), because the real and imaginary parts of the complex relaxation modulus are depending
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780 P. Jousset, J. Neuberg and A. Jolly

on the material properties only. For a phase lag δ = 0, the medium behaves elastically; for δ = π/2, it is critically damped. Because attenuation
and dispersion are related through the Kramers–Krönig relation (Futterman 1962), the choice of a physically realistic relation of Q versus
frequency yields an equally physical dispersion relation (Robertsson et al. 1994; Blanch et al. 1995).

2.3 Viscoelastic models of volcanic media

Volcanic media comprise solidified material of the volcanic edifice as well as a viscous magma mixture of crystals, melt and gas in the
plumbing system.

Besides theoretical studies (Caputo 1967; Madja et al. 1985; Caputo 1986; Dingwell 1995), there are two groups of approaches to obtain
the rheology of materials.

(i) Methods using the seismic wave attenuation and dispersion in the Earth (Tonn 1989), like controlled seismic experiments (Ricker 1952;
McDonal et al. 1958), analysis of seismic waves generated by earthquakes, i.e. body waves (Burdick 1985), surface waves (Chan & Mitchell
1985; Carcione 1992), or free modes of the Earth (Dahlen & Tromp 1998). In volcanic areas, tomography studies aim at the internal structure
of the volcanoes (Wittlinger et al. 1983; Scherbaum 1995; Zollo et al. 2002), but surprisingly, little attempt has been made to obtain rheological
properties of magmas. In recent studies, Kumagai & Chouet (1999, 2000a,b); Kumagai et al. (2002a) link the analysis of volcanic earthquakes
to magma composition; Taylor & Singh (2002) assess theoretically the effect of microstructure, geometry and orientation of melt and crystals
on the seismic velocities and anisotropy; Almendros et al. (2002) identify elements of the plumbing system beneath Kilauea volcano from
the source locations of very long period signals.

(ii) Laboratory experimental studies like ultrasonic pulse propagation in samples (Wuenschel 1965; Strick 1967; Sato & Maghnani 1985;
Sato et al. 1989; Chen 1996), or observation of forced torsional oscillations of rock samples (Kampfmann & Berckhemer 1985; Jackson &
Paterson 1987; Jackson et al. 1992). The latter technique gives values of the shear viscosity and the shear modulus and the internal friction.
The change in strain rate, confining pressure and temperature, allows us to get viscoelastic parameters as a function of frequency, pressure and
temperature. Extensive measurements have been made on rock or melt samples, using both ultrasonic measurements (Vanorio et al. 2002) and
forced torsional oscillations with or without bubbles and crystals (Bagdassarov & Dingwell 1992, 1993b; Bagdassarov et al. 1994; Bagdassarov
& Dorfman 1998). A bubble- and crystal-free melt behaves like a Maxwell body (Dingwell 1995). The most dramatic change in rheology
happens at the glass transition, where the non-Newtonian part of the rheology is the critical one. In bubbly liquids, the internal friction in the
high-frequency/high-temperature range is unaffected by the presence of bubbles and depends on the bubble content in the high-temperature
range (Bagdassarov & Dingwell 1992, 1993b). The viscoelastic model that describes foamed magma best is the Burgers body, the analogous
mechanical model of which is shown in Fig. 2. In three-phase magmas (crystals, melt and gas), two viscoelastic behaviours can be distinguished
(Bagdassarov et al. 1994), depending on a critical crystal concentration. In crystallizing melts without vesicles, the melt rheology is dominant
below a critical crystal concentration of 45 per cent. In the presence of vesicles, this critical concentration can be higher, because bubbles can
significantly decrease viscosity in the material. The mechanical interaction between crystals above this critical concentration of crystals causes
a weak elastic behaviour of the magma. The experimental viscoelastic behaviour of materials is often expressed using the internal friction or
the inverse of the mechanical quality factor as a function of ωτ , where ω = 2π f angular frequency in (rad s−1) and τ is the relaxation time.
Bagdassarov et al. (1994) showed that the behaviour of volcanic products is different when ωτ < 1 or when ωτ > 1.

Now, the main question is how these viscoelastic models are used to describe the behaviour of volcanic media at seismic frequencies. At
Montserrat, installed seismometers are able to record seismic waves within a frequency range 0.02 to 25 Hz, corresponding to relaxation times
τ = 1/(2π f ) ranging 0.0064 s to approximately 8 s. S waves start to appear in the crystallizing magma from 45 per cent of crystals, because the
shear modulus becomes non-zero (Bagdassarov et al. 1994). Accordingly, those models where crystals are present behave more elastically than
viscously. Bagdassarov et al. (1994) showed that when ωτ > 1, the melt itself possesses more elasticity than the ideal viscoelastic Maxwell

Standard Linear SolidBurgers body

µ2

µ1 η1

η2

µ2

µ1 η1

Figure 2. Mechanical models for (a) a Burgers body and (b) a standard linear solid (SLS). At seismic frequencies, the viscosity controlling the long timescale
vanishes and the two models are equivalent.
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liquid. A foamed rhyolitic melt behaves like a Burgers body (Bagdassarov & Dingwell 1993a), which is characterized by two viscosities
(Fig. 2), one controlling short-timescale processes and the other controlling the long-timescale behaviour (Ranalli 1995). For seismic waves
(short-timescale processes), the viscosity controlling the long-timescale process becomes infinite, because there is no time to reach a strain
regime, where the melt starts to relax (Dingwell 1995). This is equivalent to a frozen dashpot. Consequently, the viscoelastic behaviour of a
foamed rhyolite has the characteristics of an SLS provided the frequency considered is larger than 2 Hz. We assume that both magma and
surrounding rocks behave like it (Fig. 2).

2.4 The standard linear solid

The mechanical analogue of the SLS (Zener 1948) consists of spring of rigidity µ1 and a dashpot of viscosity η1 in parallel, in series with a
spring of rigidity µ2 (Fig. 2). In 1-D, it is governed by

σ + τσ

∂σ

∂t
= MR

(
ε + τε

∂ε

∂t

)
, (7)

where the relaxation modulus of the medium is MR = µ1µ2/(µ1 + µ2), the stress relaxation time under constant strain is τ σ = η1/(µ1 +
µ2) and the strain relaxation time under constant stress is τ ε = η1/µ1 > τ σ . The solution of eq. (7) for ε = ε0 H (t) is given by σ (0) = µ2ε0,
σ (∞) = MRε0 and σ (t) = ε0G 1(t), where the stress relaxation function G1(t) is given (Liu et al. 1976; Blanch et al. 1995) by

G1(t) = MR

[
1 −

(
1 − τε

τσ

)
e−t/τσ

]
H (t), (8)

where H(t) is the Heavyside step function. The response to a harmonic stress cycle is obtained by setting σ = Seiωt and ε = Eeiωt in eq. (7)
to obtain
S

E
= MR

1 + iωτε

1 + iωτσ

= µ2
µ1 + iωη1

(µ1 + µ2) + iωη1
= K eiδ, (9)

where E, S and K are constants, and

Q(ω) = 1

tan δ
= 1 + ω2τετσ

ω(τε − τσ )
. (10)

The phase velocity (for an SLS with one relaxation mechanism) is given by (Ben-Menahem & Singh 2000)

c(ω)

c(0)
=

√√√√ 2
[
1 + ω2τ 2

0 (τε/τσ )
]

√[(
1 + ω2τ 2

0

)2 + 4ω2τ 2
0 Q−2

0

] + 1 + ω2τ 2
0

, (11)

in which c(0) = √
MR/ρ is the elastic velocity (ρ being the density) and where Q−1

0 = (τε − τσ )/(2τ0), τ0 = √
τετσ ..

One relaxation mechanism is usually not sufficient to reproduce the rheological behaviour of materials and consequently the introduction
of several mechanisms in series or in parallel has been proposed (Barnes et al. 1989). For an array of L SLS, the stress relaxation function

GL (t) = MR

[
1 −

L∑
l=1

(
1 − τεl

τσ l

)
e−t/τσ l

]
H (t) (12)

makes it possible to get a macroscopic model of anelasticity (Ben-Menahem & Singh 2000). For example, a way to model a frequency-
independent attenuation is to associate several SLS in parallel (Blanch et al. 1995). For an array of SLS with L relaxation mechanisms,
eqs (12) and (6) yield (Blanch et al. 1995),

Q(ω) =
1 − L + ∑L

l=1
1+ω2τεl τσ l

1+ω2τ2
σ l∑L

l=1
ω(τεl −τσ l )
1+ω2τ2

σ l

. (13)

From here, it is possible to get any Q dependence with frequency, by adjusting the stress relaxation times distribution of the L relaxation
mechanisms, as needed. Attenuation is generally frequency-dependent (Aki 1980; Bourbie et al. 1987; Patane et al. 1994) and varies with
depth. McDonal et al. (1958) argue that attenuation is constant within the seismic frequency range (1–200 Hz) and many studies use the
constant Q approximation, e.g. in tomography (Wittlinger et al. 1983; Scherbaum 1995) and in exploration seismology (Robertsson et al.
1994; Blanch et al. 1995). For a sufficiently well chosen repartition of stress relaxation times and a desired frequency band, eq. (13) gives a
constant Q (Blanch et al. 1995). We use this approach in our modelling. Note that, in the case of a homogeneous and isotropic medium, we
can define two independent quality factors QP and QS from eq. (13), using two series of SLS, associated with the attenuation of P waves and S
waves, respectively. Assuming a constant Q between two frequencies f 1 = ω1/2π and f 2 = ω2/2π and defining s 1 = 1/ω1 and s 2 = 1/ω2,
the phase velocity c(ω) is given by (Ben-Menahem & Singh 2000)

c(∞)

c(ω)
= 1 + 1

2π Q
ln

ω2 + s2
2

ω2 + s2
1

, (14)

where

c(∞) = c(0)

(
1 + 1

π Q
ln

s2

s1

)
, (15)

where c(0) is again the elastic velocity.
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782 P. Jousset, J. Neuberg and A. Jolly

Finally, we give the order of magnitude of the quality factor given by SLS models for properties corresponding to various magmas.
Values of Q in volcanic areas are lower than elsewhere on Earth, with values ranging from 20 to 200 (Zucca & Evans 1992). Experimental
studies on pyroclastic and lava samples (Vanorio et al. 2002) give values of QP ranging from 5 to 80 and 10 to 115, respectively. In basaltic
melt samples, QP = 2–15 (Sato & Maghnani 1985). For one SLS mechanism (Fig. 2) and using the dtions of the stress relaxation time under
constant strain τ σ = η1/(µ1 + µ2) and the strain relaxation time under constant stress τ ε = η1/µ1 > τ σ , Q is related to viscosity η1 and
rigidities µ1 and µ2 of the media via the relaxation times (eq. 10),

Q(ω) = µ1

µ2
(µ1 + µ2)

1

η1ω
+ η1ω

µ1
. (16)

Depending on the frequency and the rigidity values, the quality factor can have any value (Q < 5 to Q � 10 000), for viscosity values of
rhyolitic crystallizing magmas ranging from 6.4 × 104 to 1.7 × 107 Pa s, respectively (Barmin et al. 2002), and also for higher viscosities
like those measured at Montserrat, which range between 109 and 1014 Pa s (Sparks et al. 2000). This shows that the SLS is able to quantify
intrinsic attenuation of seismic waves for volcanic media via the quality factor Q.

3 V I S C O E L A S T I C F I N I T E - D I F F E R E N C E WAV E P RO PA G AT I O N
F O R M U L AT I O N W I T H T O P O G R A P H Y

Several modelling methods for wave propagation, which take attenuating and dispersion effects into account, have been proposed (Carcione
1993; Carcione et al. 2002). We use a 2-D finite-difference velocity–stress time domain formulation (Virieux 1986; Levander 1988) of
the viscoelastic wave equations (Robertsson et al. 1994), in a heterogeneous medium with a non-flat free-surface topography (Hestholm &
Ruud 2000). This formulation comprises (i) the P-SV equation of motion; (ii) constitutive laws; (iii) equations for memory functions. We
describe first how topography is modelled, then we derive the velocity–stress formulation of the wave equations for an isotropic homogeneous
viscoelastic medium, modelled by a series of SLS, and the formulation of the specific boundary condition for the free-surface. Finally, we
detail the discretization and implementation of this series of equations.

3.1 Topography

The incorporation of surface topography is achieved by using a linear mapping transformation (Fig. 3) of the rectangular computational grid
onto a curved grid (Tessmer et al. 1992). The 2-D mapping function can be written as

x(ζ, η) = ζ,

z(ζ, η) = η

ηmax
z0(ζ ),

(17)

where z0(ζ ) is the topography function, and the rectangular (ζ , η)-system is bounded by ζ = 0, ζ = ζ max, η = 0 and η = ηmax. For a curved
profile in the (x, z) system, the extent of stretching is proportional to the distance from the bottom edge of the grid. For any F(x, z) function
representing the distribution of any physical property or field in the medium, the equations for the linear mapping transformation are

∂ F

∂x
= ∂ F

∂ζ
+ A(ζ, η)

∂ F

∂η
,

∂ F

∂z
= B(ζ )

∂ F

∂η
,

with

A(ζ, η) = − η

z0(ζ )

∂z0(ζ )

∂ζ
,

B(ζ ) = ηmax

z0(ζ )
,

(18)

where ζ , η are the coordinates in the computational grid (Hestholm & Ruud 2000; Ruud & Hestholm 2001).

3.2 P-SV wave equation of motion

The equations of motion for the P-SV wave equation are

ρ
∂vx

∂t
= ∂σxx

∂x
+ ∂σxz

∂z
,

ρ
∂vz

∂t
= ∂σxz

∂x
+ ∂σzz

∂z
, (19)

where ρ is the density, vx and v z are the horizontal and vertical components of the velocity, respectively, and σ xx, σ zz and σ xz are the two
normal and one tangential components of the stress field, respectively. Replacing the linear mapping eq. (18) into the equations of motions
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Real
world

Computational grid

x(ζ,η)=ζ
z(ζ,η)=z (ζ) η/η

0 max

maxη

η=0
ζ=0 ζ=ζ

max

z

z=z0

x

Figure 3. Curved grid in the (x, z) system and rectangular grid in the (ζ , η) system.

(19) yields

ρ
∂vx

∂t
= ∂σxx

∂ζ
+ A(ζ, η)

∂σxx

∂η
+ B(ζ )

∂σxz

∂η
,

ρ
∂vz

∂t
= ∂σxz

∂ζ
+ A(ζ, η)

∂σxz

∂η
+ B(ζ )

∂σzz

∂η
. (20)

3.3 Tensor formulation of the linear viscoelastic constitutive relationship

We proceed now to the derivation of the constitutive relationship, using the SLS as a rheological model. The tensor formulation of linear
viscoelasticity (eq. 1) is embodied in Boltzmann’s superposition principle where the stress tensor (noted by its component σ ij) depends on the
history of the strain tensor (noted by its component ε kl) and can be described as (Christensen 2004)

σi j = Gi jkl ∗ ∂εkl

∂t
= ∂Gi jkl

∂t
∗ εkl , (21)

where * denotes time convolution. Each strain history ∂εkl/∂t is transformed into the current stress value, σ ij(t). Gijkl denotes the component
of a fourth-order tensor G of stress relaxation functions, which is analogous to the elasticity tensor.

For an isotropic and homogeneous material, G collapses into two independent functions  and 2M . The constitutive relationship simplifies
to (Christensen 2004)

σi j = ∂

∂t
∗ δi jεkk + 2

∂ M

∂t
∗ εi j , (22)

where δ ij is the Kronecker delta and Einstein’s summation convention is used.  is called the longitudinal relaxation function and M is called
the shear relaxation function (Madja et al. 1985). Using the time derivative of the strain tensor,
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∂εi j

∂t
= 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
, (23)

where v i and v j are the velocity components in the xi and xj directions respectively and, using � =  + 2M , Robertsson et al. (1994) and
Hestholm (1999) obtained from the constitutive relationship (eq. 22)

∂σi i

∂t
=

(
∂�

∂t
− 2

∂ M

∂t

)
∗ ∂vk

∂xk
+ 2

∂ M

∂t
∗ ∂vi

∂xi
,

∂σi j

∂t
= ∂ M

∂t
∗

(
∂vi

∂x j
+ ∂v j

∂xi

)
, i �= j,

(24)

in which we used the property that the time derivative of the convolution between two functions g and f is ∂( f ∗ g)/∂t = (∂ f /∂t) ∗ g = f ∗
(∂g/∂t). In the case of a series of L SLS as a rheological model (eq. 12), � and M are given by

� = γ

[
1 −

L∑
l=1

(
1 − τ P

εl

τσ l

)
e−t/τσ l

]
H (t),

M = µ

[
1 −

L∑
l=1

(
1 − τ S

εl

τσ l

)
e−t/τσ l

]
H (t),

(25)

where γ = λ + 2µ, λ and µ are the elastic Lamé parameters and L is the number of SLS connected in parallel. τ σ l and τ εl are the stress and
strain relaxation times for the lth mechanism (Pipkin 1986). The two relaxation functions � and M depend on the strain relaxation time τ P

εl

for P waves and on the strain relaxation time τ S
εl for S waves, respectively.

We perform the time differentiation of � and M (eq. 25) and introduce them in the constitutive relationships (eq. 24) to obtain

∂σxx

∂t
= γ SP

L

(
∂vx

∂x
+ ∂vz

∂z

)
− 2µSS

L

∂vz

∂z
+ SLxx ,

∂σzz

∂t
= γ SP

L

(
∂vx

∂x
+ ∂vz

∂z

)
− 2µSS

L

∂vx

∂x
+ SLzz,

∂σxz

∂t
= µSS

L

(
∂vx

∂z
+ ∂vz

∂x

)
+ SLxz,

(26)

where

SP
L =

(
1 −

L∑
l=1

(
1 − τ P

εl

τσ l

))
,

SS
L =

(
1 −

L∑
l=1

(
1 − τ S

εl

τσ l

))
,

SLi j = ∑L
l=1 ri jl , with i, j <=> x, z,

(27)

and where rxx l, rzz l and rxz l are the memory variables that are defined in Section 3.4. We introduce now the linear mapping eqs (18) of the
topography, yielding

∂σxx

∂t
= γ SP

L

[
∂vx

∂ζ
+ A(ζ, η)

∂vx

∂η
+ B(ζ )

∂vz

∂η

]
− 2µSS

L B(ζ )
∂vz

∂η
+ SLxx ,

∂σzz

∂t
= γ SP

L

[
∂vx

∂ζ
+ A(ζ, η)

∂vx

∂η
+ B(ζ )

∂vz

∂η

]
− 2µSS

L

[
∂vx

∂ζ
+ A(ζ, η)

∂vx

∂η

]
+ SLzz,

∂σxz

∂t
= µSS

L

[
B(ζ )

∂vx

∂η
+ ∂vz

∂ζ
+ A(ζ, η)

∂vz

∂η

]
+ SLxz .

(28)

C© 2004 RAS, GJI, 159, 776–802

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/159/2/776/2067222 by guest on 25 O

ctober 2022



Modelling low-frequency volcanic earthquakes 785

3.4 Relaxation equations

In eq. (26), we introduced the memory variables, in which we perform now a new time derivative (Robertsson et al. 1994; Hestholm & Ruud
2000) to obtain

∂rxx,l

∂t
= − 1

τσ l

{
rxx,l +

[
γ

(
τ P
εl

τσ l
− 1

)
− 2µ

(
τ S
εl

τσ l
− 1

)](
∂vx

∂x
+ ∂vz

∂z

)
+ 2µ

(
τ S
εl

τσ l
− 1

)
∂vx

∂x

}
,

∂rzz,l

∂t
= − 1

τσ l

{
rzz,l +

[
γ

(
τ P
εl

τσ l
− 1

)
− 2µ

(
τ S
εl

τσ l
− 1

)](
∂vx

∂x
+ ∂vz

∂z

)
+ 2µ

(
τ S
εl

τσ l
− 1

)
∂vz

∂z

}
,

∂rxz,l

∂t
= − 1

τσ l

[
rxz,l +µ

(
τ S
εl

τσ l
− 1

)(
∂vx

∂z
+ ∂vz

∂x

)]
.

(29)

Defining

τ P
l = − 1

τσ l

(
τ P
εl

τσ l
− 1

)
,

τ S
l = − 1

τσ l

(
τ S
εl

τσ l
− 1

)
,

(30)

the relaxation eq. (29) can then be written as

∂rxx,l

∂t
= −rxx,l

τσ l
+ γ τ P

l

(
∂vx

∂x
+ ∂vz

∂z

)
− 2µτ S

l

∂vz

∂z
,

∂rzz,l

∂t
= −rzz,l

τσ l
+ γ τ P

l

(
∂vx

∂x
+ ∂vz

∂z

)
− 2µτ S

l

∂vx

∂x
,

∂rxz,l

∂t
= −rxz,l

τσ l
+ µτ S

l

(
∂vx

∂z
+ ∂vz

∂x

)
.

(31)

We introduce now the linear mapping eq. (18) of the topography. This leads us to the following equations:

∂rxx,l

∂t
= −rxx,l

τσ l
+ γ τ P

l

[
∂vx

∂ζ
+ A(ζ, η)

∂vx

∂η
+ B(ζ )

∂vz

∂η

]
− 2µτ S

l

(
B(ζ )

∂vz

∂η

)
,

∂rzz,l

∂t
= −rzz,l

τσ l
+ γ τ P

l

[
∂vx

∂ζ
+ A(ζ, η)

∂vx

∂η
+ B(ζ )

∂vz

∂η

]
− 2µτ S

l

[
∂vx

∂ζ
+ A(ζ, η)

∂vx

∂η

]
,

∂rxz,l

∂t
= −rxz,l

τσ l
+ µτ S

l

[
B(ζ )

∂vx

∂η
+ ∂vz

∂ζ
+ A(ζ, η)

∂vz

∂η

]
.

(32)

The system of eqs (20), (28) and (32) consists of the system to be solved to model the 2-D wave propagation in an isotropic and
homogeneous viscoelastic medium, in which the attenuation is modelled by a number L of SLSs in parallel and bounded by a free-surface
topography.

3.5 Specific free-surface boundary conditions

At the free surface, the traction vector T vanishes, i.e.

T = � · n = 0, (33)

i.e. in components,

σi j n j = 0, (34)

where Σ is the stress tensor with components σ ij and n is a normal vector to the local surface point with components nj; i , j = 1, 2. Any
normal vector may be used, even though T is defined by the unit normal vector. In 2-D, we can choose
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n =
(

−∂z0(ζ )

∂ζ
, 1

)T

= (−tanφ, 1)T, (35)

where φ denotes the local topography slope angle and the superscript indicates the transpose. Using components, the condition (34) becomes

−σxx tanφ + σxz = 0,

−σxz tanφ + σzz = 0,
(36)

with σ xx, σ xz and σ zz denoting the stress components. Differentiating with respect to time yields

−∂σxx

∂t
tanφ + ∂σxz

∂t
= 0,

−∂σxz

∂t
tanφ + ∂σzz

∂t
= 0.

(37)

The substitution for ∂σ xx/∂t , ∂σ xz/∂t and ∂σ zz/∂t from eq. (26) is carried out in eq. (37) in three steps:

(i) the limit of an elastic medium is assumed at the surface (Robertsson 1996), i.e. τ ε = τ σ for both P and S waves and rxx = rzz = rxz = 0;
(ii) we note from eq. (18) that A(ζ , η) = −B(ζ ) tanφ; and
(iii) we note that tan φ = ∂z0(ζ )/∂ζ .

Performing the complete calculations, Hestholm & Ruud (2000) found the 2-D boundary condition for free-surface topography, given in the
computational (ζ , η) grid by

B(ζ )

{
1 +

[
∂z0(ζ )

∂ζ

]2
}

∂vx

∂η
+ B(ζ )

∂z0(ζ )

∂ζ

{
1 +

[
∂z0(ζ )

∂ζ

]2
}

∂vz

∂η
= 2

∂z0(ζ )

∂ζ

∂vx

∂ζ
+

{[
∂z0(ζ )

∂ζ

]2

− 1

}
∂vz

∂ζ
,

−B(ζ )
∂z0(ζ )

∂ζ

{
1 +

[
∂z0(ζ )

∂ζ

]2
}

∂vx

∂η
+ B(ζ )

{
1 +

[
∂z0(ζ )

∂ζ

]2
}

∂vz

∂η
= −

{
λ

λ + 2µ
+

[
∂z0(ζ )

∂ζ

]2
}

∂vx

∂ζ
+ ∂z0(ζ )

∂ζ

(
1 − λ

λ + 2µ

)
∂vz

∂ζ
.

(38)

Equations of eq. (38) are exact 2-D boundary conditions for an arbitrary, smooth, free-surface topography (Hestholm & Ruud 2000). Several
other formulations of the same boundary conditions can be obtained both in 2-D and 3-D and they are equivalent (Hestholm 1999; Ruud &
Hestholm 2001; Hestholm 2002). In the derivation of all forms, µ �= 0 is assumed, so the conditions cannot be used for strictly acoustic cases.
Note that they cannot be used for vertical subsections, because then tan φ goes to infinity. Under these constraints, the system of equations
are spacially unconditionally stable when discretized by second-order finite differences (FDs) (Ruud & Hestholm 2001).

3.6 Discretization, implementation and dispersion of the finite-difference scheme

We use a finite-difference scheme (fourth order in space and second order in time) to discretize the previous equation system, on a staggered
grid both in space and time (Levander 1988; Robertsson et al. 1994; Carcione et al. 2002). At an initial time, we introduce a pressure change
to the computed normal stress of the gridpoint where the source is located, according to time-dependent functions as shown in Fig. 4, and
having a known amplitude. We update first the velocity fields according to the discretized versions of the wave equation of motion (eq. 20).
Stress fields are updated using the discretized versions of the constitutive laws (eq. 28), is which the terms SL xx, SL zz and SL xz are approximated
using a Crank–Nicholson first-order centred finite-difference scheme. The relaxation functions are updated using the discretized versions of
the relaxation functions (eq. 32). We use second-order finite-difference to discretize the free-surface boundary conditions (eq. 38). Ruud &
Hestholm (2001) gave a detailed description for the discretization of the free-surface topography and showed that it was unconditionally stable.
Absorbing boundary conditions are defined at the three other sides of the grid using a paraxial approximation of the elastic wave equation at
the boundary (Clayton & Engquist 1977) and by setting a linear decay of Q within a damping zone, from the value of Q in the solid to Q = 2
at the grid sides.

By computing the wave propagation numerically, we have to deal with the trade-off between accuracy and computation time. Similarly
to the elastic discretization, the stability criteria for the conditional scheme we use (Robertsson et al. 1994) are similar to analogue elastic
schemes (Levander 1988). The Courant number c�t/�x (where c is the velocity) has to be adjusted to the highest phase velocity, which is
found at infinite frequency, cmax = √

τε MR/τσ ρ. For an SLS with one relaxation mechanism, this expression simplifies to cmax = √
µ2/ρ

(see Section 2.4 for notations).
Viscoelastic media are intrinsically dispersive (Aki & Richards 2002), the phase velocity increases with frequency as shown by Futterman

(1962) and Wuenschel (1965). In addition, finite-difference methods for wave propagation introduce numerical dispersion because of the time
and space discretization. The viscoelastic dispersion curves demonstrate the same characteristics as their elastic analogues and the damping
curves are found to be very similar for different values of the Courant number and the maximum attenuation is found at 40 Hz (Levander
1988; Robertsson et al. 1994). Robertsson et al. (1994) carried out a detailed dispersion analysis and gave an empirical rule for frequencies
up to 500 Hz. A minimum of eight gridpoints per wavelength is necessary to obtain less than 2 per cent of dispersion error, for a Courant

C© 2004 RAS, GJI, 159, 776–802

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/159/2/776/2067222 by guest on 25 O

ctober 2022



Modelling low-frequency volcanic earthquakes 787

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−5

0

5

x 10
−3

Time [s]
V

el
oc

ity
 [m

 s
−1

]

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

S
pe

ct
ra

l A
m

pl
itu

de
 [m

 s
−1

]

Figure 4. Source used in our modelling. (top) Time history of the source and (bottom) its corresponding amplitude spectrum.

number ranging from the stability limit to a fifth of the stability limit and for Q ranging from 10 to 10 000. The Courant number drops to 4,
when a dispersion error of 5 per cent is sufficient. According to the dispersion analysis (Robertsson et al. 1994), the grid spacing dx must
verify dx < V

8 f , for a wave of frequency f that travels with a velocity V . Neuberg & O’Gorman (2002) and Sturton & Neuberg (2003) showed
that the velocities in bubbly magma may be as low as 200 m s−1. In order to have less than 2 per cent dispersion error in our modelling, the
propagation of a wave of 25 Hz travelling in the area of the grid that has magma properties requires the grid spacing to be less than 0.5 m.
This upper limit is 1 m for a 5 per cent dispersion error. All the waves we model have a frequency content lower than 25 Hz. Using a 2-m grid
spacing, the maximum possible wave frequency to ensure an error on dispersion less than 2 per cent is 12.5 and 25 Hz for a wave velocity
of 200 and 400 m s−1, respectively. Using velocities in magma greater than 400 m s−1 ensures a dispersion error less than 2 per cent for a
grid spacing of 2 m and using velocities in magma greater than 1000 m s−1 ensures a dispersion error less than 2 per cent for a grid spacing
of 6 m. This analysis shows that the formulation we use is suitable to fulfill most cases with an error on dispersion between 2 and 5 per cent
(depending on frequencies), using a grid spacing of 2 m and within reasonable computation time on Sun Ultra 5/10 Sparc work stations or
Linux PC.

3.7 Results in homogeneous medium

When constant-Q absorption operates, the amplitude spectrum of a seismic pulse at frequency f obeys (White 1992):

|At ( f )| = |A0( f )|
J

e

−π f t

Q , (39)

where t is the traveltime of the pulse from time zero and |A0(f )| is the unattenuated amplitude spectrum of the pulse, and J−1 is the geometrical
spreading; for body waves and in 2-D, J = √

r , r being the distance from the source. Q can be estimated from the amplitude spectra A1(f )
and A2(f ) of the wavelet at the distances r1 and r2 from the source, at times t1 and t2, respectively, using

Q( f ) = −π f (t2 − t1)

ln
|A2(f)|

√
(r2)

|A1(f)|
√

(r1)

, (40)

where ln r is the natural logarithm or the real positive number r.
We computed a series of seismograms in the homogeneous medium and at the free surface to evaluate the accuracy of our code in

retrieving the input Q value for a P wave in a homogeneous medium. The used source has the characteristics shown in Fig. 4. We recorded
synthetic P waves at one initial station R0 and at several receivers Ri located at distances d0 and di from the source, respectively. Fig. 5 shows
that the quality factor can be retrieved within approximately 10–20 per cent from synthetic data recorded at the free surface, for any number
of relaxation mechanisms. When the number of SLS is larger than one, the viscoelastic medium has a quality factor Q = 50 between 2 and
25 Hz (eq. 13), and the phase velocity is given by eq. (14). The number of relaxation mechanisms is therefore not critical for a good modelling
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Figure 5. Quality factor retrieved from spectral amplitude ratio using seismograms recorded at various distances (r = 0.5 to 4 km) at the flat free surface
of a homogeneous half-space with Q = 50 and for (a) one, (b) two, (c) three and (d) four relaxation mechanisms. Distributions of relaxation times are
τ σ (1) = [0.0187], τ σ (2) = [0.0064, 0.0796], τ σ (3) = [0.0064, 0.0181, 0.0796] and τ σ (4) = [0.0064, 0.0074, 0.0503, 0.0796], respectively. (e) Quality factors
represented in the same plot and (f) corresponding phase velocity for those mechanisms. Note that because the source length is 0.5 s, amplitude ratios were
computed using the Fourier transform of synthetic signals having zero amplitude at frequencies below 2 Hz.

of attenuation; the synthetic seismic signals are very similar when the number of relaxation mechanisms is changed (Robertsson et al.
1994). In the following, unless otherwise stated, we use three relaxation mechanisms (Fig. 5), which give a good accuracy/computation time
ratio.

4 2 - D M O D E L L I N G O F L O W- F R E Q U E N C Y V O L C A N I C E A RT H Q UA K E S
I N A N E L A S T I C M E D I A

4.1 Description of the models and synthetic data

In order to understand the features of low-frequency volcanic earthquakes (Fig. 1), we use simplified models of the volcanic structure. Our
models consist of a rectangular conduit, filled with a viscoelastic fluid, which is embedded in a homogeneous elastic or viscoelastic solid
limited by a stress-free surface with or without topography (Fig. 6). The frequency content and the dispersion of synthetic seismograms depend
on the contrast between the physical properties at the conduit wall and on the geometry of the conduit (Neuberg 2000; Jousset et al. 2003;
Sturton & Neuberg 2003). To investigate the effect of attenuation and topography, we used model parameters that produce a typical synthetic
low-frequency seismogram, as observed on Montserrat. We fixed the width of the conduit to 30 m, a value obtained from geochemical and
magma flux observations (Sparks et al. 2000). The conduit length ranges 600–1000 m. The upper value may be too large in reality, but it
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Modelling low-frequency volcanic earthquakes 789

Figure 6. Model used in our finite-difference scheme.

allows us to highlight features of the synthetic low-frequency earthquake more clearly. The depth of the top of the conduit is set to 100 m,
except for one case, where this depth is 1000 m. In geological terms, a volcanic conduit always reaches the surface, however, for modelling
purpose of seismic signals in a fluid phase, the top end of the our conduit represents the boundary between fluid magma with low-viscosity and
high-viscosity magma, which is degassed and almost fully crystallized. The bottom of the conduit represents the level above which bubbles
nucleate, providing a strong impedance contrast (Jousset et al. 2003; Sturton & Neuberg 2003). We apply realistic velocities for the solid
(VP = 3000 m s−1, VS = 1732 m s−1), and a density of ρ = 2500 kg m−3. The values of the magma velocity and density are assumed to be
constant and uniform as VP = 1000 m s−1 and ρ = 2270 kg m−3, respectively. Attenuation is quantified using the quality factor as described
in the previous sections and ranges from [20 < Q < ∞] in the solid and from [5 < Q < ∞] inside the magma.

The computational domain extends 3000 m vertically and 10 000 m horizontally. The grid spacing is 2 m ensuring a numerical dispersion
of less than 2 per cent, for all frequencies of the source function (Fig. 4). This function is applied inside the conduit at a depth of 450 m
below the surface. We start with a flat stress-free surface and later introduce topography simulating active dome of Soufrière Hills volcano,
Montserrat. In order to represent the topographic model we use a 2-D cubic B-spline interpolator with a sampling interval of 30 m to extract a
NW–SE profile from a 3-D digital elevation model. In our example, we used a 3-D digital elevation model of Montserrat with a resolution of
10 m. This smoothing operation allows us to avoid spatial aliasing from high-wavenumber topographic features. The profile is then resampled
with a 1-D cubic B-spline interpolator according to the much higher resolution of the finite-difference grid spacing and introduced as the
topography function z0 in eqs (17) and (18). Absorbing boundary conditions are defined at the sides of the grid using a paraxial approximation
of the elastic wave equation at the boundary (Clayton & Engquist 1977), an exponential damping zone (Cerjan et al. 1985) and a linear
decrease of the quality factor from its value in the medium to Q = 2 at the boundary (Hestholm 1999).

To investigate the effect of attenuation and topography on waveforms, amplitudes spectra and dispersion, we compute the wave propagation
in a series of models, of increasing complexity. We first describe fundamental characteristics of low-frequency seismograms in Section 4.2.
In Section 4.3, we investigate the effect of Q (Q = 5, 10, 20, 100) in the conduit of fixed length (1000 m) and the effect of conduit length for
Q = 10, with elastic surrounding medium, and where there is no topography. We demonstrate that conduit resonance is possible if Q is high
enough for a given conduit length and if the conduit is long enough for a given Q. We investigate the dispersion within the coda of the signal
in Section 4.4. Finally, in Section 4.5, we illustrate scattering of low-frequency earthquakes as a result of topography and we vary the position
of the conduit at depth. Seismograms, spectra and spectrograms are shown for positions at the free surface at 100 m or/and 1500 m from the
conduit.

4.2 Fundamental characteristics of low-frequency seismograms

Regardless of the model parameters we use, the synthetic low-frequency seismograms recorded at the free-surface display fundamental
characteristics, similar to those observed in data: the duration of the synthetic seismograms last several seconds and the spectra displays
harmonic low-frequency peaks. The nature of these low-frequency synthetic earthquake is described in Aki et al. (1977); Chouet (1985, 1986,
1988, 1992, 1996b); Neuberg (2000). A detailed description can be found in Jousset et al. (2003). After the source has been excited within
the conduit, seismic energy propagates as P waves, converted S waves and interface waves at the boundaries of the conduit (Fig. 7). The
body waves propagate through the medium to the stations and allow us to locate the source location of these events, by using conventional
traveltime techniques. The interface waves propagate up and down the conduit and cause the conduit resonance. Depending on the choice of
parameters, two interface wave types are observed: one travels faster than the acoustic velocity in the conduit and has normal dispersion; the
other has a slower speed than the accoustic velocity and shows inverse dispersion. These interface waves display elliptical, retrograde particle
motions and their amplitudes decay exponentially with the distance from the conduit. Seismic energy is released at the ends of the conduit
as P and S waves. At the top end of the conduit, the energy is converted at the free surface and propagates along it, with characteristics of
Rayleigh waves. The synthetic seismogram of a low-frequency event is hence a superposition of all these forms of seismic energy (Fig. 7).

The numerical computations show that the slow, inverse dispersive interface waves have the largest amplitudes. As they propagate along
the conduit, seismic amplitudes and frequencies are governed by the physical properties within the conduit and the media. The coda of the
signal comprises single wavelets corresponding to interface waves that have been reflected several times at the conduit ends. Therefore,
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790 P. Jousset, J. Neuberg and A. Jolly

Figure 7. Series of snapshots of the amplitude of the velocity wavefield. The conduit is 600 m long and 30 m wide. The density of the solid is 2500 kg m−3

and the density of the conduit is 2270 kg m−3. Elastic velocities are VP = 1000 m s−1 in the conduit, and VP = 3000 m s−1 and VS = 1732 m s−1 in the
medium. Quality factors in the solid are QP = 200 and QS = 100, and in the conduit Q = 50. The quality factor and the phase velocity are shown in Fig. 5.

analysis of waveforms, particle motions, spectra and dispersive characteristics of low-frequency earthquakes can give insights into magma
properties and geometry of the conduit. As later wavelets spend more time in the conduit than earlier phases, (i) amplitudes of successive
wavelets decay according to a simple rule, which we derive in Section 4.3, and (ii) dispersion increases within the coda of the signal, as shown
in Section 4.4.

4.3 Amplitude decay

The amplitude of seismic waves decays as a result of geometrical spreading, internal friction, which converts seismic energy into heat (intrinsic
attenuation), and scattering. The amplitude decay observed from seismic signals has been used to locate pyroclastic flows (Jolly et al. 2002),
volcanic earthquakes (Battaglia et al. 2003) and tremor (Gottschammer & Surono 2000). Alternatively, the amplitude decay within long-period
seismograms has been used to determine an apparent attenuation (Kumagai & Chouet 1999, 2000a,b; Kumagai et al. 2002a; Seidl & Hellweg
2003).

In order to understand how the amplitudes decay in our synthetic seismograms as the result of geometrical spreading and attenuation
in the conduit, we measure peak-to-peak amplitudes of the successive wavelets in the coda, for various values of Q in the conduit (length
1000 m), the surrounding medium being elastic (Figs 8 and 9). We compare these synthetic amplitudes with theoretical amplitudes, obtained
using amplitude decay resulting from 2-D geometrical spreading, reflection and transmission at the top and the bottom of the conduit, and
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Modelling low-frequency volcanic earthquakes 791

Figure 8. Seismograms (vertical component of the velocity), spectra, spectrograms, recorded at a virtual seismometer located at the free-surface at 100 m from
the conduit, using a broad-band (0–25 Hz) source, in various anelastic media, (Q = +∞, Q = 100, 20, 10, 5) with one relaxation mechanism for modelling
a constant Q between 2 and 25 Hz. The quality factors are QP = QS = +∞ in the medium outside the conduit. In the solid, P-wave velocity is VP = 3000 m
s−1, S-wave velocity is VP = 1732 m s−1, the density is ρ = 2500 kg m−3. In the conduit (30 m wide, 1000 m long), VP = 1000 m s−1, ρ = 2270 kg m−3. In
the seismograms, there are five superimposed seismograms, corresponding to the five Q values. Both in seismograms and spectra, the lower the Q, the lower
the amplitude. In the spectrograms, the local spectra are computed using a 0.5-s window.

intrinsic attenuation of waves travelling in the conduit. As we have 2-D seismograms, interface waves propagate along the conduit without
loosing energy. The impedance contrast between conduit and surrounding medium defines the reflection coefficient of a seismic wave with
vertical incidence as (Ben-Menahem & Singh 2000)

R = ρl VIl − ρm Vpm

ρl VIl + ρm Vpm

(41)
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792 P. Jousset, J. Neuberg and A. Jolly

Figure 9. Same as Fig. 8 for a seismometer located at 1500 m from the conduit.

and the amplitude reflection coefficient T = 1 − R, where ρ l and ρm are the densities of the fluid and the solid, respectively, and V Il is the
interface wave velocity and V pm is the acoustic velocity in the solid.

Fig. 10 reveals that synthetic and theoretical amplitudes diverge, the synthetic amplitudes getting larger than the theoretical amplitudes,
with distance/time. This is explained by using a frequency-independent Q. Starting with a broad frequency spectrum (0 to 20 Hz), attenuation
modelled with a constant Q makes amplitudes of the higher frequencies (>10 Hz) decay faster than the amplitudes of the lower frequencies.
Accordingly, the peak-to-peak amplitudes are sampled at all frequencies in the earlier wavelets, compared with the amplitudes sampled at low
frequencies for later wavelets.

Amplitudes of the synthetic seismograms and theoretical amplitudes match however reasonably well (Fig. 10). This result demonstrates
that the coda of the low-frequency earthquake cannot be directly linked to the attenuation in the conduit only. The apparent quality factor
obtained from the coda of low-frequency earthquakes (Seidl & Hellweg 2003) is smaller than the actual wave attenuation in the conduit. By
neglecting energy leakage at the conduit ends, the amplitude decay is solely attributed to intrinsic attenuation in magma and therefore this
effect is overestimated. For a purely elastic wave, the amplitude decay is only a result of energy leakage. By assuming conduit geometry and
magma properties (velocity and density), an estimation of the true quality factor can be then obtained interpreting the coda decay of observed
low-frequency seismograms, as a superposition of single, damped, reflected wavelets.
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Modelling low-frequency volcanic earthquakes 793

Figure 10. (a) Seismogram (vertical component) recorded at a seismometer at the free surface at 100 m from the conduit. Letters indicate phases, i.e. P stands
for P-wave, S for S-wave, wi for the ith wavelet emitted at the conduit top end. Pairs of wavelets may be classified according to their first motion polarity.
Couples {w1, w2} and {w5, w6} have an upward first motion, while pairs {w3, w4} and {w7, w8} have a downward first motion. The first motion polarity for
each wavelet pair corresponds to the number of reflections of the initial energy pulse at the conduit bottom end. (b) Schematic building of a synthetic volcanic
low frequency, by addition of successive wavelets, from the top and the bottom of the conduit, acting as secondary sources. The amplitude of each wavelet in
the signal is determined by the impedance contrast between the fluid-filled conduit and the solid surrounding medium. (c) Relative peak-to-peak amplitude of
successive wavelets in the coda: black dots, elastic case; stars, anelastic case (Q = 100 in the conduit). Amplitude decays according to the rate of the theoretical
seismic energy leakage (top continuous black line), computed using eq. (41). In the anelastic case, amplitude decays faster according to intrinsic attenuation.
The bottom black line corresponds to a signal of frequency of 7 Hz; the grey area indicates the range of amplitude decay according to the wavelet frequency (2
to 20 Hz).

Viscoelastic synthetics presented up to here display a clear sequence of phases separated by intervals of low-amplitude signals, because
the conduit is long enough and because the frequency content of the source is up to 20 Hz. When the frequency content of the source is
lower and/or when the conduit is shorter, identification of phases is less straightforward, because successive wavelets are interfering one with
another. Fig. 11 demonstrates also that a too small conduit section does not allow resonance to carry on for a long time. This suggests that
the use of such wavelets in data could allow us to derive the geometry of the conduit from the delay between them and separate them from
magma properties in the conduit.
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794 P. Jousset, J. Neuberg and A. Jolly

Figure 11. (top) Superposed seismograms recorded at a seismometer located at 1500 m from the conduit. The fluid velocity is VP = 1000 m s−1 and Q = 10
in the conduit. The surrounding media is elastic. (bottom) Two snapshots taken at a time 4 s, showing that resonance in (right) longer conduit sections (length
800 m) lasts for a longer time than (left) in shorter conduit sections (length 200 m).

4.4 Dispersion analysis

Low-frequency waveforms are by nature dispersive, when they are produced in a crack system (Chouet 1986; Ferrazzini & Aki 1987). In our
model, as interface waves propagate further along the conduit, normal and inverse dispersion are observed (Jousset et al. 2003). Slow wavelets
display more dispersion than the fast ones, because of their longer journey in the conduit (Figs 8 and 9).

If attenuation is introduced, dispersion increases. Figs 12 and 13 illustrate the effect that Q has on dispersion, regarding waveforms
and normalized particle motions. In the seismograms, the single wavelets stretch apart and the seismic energy is distributed over a longer
time. This demonstrates that, the lower Q is, the more dispersion occurs. In addition, in the elastic case, the successive wave packets display
an alternative polarity, which is in direct relation to the polarity at the source and the number of reflections/transmission at the top of the
conduit (Fig. 10). When attenuation is introduced, the particle motions of successive wavelets are affected (Fig. 13). This alternating pattern
is destroyed when attenuation is very strong (e.g. see case Q = 10 in the conduit). It is also possible to discriminate between cases in which Q
is set inside or outside the conduit (Fig. 12). When attenuation changes in the conduit (Fig. 12b), the frequency content is stretched, resulting
in a wider frequency spectrum and each spectral peak is broadened. On the other hand, when attenuation changes in the outside medium
(Fig. 12c), all frequencies are shifted, but neither the frequency interval between the peaks, the relative amplitude between the peaks, nor the
sharpness of the peaks are altered. This allows the identification of the main source of attenuation.

In observed seismograms, depending on the station location, some waveforms (e.g. Fig. 1) exhibit phases of larger amplitude, which
could correspond to the successive wavelets released at the top of the conduit. However, it is difficult to recognize such patterns in data and
identify clearly successive wavelets, dispersion and polarization patterns, because these characteristics are altered by the topography and the
P- and S-wave velocity structures.

4.5 Effect of the topography

Topography is known to affect the particle motion and waveform depending on the relationship between seismic frequency and topographic
wavelength (Ohminato & Chouet 1997; Neuberg & Pointer 2000; Regnier et al. 2000; Zaslavsky & Shapira 2000). Several studies demonstrated
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Modelling low-frequency volcanic earthquakes 795

Figure 12. Seismograms, spectra and particle motions of records at a seismometer located at 1500 m from the conduit. (a) Both conduit and surrounding
medium are elastic; (b) the conduit only is anelastic with Q = 100 (plain line) and Q = 10 (dashed line); (c) the medium only is anelastic with Q = 100 (plain
line) and Q = 10 (dashed line). NVV and NHV stand for normalized vertical velocity and normalized horizontal velocity, respectively. The grey area in the
seismograms corresponds to the detailed wavelet in Fig. 13.

the topographic scattering effects for simple point sources. Volcanic low-frequency seismic events are particularly strongly affected by
topography, as a result of (i) the ruggedness of topographic features on volcanoes and (ii) the shallow position of the upper conduit end
that acts as the secondary source from which low-frequency events are radiated. In order to illustrate the combined effects of conduit
resonance and topography, we compute several examples using cross-sections of Montserrat topography (Fig. 14). Our Montserrat topography
profiles feature the active dome and we show the profile in which the seismic station MBGA is located at a distance of 1500 m from the
dome.

In Fig. 15, we investigate the influence of topography and source model and source position by comparing four different cases: (i) point
source at 600 m and topography, (ii) anelastic conduit model (at 100 m depth) without topography (model used so far with Q = 100 in the
medium), (iii) conduit at 1000 m and topography, (iv) conduit at 100 m and topography.

In all cases, topographic scattering of seismic waves results in more complex waveforms. To compare cases (i) and (iv), Fig. 16 shows
snapshots of the velocity field amplitude for a point and conduit source, respectively, illustrating the complex topography scattering on seismic
signals. The complex wavefield resulting from conduit resonance shows additional wavelets of scattered seismic energy, which also alters the
amplitude spectrum. This demonstrates that an interpretation of spectral peaks in terms of source resonators is rather questionable (Seidl &
Hellweg 2003). However, time-dependent spectral features nevertheless reflect changes in volcanic source processes (Neuberg & O’Gorman
2002; Jousset et al. 2003).

To compare (ii) and (iv), we depict resulting waveforms, spectra and particle motions in Fig. 17 for successive wavelets. The originally
elliptical particle motion as well as the amplitudes are highly affected by topography if the dominant topographic wavelength matches the
Fresnel zone of the seismic signal at the free surface (Neuberg & Pointer 2000).

5 C O N C L U S I O N S A N D D I S C U S S I O N

Low-frequency volcanic earthquakes characteristics are dependent on the conduit geometry and physical properties of magma (Neuberg
et al. 1998; Neuberg 2000; Jousset et al. 2003; Sturton & Neuberg 2003). By fixing the geometry of the conduit, we investigated effects of
attenuation and topography on amplitudes and waveforms of synthetic low-frequency seismograms using 2-D finite-difference modelling of
viscoelastic wave propagation in a simplified volcanic structure bounded by a realistic topography. For many tested models, the fundamental
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796 P. Jousset, J. Neuberg and A. Jolly

Figure 13. Detailed waveform analysis of the wavelet w4 (Fig. 10) extracted from the vertical component of the seismogram shown in Fig. 12. (left) Elastic
medium and conduit. (right) Elastic medium and anelastic conduit. Attenuation stretches wavelets and modifies waveforms and particle motions.
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Figure 14. 3-D topographical map of Montserrat island, revealing the steep slopes of the volcano. The view is taken from the azimuth 170◦ from N with an
vertical view angle of 45◦. The black lines across the island indicate two topography profiles used to compute our synthetics.

characteristics of observed volcanic low-frequency earthquakes are reproduced. We confirm that conduit sections act as resonators, where the
top and bottom ends provide seismic reflectors and therefore secondary seismic sources. In this study, we addressed four questions.

(i) We investigated the effect of anelasticity on characteristics of the frequency content and dispersion of low-frequency earthquakes.
The 2-D conduit model explains most of the characteristics of low-frequency earthquake. Attenuation reduces amplitudes and enhances the
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Modelling low-frequency volcanic earthquakes 797

Figure 15. Seismogram, amplitude spectra and spectrograms recorded on vertical component of a seismometer located on the free surface (NW–SE profile
of Montserrat topography, except for b), at a distance of 1500 m from the source (R1500 in Fig. 16). (a) there is no conduit; (b) the conduit is present (conduit
length 1000 m) and the free surface is flat (no topography); (c) the top of the conduit is 1000 m depth; (d) the top of the conduit is 100 m depth. The density
of the solid is 2500 kg m−3. Elastic velocities are VP = 3000 m s−1 and VS = 1732 m s−1 in the medium. In the conduit, VP = 1000 m s−1 and the density is
2270 kg m−3. The quality factors in the solid are QP = 150 and QS = 100. When the conduit is present, Q = 20 in the conduit. Attenuation is computed using
three relaxation mechanisms.

intrinsic dispersion of the low-frequency signal. We showed that the conduit acts as a resonator provided attenuation in the conduit is not too
low, Q > 10. Based on qualitative resemblance between seismograms, spectra and spectrograms, we suggest that attenuation in the conduit
at Montserrat is rather weak.

(ii) We studied the impact of topography on waveform and amplitude of low-frequency earthquakes. Topography modifies traveltimes and
waveforms of low-frequency earthquakes. This makes it difficult to identify models that would produce waveforms matching the observations.
For volcanoes with steep topography, the frequency content of low-frequency events is a superposition of conduit resonance and topography
scattering. Therefore, single frequency peaks cannot be interpreted as source processes.

(iii) We suggested a strategy to estimate attenuation within volcanic media, by separating and interpreting single wavelets in low-frequency
volcanic earthquakes as repeatedly reflected, damped energy packages. The analysis of the amplitude decay in the coda allows us only to get
an apparent quality factor, which is lower than the actual intrinsic Q in the magma. This strategy may be difficult to implement in practice as
individual wavelets are not commonly identifiable in the decaying code of typical low-frequency events.

(iv) We provided constraints on the rheology of volcanic media on the basis of viscoelastic wave propagation. Using experimental results,
we showed that volcanic media may be represented by the SLS at seismic frequencies above 2 Hz. Our results match with observations of
seismograms and suggest that the quality factor Q in volcanic media at Montserrat may be between 10 and 100, in accordance with results
from other studies, e.g. Jolly et al. (2002) and Vanorio et al. (2002).

Our study has several limitations. We model attenuation using the SLS, with several relaxation mechanisms. Each relaxation mechanism
could correspond to different timescales of stress relaxation, but as many studies did before, we do not relate them to any physical process.
The assumption of an SLS fails below 2 Hz and yet low-frequency earthquakes have frequencies below 2 Hz. Diffusive processes may start to
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798 P. Jousset, J. Neuberg and A. Jolly

Figure 16. Series of snapshots of the amplitude of the velocity wavefield produced by (a) an explosive point source in the homogeneous medium and (b) the
resonance of the conduit (Q conduit = 20). In both examples, the topography crosses the dome along a NW–SE profile. R1500 is the seismometer location for
seismograms and particle motions in Figs 15 and 17.
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Modelling low-frequency volcanic earthquakes 799

Figure 17. Detailed waveform analysis (0.4 s) of successive wavelets propagating along the surface topography. (a) Horizontal and vertical velocity components
recorded at a seismometer located at 1500 m from the dome (see R1500 in Fig. 16); (b) corresponding spectra; (c) corresponding particle motion; (d) observed
waveforms from 0.4-s windows extracted from the seismogram in Fig. 1(b) (23:15 h UT).

become important, modifying the way energy is balanced. We considered in this work intrinsic attenuation, but we showed that scattering as
a result of the topography and scattering of energy at the ends of the conduit section plays a role as well in the dissipation of seismic energy.
Moreover, 3-D effects of the topography are not taken into account into our modelling and they may be important.

One may also wonder about the general applicability of the model to Montserrat. For a basaltic system, in which magma viscosities
are within the 104–107 Pa s range, resonance of a large part of the volcanic system has been shown (Aki et al. 1978). At Montserrat,
with a viscosity range of 109–1014 Pa s (Sparks et al. 2000), the important question is identifying conditions for which dissipation of
seismic energy prevent sustained resonance of the magma column as a whole. The critical medium is the bubbly liquid, where attenuation
is the largest. We employed the bubbly liquid model by Commander & Prosperetti (1989) and found Q values between 10 and 100 for
realistic sets of parameters for Montserrat. A further discussion of this issue is beyond the scope of this paper and is the subject of a
study that includes diffusion processes. Moreover, the whole magma column is not only made of viscous liquid and bubbles, but crystals
are also present in the rising magma (Sparks et al. 2000). Hence, the further study will take crystals into account. A further important
step to test our model would be a comparison with a moment–tensor inversion of low-frequency volcanic earthquakes (Legrand et al.
2000; Kumagai et al. 2002a,b) on Montserrat. This could give further insights into the source mechanism, geometry and its position and
orientation.
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