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[1] It is well known that the permeability of a set of joints can significantly vary in
response to in situ stress conditions and pressure of the flowing fluid. Frequently, joint sets
are closely spaced, and although joint mechanical interaction could significantly affect
their aperture, the interaction is usually ignored in the fluid flow models. It is rather
obvious that this approach corresponds to the upper bound for flow rate and rock
permeability. By taking into account the interaction between the joints, we show that
modeling a joint set by an infinite array provides the lower bound. The difference between
these bounds, however, can be rather large, so they may not always be used with the
sufficient accuracy. From the conceptual standpoint, it is often tempting to model a set
with a finite number of joints by an infinite array. The results obtained in this work clearly
demonstrate that such a model may result in a significant underestimation (by orders of
magnitude) of both the permeability and flow rate. Similarly, the assumption of
noninteracting joints may significantly overestimate (also by orders of magnitude) the
stress-dependent permeability and flow rate compared to those computed more accurately
when accounting for joint interaction. Because the internal pressure can, in fact, close the
pressurized joints while two edge joints (end-members) in the set remain widely open
(since they are not suppressed from one side by the adjacent joints), unless the number of
joints in the set is exceedingly large (typically, >103), the fluid flow through the joint set
becomes highly heterogeneous, focusing in the edge joints. As a result, the
permeability/flow rate dependence on the joint spacing is not monotonic but has a
maximum and a minimum. The derived closed-form expression for flow rate/permeability
ratio is asymptotically accurate and allows computations for rather arbitrary joint
sets. INDEX TERMS: 5104 Physical Properties of Rocks: Fracture and flow; 5114 Physical Properties of

Rocks: Permeability and porosity; 5139 Physical Properties of Rocks: Transport properties; 8010 Structural

Geology: Fractures and faults; 8020 Structural Geology: Mechanics; KEYWORDS: joint sets, fluid flow,

pressure, crack interaction, fracture apertures, stress-dependent permeability
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1. Introduction

[2] It is well known that the permeability of a set of
joints can significantly vary in response to several factors.
Chemical precipitation from the solution can reduce [e.g.,
Lowell et al., 1993] and even completely shut down [e.g.,
Martin and Lowell, 2000] rock permeability, resulting, for
example, in a set of mineralized veins [e.g., Vermilye and
Scholz, 1995] instead of open fractures. Thermal expansion
(contraction) also drastically affects permeability distribu-
tion and fluid flow characteristics [see, e.g., Germanovich
and Lowell, 1992; Lowell and Germanovich, 1995;
Germanovich et al., 2000, 2001, and references therein].
The effect of confining pressure on permeability has been

studied extensively both theoretically [e.g., Gangi, 1978;
Neuzil and Tracy, 1981; Tsang and Witherspoon, 1981;
Walsh, 1981; Gavrilenko and Gueguen, 1989] and exper-
imentally [e.g., Jones, 1975; Kranz et al., 1979; Raven and
Gale, 1985]. If the pressure inside joints is sufficiently high
for their growth [Engelder and Oertel, 1985; Engelder and
Lacazette, 1990; Srivastava and Engelder, 1991], it may
cause an appreciable permeability increase by enhancing
the interconnectivity of joint sets. In the case of sparsely
located fractures, for a given pressure and geometry, larger
fracture size generally corresponds to a greater aperture.
Hence it may appear that this is an additional reason to
expect the permeability to increase in the set of growing
joints. As shown in this paper, however, this expectation is
not justified for closely spaced joints.
[3] If the fluid pressure inside the joints is not sufficient

for their propagation, it can still affect the permeability of
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the joint set by changing the apertures of individual joints.
This mechanism is the basis of most models of stress-
dependent permeability of fractured rocks. Such models
are usually based on the concept of single, noninteracting
fractures [e.g., Gangi, 1978; Tsang and Witherspoon, 1981;
Gavrilenko and Gueguen, 1989; David, 1993]. It has been
recognized only recently [Nolte, 1987; Germanovich et al.,
1998; Bai et al., 2000] that joint elastic interaction can also
become an important factor affecting layered rock perme-
ability and fluid flow distribution.
[4] In this work, we study the effect of the elastic

interaction of joints on stress-dependent permeability and
fluid flow in jointed rock (Figure 1). We consider the
dimensionless spacing, s = b/(2c) (Figure 2a), that varies
in the range of 10�2 to 10, which likely covers all the
observed values of spacings reported in the literature (see,
e.g., the review in the paper of Germanovich and
Astakhov [2004]). Following Germanovich et al. [1998],
Germanovich and Astakhov [2004] showed that it is not
only necessary to take into account the interaction be-
tween the joints if s < 1, but also that for s � 0.1, which
is not unusual (e.g., see Figure 1), joints can be closed by
the fluid injection. In this paper, we show that for
frequently observed joint sets with a spacing between
0.1 and 1, the conventional permeability estimates based
on mapping joint density and their dimensions (size and
aperture) may have to be reduced by at least one or two
orders of magnitude. Even more importantly, we show
that in contrast to the case of noninteracting joints,
interaction of pressurized joints results in the redistribu-
tion of the fluid flow, which becomes highly nonuniform,
concentrating (focusing) in the edges (end-members) of
the joint set.
[5] To reduce the number of parameters and to emphasize

the effect of joint interaction, we address the extreme case
by ignoring the initial joint apertures and assuming that each
joint opens because of the pressure applied to its sides and
remote stresses acting far from the joint set. The initial joint
apertures can be taken into account in the manner described
by Germanovich and Lowell [1992, 1995] and a separate
paper will be devoted to this case. In this paper, we follow

the notations of Germanovich and Astakhov [2004], so that
the terms ‘‘joint,’’ ‘‘fracture,’’ and ‘‘crack’’ are identical and
we use the term ‘‘opening’’ (as a noun) in a generic sense.
Further, the term ‘‘aperture’’ is synonymous to ‘‘displace-
ment discontinuity’’ in Fracture Mechanics and should be
distinguished from the ‘‘opening displacement’’ (i.e., crack
side displacement), which characterizes the deformed shape
of a loaded (e.g., pressurized) joint. If otherwise not
indicated, the term ‘‘aperture’’ refers to the joint width at
the center, e.g., W = W(0) rather than W(x) (see Figure 2b).

2. Permeability of a Set of Joints

[6] Following others [e.g., Ji and Saruwatari, 1998; Bai
et al., 2000], we consider the case of equally spaced joints
of equal size (Figure 2a). Fluid flow through each joint
can be calculated by employing the parallel flow (lubrica-
tion) approximation [e.g., Bird et al., 1987]. For joints that
are thin and smooth everywhere (except, perhaps, at their
tips), the fluid flow, dq, along each joint increment, dx,
can be considered as the flow between two parallel plates
(Figure 2b):

dq ¼ �
2W 3

*
3h

W

2W*

� �g @p

@z
dx; ð1Þ

where W(x) is the local joint aperture, h is the dynamic
viscosity of the fluid, @p/@z is the pressure gradient along

Figure 1. A set of parallel joints in the alternating siltstone
and shale beds on the Appalachian Plateau near Finger
Lakes, central New York (courtesy of Bruce Carter; see also
Helgeson and Aydin [1991] and Engelder et al. [1999]).

Figure 2. (a) A set of parallel, equally sized and spaced
joints and (b) parallel flow (lubrication) approximation.
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the joint set (see the coordinate set shown in Figure 2b), W*

is the known parameter of the dimension of length (resulting
from the deviation from the cubic law; see below), and p is
the net or excess pressure, which is the difference between
the actual fluid pressure in the joint and the remote stress
perpendicular to the joint [see, e.g., Germanovich and
Astakhov, 2004, Figure 2b]. All main parameters are listed
in Table 1.
[7] In the case of Newtonian fluid, g = 3 in equation (1).

As suggested for fractures with multiscale asperities [Pyrak-
Nolte et al., 1988; Sisavath and Zimmerman, 2000] and/or
contacting sides [Oron and Berkowitz, 1998], it could be

more appropriate to increase the exponent, g, in equation (1).
Nevertheless, the cubic law (g = 3) has been experimentally
demonstrated for fracture apertures larger than 4 mm and for
various rock types [Witherspoon et al., 1980]. Furthermore,
the cubic law can be successfully used for the flow between
nonparallel surfaces if the aperture is harmonically averaged
and the tortuosity of the flow path is included in the
calculation of the pressure gradient [Waite et al., 1999].
Also, in the case of the fluid flow through the open fracture
segments considered in this work, the cubic law provides a
leading order approximation for both parallel and nonpar-
allel fracture walls [Oron and Berkowitz, 1998]. Yet, if the

Table 1. Symbol Definitions

Symbol Definition

Roman Symbols
b distance between joints (Figure 2a)
bm average spacing in the set of unevenly spaced joints (Figure 13)
c joint half-size (Figure 2a)
cm mean joint half-size in the set of joints of different dimensions (Figure 13)
E Young’s modulus
E1 = E/(1 � n2) plane strain elastic modulus
f normalized flow (16) in the end-member joints
k permeability
k0 permeability in the model of non-interacting joints
k1 = k1(s) permeability of the infinite array of (interacting) joints
L = (N � 1)b size of the set of N joints (Figure 2a)
m exponent in the power-law model of non-Newtonian fluid
N number of joints in a set
p net pressure inside joints
q total fluid flow rate
q0 total flow rate in the model of non-interacting joints
q1(s) flow rate through one joint in the infinite array
qn(N, s) fluid flow rate in the nth joint in the set of N joints
s = b/(2c) normalized joint spacing
scr critical joint spacing at which joint sides touch
sm = bm/(2 cm ) mean normalized joint spacing in the set of unevenly spaced joints (Figure 13)
W(x) displacement discontinuity or aperture
W0(x) aperture of a single joint (i.e., in the model of non-interacting joints)
W0 = W0(0) aperture of a single joint in the middle
Wn(x) aperture of the nth joint
Wn(x, N, s) same
Wn = Wn(0) aperture of the nth joint in the middle
Wc = Wc(0) aperture of the central joint in the set in the middle point
Wc(x) aperture of the central joint in the joint set
Wc(x, N, s) same
W1(x) joint aperture in the infinite array
W1(x, s) same
W1 = W1(0) aperture of a joint in the infinite array in the middle
x, y, z coordinate system aligned with the joint (Figure 2)

Greek Symbols
d = (Wc � W1)/Wc relative error of modeling the joint set by an infinite array
d1 = (c1 � c)/c relative error of the three-fracture model for the normalized flow rate
d2 = (c2 � c)/c relative error of approximating c by c2

g exponent in the generalized parallel flow approximation (1)
g = 3 same in the case of the cubic law
h dynamic viscosity of fluid
h0 consistency index in the power-law model of non-Newtonian fluid

k fluid flow ratio or permeability ratio

kmax , kmin
upper and lower limits of fluid flow/permeability ratio, k

kN
fluid flow/permeability ratio for a set of N joints

k1 fluid flow ratio or permeability ratio in the model of infinite array

n Poisson’s ratio
c = (1/s)q1(s)/q1(1) normalized volumetric flow rate in the infinite array
c1 = (1/s)q2(3, s)/q2(3, 1) normalized flow rate approximated based on the three-fracture model
c2 = (1/s)q2(3, s)/q1(1) same as c1 but using q1(1) for normalization
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flowing fluid is non-Newtonian, g in equation (1) may
significantly deviate from 3 [Bird et al., 1987].
[8] In accordance with equation (1), the flow rate through

the nth joint is given by

qn ¼
Zc

�c

dqn ¼ �
21�gW

3�g

*
3h

@p

@z

Zc

�c

Wn xð Þ½ �gdx; ð2Þ

where c is the joint half-size (Figure 2a) and Wn(x) is the
aperture of the nth joint. Then the total flow rate through the
set of N joints can be written as

q ¼
XN
n¼1

qn ¼ �
21�gW

3�g

*
3h

@p

@z

XN
n¼1

Zc

�c

Wn xð Þ½ �gdx: ð3Þ

[9] Comparing equation (3) to the Darcy law

q

2cL
¼ � k

h
@p

@z
; ð4Þ

the (effective) permeability, k, of a set of N joints can be
expressed as

k ¼
2�gW

3�g

*
3cb N � 1ð Þ

XN
n¼1

Zc

�c

Wn xð Þ½ �gdx; ð5Þ

where 2cL is the cross-sectional area and L = b(N � 1) is the
size of the joint set (Figure 2a).
[10] In particular, if the interaction between the joints is

not taken into account, they all have an identical elliptical
shape, Wn

0(x) 	 W0(x) = 4p[(1 � n2)/E](c2 � x2)1/2 [e.g.,
Tada et al., 1985], and expressions (3) and (5) result in

q0 ¼
21�gW

3�g

*
N

3h
� @p

@z

� � Zc

�c

W0 xð Þ½ �g dx

¼
21�gcW 3

*
N

3h
W0

W*

� �g G 1=2ð ÞG 1þ g=2ð Þ
G 1þ gþ 1ð Þ=2½ � � @p

@z

� �

k0 ¼
2�gW

3�g

*
N

3cb N � 1ð Þ

Zc

�c

W0 xð Þ½ �g dx

¼
2�gW 3

*
3b

N

N � 1

W0

W*

� �g G 1=2ð ÞG 1þ g=2ð Þ
G 1þ gþ 1ð Þ=2½ � ;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð6Þ

where here and further index ‘‘0’’ corresponds to the case of
no interaction, W0 	 W0(0) = 4pc(1 � n2)/E, and the
absence of the argument means that the corresponding
aperture (W0 in this case) is computed at the joint center, x =
0. In equation (6), G(z) is the Gamma function and to derive
equation (6), we used expressions (3.249.5) and (8.384.1)
from Gradshteyn and Ryzhik [2000].
[11] Taking into account that G(z + 1) = z G(z), G(1/2) =p
p, and G(1) = 1 [e.g., Gradshteyn and Ryzhik, 2000], in

the case of Newtonian fluid, we have

G 1=2ð ÞG 1þ g=2ð Þ
G 1þ gþ 1ð Þ=2½ � ¼ 3p

8
g ¼ 3ð Þ: ð7Þ

[12] To evaluate the effect of joint elastic interaction, we
first compare the permeabilities of the same joint set loaded
by the same fluid pressure with and without accounting for
joint interaction. Accordingly, we introduce the ratio of
these permeabilities

k ¼ k

k0
; ð8Þ

where k and k0 are defined by equations (5) and (6) resulting
in

k ¼ G 1þ gþ 1ð Þ=2½ �
G 1=2ð ÞG 1þ g=2ð Þ

1

Nc

XN
n¼1

Zc

�c

Wn xð Þ
W0

	 
g
dx: ð9Þ

Note again that k compares permeability of a joint set not to
the stress-independent permeability, but rather to the case of
stress-dependent permeability evaluated by ignoring the
joint interaction.
[13] According to equation (9), to calculate k, we shall

compute the joint apertures, Wn(x), in every point, x, along
the joint axes (i.e., x axes in Figure 2b). As mentioned
above, if the interaction between the joints is not taken into
account, they all have an identical elliptical shape, W0(x),
which, obviously, becomes different as a result of the
interaction [e.g., Germanovich and Astakhov, 2004] and
affects the fluid flow through the joints (see the next
section).
[14] Because the fluid viscosity and pressure gradient are

equal in both cases, the Darcy law (4) suggests that the
permeability ratio can also be written as

k ¼ q

q0
; ð10Þ

where the fluid flow rate, q0, in the case of noninteracting
joints is given by equation (6). Therefore, although we
referred to k as the permeability ratio, it can also be called
the flow rate ratio or, shorter, flow ratio, which also
characterizes the effect of joint interaction on the fluid flow
rate through a given set of joints. Furthermore, the
‘‘permeability ratio’’ only refers to the ratio of effective
permeabilities. According to the definition of the effective
permeability, the flow rates through the joint set and
through the equivalent continous medium with effective
permeability are equal. Hence, in essence, the permeability
ratio simply represents the flow ratio.
[15] In the case of non-Newtonian fluids, it may be

unclear how to define permeability while the concept of
flow ratio (10) still can be used as a convenient way to
characterize the effect of joint interaction. Consider, for
example, the ‘‘power law’’ non-Newtonian fluid, which is
characteristic for many petroleum liquids [e.g., Gidley et al.,
1989; Economides and Nolte, 2000]. In this case, the
viscosity, h, in the constitutive relation tyz = � hdvz/dy
exhibits the power law relation h = h0jdvz/dyjm�1, where m
and h0 are the exponent and consistency index in the power
law model, respectively, tyz is the shear stress in the fluid,
and vz is the velocity of the fluid flow along the joint (in the
coordinate set shown in Figure 2b). For the symmetrical
steady state flow (Figure 2b), the motion equation, @tyz/@y +
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@p/@z = 0, suggests that tyz = �y@p/@z and, therefore,
�h0jdvz/dyjm�1(dvz/dy) = �y@p/@z. Hence jdvz/dyj = jy(@p/
@z)/h0j1/m, so that the fluid viscosity, h = h0

1/m|y@p/@z|1�1/m,
depends upon the position, y, across the fluid flow. This
observation does not allow the use of constant viscosity in
the Darcy law (4). Accordingly, defining the effective
permeability, k, becomes rather ambiguous (unless some
sort of effective viscosity is introduced as well, which is not
a unique procedure).
[16] Yet employing the flow ratio (10) is quite straight-

forward when instead of using equation (1), a slightly more
complex but essentially similar expression [e.g., see Bird et
al., 1987]

dq ¼ 2

2þ 1=mð Þh1=m0

W

2

� �2þ1=m

� @p

@z

� �1=m

dx ð11Þ

is employed. Substituting equations (11) into (10) and
taking into account that the fluid parameters, m and h0, are
the same for interacting and noninteracting joints, we have

k ¼ q

q0
¼

XN
n¼1

Zc

�c

Wn xð Þ½ �2þ1=m
dx

N

Zc

�c

W0 xð Þ½ �2þ1=m
dx

; ð12Þ

which, considering equation (6), becomes identical to
equation (9) if we chose g = 2 + 1/m.
[17] Note that the effective hydraulic conductivity, K =

krg/h, where r is the fluid density and g is the gravitational
acceleration, could also be used instead of effective perme-
ability, k. Obviously, in the case of the incompressible fluid,
as considered here, K/K0 = q/q0, such that k can also be
called the ‘‘ratio of hydraulic conductivities.’’
[18] Because the joint apertures,Wn(x), in equation (3) are

functions of (internal) fluid pressure and (remote) confining
stresses as well as elastic properties, as follows from
equations (3), (5), and (6), stress-dependent permeability
and fluid flow rate do depend upon these parameters. In
contrast, the flow/permeability ratio, k, is strictly a geomet-
rical parameter of flow network structure (even in the case
of non-Newtonian, power law fluids) because the fluid
pressure, confining stress, and elastic properties are the
same for both q and q0, so that they cancel each other in
equation (12) (see also equation (9)). Accordingly, in the
case of parallel joints, k is the function of only two
geometrical parameters, that is, k = k(s, N).
[19] As an example, consider Nolte’s [1987] model that

accounts for the interaction of N 
 2 closely spaced,
identical parallel fractures. In this and similar models
[e.g., Ben Naceur and Roegiers, 1990], all the joints are
assumed to be equally opened and the total (combined)
aperture of N joints is the same as the aperture of one
isolated joint of the same size, 2c. In other words, Wn(x) �
(1/N)W0(x) (N 
 n 
 1, N 
 1). This assumption has
significantly impacted the understanding of multisegmented
hydraulic fractures in petroleum production (see reviews in
the work of Mahrer et al. [1996], Germanovich et al.
[1998]) and supposedly is asymptotically accurate in the

case of small spacing [e.g., Ben Naceur and Roegiers,
1990]. Then the flow rate, q, and permeability, k, of the
set of N joints are easily obtained by replacing Wn(x) in
equations (3) and (5) with W0(x)/N and comparing the
obtained results with equation (6):

k ¼ k0

Ng
q ¼ q0

Ng
: ð13Þ

[20] Below we show that this result, which is obviously
equivalent to k = 1/Ng, strongly overestimates the effect of
joint interaction. In particular, according to equation (13),
regardless of s, k ! 0 and q ! 0 as N ! 1 because the
aperture of each joint monotonically decreases with grow-
ing N. At the same time, for the infinite array of joints,
which characterizes permeability and fluid flow more
realistically for large N (see section 3), k 6¼ 0 and q 6¼ 0
because each joint has a nonzero aperture even for N ! 1
(and fixed s). Furthermore, the end-members of the joint set
are wider open than internal joints (e.g., see Figure 3). As
s ! 0 (and fixed N), all the internal joints eventually become
closed by the interaction [Germanovich and Astakhov, 2004]
while the apertures of the end-members approach half the
aperture of one isolated, noninteracting joint (see the next
section). In other words, W1(x) = WN(x) ! 1=2W0(x),
Wn(x) ! 0 (n = 2, 3, . . . N � 1) as s ! 0 and an
asymptotically correct result is then given by equation (13)
with N = 2, i.e., k = 1/2g rather than k = 1/Ng. Therefore
Nolte’s [1987] assumption indeed drastically underesti-
mates permeability and fluid flow rate, which is the direct
result of too strong interaction between the joints in the
model based on Nolte’s [1987] assumption, that is, Wn(x) =
(1/N)W0(x).
[21] Another example is given by considering joint inter-

action in the model of an infinite array. For a large number
of joints, it is appealing to assume that each joint in the set
of N joints has the same aperture, W1(x), as that in the
infinite array with equal spacing, s, i.e., that Wn(x) � W1(x)
(N 
 n 
 1, N � 1). Replacing Wn(x) in equations (3) and
(5) with W1(x), we have

k1 ¼ q

q0
¼ k

k0

q s;Nð Þ¼ Nq1 sð Þ ¼
21�gW

3�g

*
N

3h
� @p

@z

� � Zc

�c

½W1 xð Þ�gdx

k s;Nð Þ ¼ k1 sð Þ ¼
2�gW

3�g

*
N

3cb N � 1ð Þ

Zc

�c

W1 xð Þ½ �gdx

8>>>>>>>>>>><
>>>>>>>>>>>:

; ð14Þ

[22] Where 71(s) is the flow rate through one joint in the
infinite array that has effective permeability K1(s). While q
and k in equation (14) depend upon N, k1 does not because
q0 and k0 have the same dependence on N as q and k,
respectively (compare equations (6) and (14)). Thus k1 is
independent of the number of joints. In particular, for an
infinite array, N ! 1 and the corresponding k0 and k are
easily obtained from equations (6) and (14) or directly from
equations (4)–(6) by using L = N b rather than L = (N � 1)b.
Below, it is convenient to use notation k1 in the case of an
infinite array, i.e., k1 = k1(s) = k(s, N) (N ! 1).
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[23] Since in the set of parallel joints, interaction sup-
presses openings of internal joints, clearly, k0 provides an
upper estimate of k. In the case of a non-Newtonian fluid,
these permeabilities cannot be uniquely defined, but a
similar argument applies to the fluid flow rates, q0 and q.
Furthermore, it appears that equation (14) represents a lower
limit for k, so that

k1 < k < 1; ð15Þ

and this fork cannot be improved since each bound
represents a specific but asymptotically accurate case.
Therefore further analysis is required to understand the
intermediate cases. Such analysis is presented in the
following sections where it is also shown that indeed k1
represents a true lower bound.

[24] In the following sections, we use m = 1 (Newtonian
fluid) and g = 3 (cubic law) for all particular computations
although it is obviously a trivial task to extend the obtained
results to different m or g.

3. Parametric Analysis

[25] To understand how interaction affects joint apertures
and, consequently, permeability and flow rate, we performed
the parametric analysis by varying s from 0.02 to 10 while N
was changing from 1 to 50. We used the Boundary Collo-
cation Method (BCM) based on Gauss-Chebysev integration
as employed by Germanovich and Astakhov [2004] for
computing bothWn (x, N, s) andW1 (x, s). Several examples
are presented in Figure 3. The main computed quantities
essential for this analysis are given in Tables 2 and 3.

Figure 3. Apertures, normalized by 20cp/E1 (for better visualization), in the joint set with different
number of segments, N, and spacing, s: (a) N = 5, s = 1; (b) N = 5, s = 0.05; (c) N = 10, s = 0.05; (d) N = 10,
s = 0.02; and (e) N = 20, s = 0.05. All plots are shown in the normalized coordinates, x/c and y/c (Figure 2b).
Closed parts of joints (with contacting sides) are not shown [see Germanovich and Astakhov, 2004].
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[26] In the idealized joint setting shown in Figure 2a, two
main parameters affect the joint apertures: (1) the number,
N, of joints in the set and (2) the joint spacing, s. These
parameters affect the apertures differently though. Reducing
s results in closure of some internal joints (Figures 3a
and 3b). Increasing N leads to reopening of these joints
(Figure 3c). Further decrease of the spacing closes these
joints again (Figure 3d).
[27] Since there is always a significant difference in the

openings of edge and central joints, we present their
apertures separately. Figure 4 shows ratios W1/W0 and
W1/W1, where W1 is the aperture of the edge (end-member)
joint (e.g., see Figure 3), W0 is the aperture of a single

(noninteracting) joint loaded by the same pressure, and W1
is the aperture of the joint in the infinite set (see Figure 3
for joint numbering convention and note that W1 = WN due
to the symmetry of the joint sets). Figure 5 presents similar
ratios, Wc/W0 and Wc/W1, for the central joint (e.g., joint 3
in Figures 3).
[28] Figure 4a shows the results for the ratio W1/W0.

Since W0 is the same for all curves, one can see that W1,
the aperture of the edge joint, differs little for various N.
Nevertheless, it is peculiar to note that for N > 3, functions
W1(s) have a local minimum and maximum before they
approach the limit of ½W0 as s ! 0. In Figure 4a, this
minimum is present for all N > 3 while the maximum is

Figure 3. (continued)
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clearly seen for N = 5 and lies beyond the range of our
calculations for N = 10, 20, and 50. Figure 4b shows the
same ratio, W1/W0, as a function of the normalized distance,
L/(2c) = (N � 1)s, between the edge joints, that is, as a
function of the normalized joint set size (Figure 2a). It can
clearly be seen that the curve for N = 2 envelops all other
curves. This indicates that the values of all local maxima in
Figure 4a, including those beyond the range of our calcu-
lations, are bounded by W1/W0 for the set of two joints that
have the same size, L/(2c) = (N � 1)s. In this sense, the case
of two joints represents the extreme of the largest joint
aperture for a given joint set size. Furthermore, since all the
maxima and minima in Figures 4a and 4b lie between the
W1/W0 values of 0.5 and 0.6, this suggests that the devia-
tions of W1(s, N) from the monotonic dependencies do not
exceed 17%, which does not significantly affect joint set
permeability.

[29] The curves of W1/W1 in Figure 4c almost coincide
because although now W1 depends upon s, it is still the
same for all curves and the scale in Figure 4c is much
greater than that in Figure 4a (the small differences between
the curves in Figure 4c are practically not visible). Note that
the total, combined aperture, 2W1, of the edge joints in a
closely spaced joint set is roughly (exactly in the extreme
case of s ! 0) the same as the aperture, W0, of a single,
noninteracting joint of equal size, 2c. However, for sparsely
spaced joints, Wn = W0 (as s ! 1) for any n, which
significantly affects the corresponding flow rates and per-
meabilities (see below).
[30] Figure 5a illustrates that for N 
 10, the aperture,Wc,

of the central joint depends considerably upon the joint
spacing, s, but only weakly on the number of joints, N.
Figure 5b confirms the expectation that Wc should approach
W1 as N increases (see also Figure 3e). However, Figure 5b

Table 2. Computed Normalized Apertures, W1/W0, Wc/W0,Wc/W1, and Flow/Permeability Ratios, k, for Different Numbers, N, of Joints

in the Set and Different Values, s, of Spacinga

N s 10 5 3.33 2 1 0.5 0.33 0.2 0.1 0.05 0.02

2 W1/W0 0.996 0.986 0.969 0.923 0.799 0.659 0.605 0.563 0.531 0.515 0.506
k 0.989 0.957 0.910 0.790 0.526 0.312 0.243 0.191 0.156 0.140 0.131

3 W1/W0 0.995 0.982 0.962 0.909 0.777 0.646 0.604 0.583 0.565 0.532 0.512
Wc/W0 0.993 0.971 0.938 0.849 0.610 0.332 0.211 0.091 0 0 0
Wc/W1 1.005 1.018 1.039 1.093 1.215 1.307 1.263 0.910 0 0 0
k 0.983 0.937 0.869 0.707 0.403 0.211 0.163 0.137 0.122 0.104 0.091

5 W1/W0 0.995 0.980 0.957 0.898 0.759 0.625 0.584 0.566 0.585 0.566 0.526
Wc/W0 0.991 0.964 0.924 0.821 0.572 0.320 0.224 0.144 0.069 0 0
Wc/W1 1.003 1.010 1.023 1.057 1.139 1.260 1.341 1.440 1.380 0 0
k 0.978 0.916 0.829 0.632 0.305 0.132 0.094 0.076 0.078 0.072 0.060

7 W1/W0 0.994 0.979 0.955 0.894 0.751 0.616 0.573 0.555 0.576 0.595 0.540
Wc/W0 0.990 0.961 0.918 0.809 0.553 0.304 0.212 0.138 0.073 0.009 0
Wc/W1 1.002 1.007 1.017 1.041 1.102 1.197 1.269 1.380 1.460 0.340 0
k 0.975 0.906 0.809 0.596 0.262 0.100 0.068 0.052 0.053 0.058 0.030

10 W1/W0 0.994 0.978 0.954 0.891 0.746 0.608 0.565 0.545 0.565 0.588 0.560
Wc/W0 0.989 0.959 0.914 0.800 0.539 0.291 0.201 0.130 0.072 0.036 0
Wc/W1 1.001 1.005 1.012 1.030 1.074 1.146 1.204 1.300 1.440 1.440 0
k 0.972 0.897 0.792 0.566 0.228 0.077 0.049 0.036 0.035 0.038 0.035

20 W1/W0 0.994 0.977 0.952 0.888 0.739 0.598 0.553 0.530 0.546 0.567
Wc/W0 0.989 0.956 0.908 0.788 0.521 0.274 0.186 0.118 0.065 0.036
Wc/W1 1.001 1.002 1.006 1.014 1.038 1.079 1.114 1.180 1.300 1.440
k 0.969 0.885 0.769 0.526 0.187 0.050 0.027 0.018 0.016 0.018

30 W1/W0 0.994 0.977 0.952 0.887 0.737 0.595 0.548 0.524 0.537 0.556
Wc/W0 0.988 0.955 0.906 0.785 0.515 0.268 0.180 0.113 0.061 0.034
Wc/W1 1.000 1.001 1.003 1.010 1.026 1.055 1.078 1.130 1.220 1.360
k 0.968 0.880 0.760 0.512 0.172 0.041 0.021 0.012 0.010 0.011

50 W1/W0 0.994 0.978 0.951 0.886 0.735 0.592 0.544 0.518 0.529 0.544
Wc/W0 0.988 0.955 0.904 0.782 0.510 0.262 0.176 0.108 0.057 0.031
Wc/W1 1.000 1.001 1.001 1.006 1.016 1.031 1.054 1.080 1.140 1.240
k 0.966 0.867 0.752 0.498 0.159 0.034 0.015 0.008 0.006 0.010

1 W1/W0 0.988 0.954 0.903 0.777 0.502 0.254 0.167 0.1 0.05 0.025 0.01
k 0.966 0.871 0.741 0.482 0.143 0.024 0.008 0.002 3�10�4 3�10�5 1�10�6

aZero apertures refer to closed joints.

Table 3. Computed Joint Aperture Ratios, W1/W0, Wc/W0, Wc/W1, and Flow/Permeability Ratios, k, for Different Numbers of Joints, N,

and the Corresponding Critical Values, scr, of Joint Spacing, s

N 3 4 5 7 10 20 30 50

scr 0.129 0.095 0.093 0.092 0.093 0.094 0.095 0.095
W1/W0 0.584 0.593 0.590 0.581 0.570 0.550 0.541 0.531
Wc/W0 0 0 0.062 0.064 0.063 0.060 0.058 0.055
Wc/W1 0 0 1.319 1.391 1.340 1.277 1.208 1.146
k 0.133 0.101 0.079 0.054 0.036 0.016 0.010 6.0 � 10�3
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also shows that Wc approaches W1 slower for the smaller s.
Therefore for closer joints, a greater number of joints in the
set is required for the approximation of the infinite set to be
sufficiently accurate for computing the apertures of the
central joints.
[31] The discussion above shows that although it is often

tempting to replace a set with N � 10 joints (more so for

N > 10) by an infinite array (see equation (14)), this should
be done with some care. For example, for N = 10 joints
located rather sparsely at s = 1, the relative error, d = (We �
W1)/Wc, of this approximation is 6.9% while increasing N
to 50 decreases this error to 1.6%. For N = 10 joints spaced
more densely at s = 0.1, d = 30.5% while for N = 50 joints
and the same s = 0.1, the error is d = 12.3%. Note that these

Figure 4. Normalized apertures (a and b)W1/W0 and (c) W1/W1, as functions of spacing, s, for different
numbers of joints, N, in the set (indicated in the legends). In Figure 4b, normalized size, L/(2c), of the
joint set (see also Figure 2a) equals (N � 1)s, i.e., normalized distance between two edge joints.
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errors were calculated with respect to the joint apertures
while the corresponding flow rates and permeabilities can
be affected more seriously (see below).
[32] Thus Figures 4 and 5 illustrate that the apertures of

edge and internal joints in a closely spaced set differ
considerably, which, in turn, may significantly affect the
pattern of fluid flow. This can clearly be seen from Figure 6
that shows the fraction

f ¼ q1 þ qNPN
n¼1

qn

ð16Þ

of the fluid flow, q1 + qN, through two edge joints with
respect to the combined flow, q, through all joints as a
function of joint spacing, s. One can see that for s < 0.1,
only a small fraction of the fluid flows through internal

Figure 5. Normalized apertures (a) Wc/W0 and (b) Wc/W1,
as functions of the number of joints, N, in the set for
different values of spacing, s (indicated in the legends).

Figure 6. Normalized fluid flow (equation (16)) through
the end-members as a function of joint spacing, s, for
different numbers of joints, N, in the set (indicated in the
legend). This ratio tends to zero for N ! 1.

Figure 7. Permeability, k, of a set of joints as a function of
joint spacing, s, for different numbers, N, of joints in the set
(indicated in the legend). Left vertical scale shows k in m2,
while the right scale corresponds to the relative perme-
ability, k(s)/k1(1).
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joints (within the considered range of N). For example, for
N = 50 and s = 0.1, 94.5% of the total fluid flow passes
through the two edge joints while only 5.5% of the fluid
flows through the remaining 48 joints between them. This
result suggests that indeed as a result of joint interaction, the
fluid flow through the joint set may become highly
nonuniform and focused at the set edges.
[33] The bulk permeability of jointed rock is also

considerably affected by joint interaction. This can be
observed from Figure 7, which shows the dependence of
the overall permeability, k, of a joint set on the joint
spacing, s. In plain strain elasticity, the crack opening
displacement depends upon the elastic properties of the
host material. However, the relative permeability, k(s)/
k1(1), does not depend on those (right vertical scale in
Figure 7). To estimate the expected permeability changes
in a typical formation (E = 1010 Pa, n = 0.25), we also
present in Figure 7 (left vertical scale) the absolute value,
k(s), of permeability computed directly from equation (5).
Since permeability is linearly related to the excess pres-
sure, p, applied inside the joints, any value of p can be
chosen for a particular computation as long as joints do
not propagate for the chosen value. As an extreme yet
characteristic case, we chose for the value of p the largest
normal traction at which one isolated joint is just about to

propagate vertically. This value is determined from the
condition, KI = KIc, of fracture propagation, where KI is
the stress intensity factor [e.g., Tada et al., 1985] at the
fracture front (tip), and KIc is the fracture toughness of the
host material. For most rocks the typical value of KIc is
�1 MPa � m1/2 [e.g., Atkinson and Meredith, 1987].
Since the stress intensity factors at the tips of all joints
in a parallel set are smaller than KI at the tip of the
isolated (noninteracting) joint, it is expected that no joint
in the set will propagate at this pressure ( p = 0.56 MPa for
joints of 2c = 1 m size and KIc = 1 MPa � m1/2). Note
that even if KI > KIc, this does not necessarily mean that
joints will propagate vertically any considerable distance
after they cross the bedding interfaces (Figure 8).
[34] Joint spacing, s, affects the set permeability, k, in

two ways. On the one hand, decreasing s grossly results
in the closure of the parallel joints (because of their
interaction; see Figure 3 and Table 2). On the other hand,
more joints appear in the unit area (normal to fluid flow
direction) with decreasing s, resulting in the permeability
increase (see equation (4)). As can be seen from Figure 7,
for any N (including N = 1), k increases with decreasing
s until s � 1.7. For s > 1.7, joints in the set are located
relatively far from each other so that the interaction is not
yet strong enough to close them considerably, but this
factor becomes more dominant with the increasing den-
sity of joints (i.e., with decreasing s). With a further
decrease in spacing, i.e., for s < 1.7, the interaction
significantly reduces the aperture of internal joints
(Figure 5a) while it only weakly affects the edge joints
(Figure 4a). Accordingly, k decreases until the contribu-
tion of the internal joints becomes negligible, focusing
essentially the entire flow through the edge joints. This
corresponds to the minima in Figure 7 because for
smaller spacing (and fixed N), (a) internal joints are
practically closed (e.g., see Figures 3 and 5) and do
not contribute to the flow anymore, (b) the aperture of
the edge joints does not change considerably (Figures 3
and 4a), and (c) the total area occupied by the joint set
decreases. Note that the minimum and maximum do not
appear for N = 3 since the contribution of only
one central joint is not strong enough and most of the
flow occurs through the edge joints even for large s.
For greater N, however, the internal joints do contribute
considerably to the fluid flow if the spacing is sufficiently
large while the edge joints start dominating only at
smaller s. This, in fact, is the main reason for the minima
and maxima in Figure 7.
[35] As discussed above, it is appealing to introduce a

permeability model based on the infinite array of parallel
joints (see equation (14)). Figure 7 also shows the conse-
quence of this limit (N ! 1). Since there are no edges
(end-members) in the infinite set, the corresponding perme-
ability, k1, decreases monotonically with decreasing spac-
ing. One can see that the absolute value of k1 can be orders
of magnitude smaller than k for the corresponding set with
finite number of joints. Furthermore, k1 decreases while for
closely spaced joints, k increases with decreasing s.
[36] Finally, Figure 9 presents the results of the calcu-

lations of the flow ratio, k = q/q0 = k/k0, which allows the
comparison of the stress-dependent flow rates/permeabil-
ities for interacting and noninteracting joints. One can see

Figure 8. A mechanism of fracture confinement: if a
pressurized fracture grows beyond an interface between two
different rock layers and deviates from its plane [e.g.,
Renshaw and Pollard, 1995], the fluid inflow into the tip
zone will be restricted by the ‘‘turn’’ (tortuosity), consider-
ably reducing the pressure after the interface. Similar to
Barenblatt’s [1962] process zone, the confining stress
(shown by arrows) will then suppress further crack growth.
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from Figure 9 that, as expected, k � 1 for large spacing
(s� 1). In this case, joint interaction does not result in q and
k significantly differing from q0 and k0, respectively, i.e.,
q � q0 and k � k0. For s � 1 and smaller, generally, k � 1
(i.e., q � q0 and k � k0). Accordingly, as can be seen from
Figure 9, the stress-dependent permeability, k0, and flow
rate, q0, determined without taking into account the joint
interaction, can be one or two orders of magnitude greater
than the accurate result because most of the joints in the set
suppress each other as a result of their interaction.
[37] Figure 9 also suggests that if the interaction between

the joints is taken into account based on the model of an
infinite array of equally spaced joints (see equation (14)),
the resulting flow/permeability ratio can be significantly
underestimated. For example, for s = 0.1, replacing the set
with N = 50 joints by the corresponding infinite array results
in k, which is an order of magnitude lower than that
computed accurately. Furthermore, considering N = 10
joints as an infinite array (which is in concert with conven-
tional wisdom) leads to an error of more than two orders of
magnitude (see Figure 9). Note that not accounting for the

interaction will result in the permeability overestimate (see
inequalities (15)).

4. Asymptotic Approximation

[38] The above consideration leads to the following con-
clusions on the asymptotic behavior of the flow ratio, k, as a
function of the joint set parameters, that is, the number of
joints, N, and the joint spacing, s. The rather obvious upper
limit, kmax, of k is given by the case of noninteracting joints,
which have the widest possible aperture, W0, for a given
pressure and joint size. Then kmax is a function of s alone
(see equation (6)), kmax = 1 as s ! 1, and this limit cannot
be improved. The lower limit, kmin, is less apparent since it
is a function of both N and s. However, for any finite N, the
aperture, W1 = WN, of the edge segments, approaches 1=2W0

while the apertures, Wn (n = 2, . . ., N � 1), of internal joints
tend to zero as s decreases (see Figure 3 and Table 2). These
two extremes result in the limiting value

kmin ¼
qmin

q0
¼ kmin

k0
¼ 1

q0

XN
n¼1

qn ¼
1

4N
s ! 0; N ¼ constð Þ

ð17Þ

since q1 = qN! q0/(8N) and qn! 0 (n=2, . . .,N� 1) if s! 0.
[39] On the other hand, for N ! 1 and any fixed s, the

apertures, Wc, of the central joints approach those of joints
in the infinite set, i.e., W1. For sufficiently large N (which
depends on s), the number of such central joints becomes
great enough for the contribution of the set edges to be
negligible (e.g., see Figure 6). In this extreme of N = 1, k
is a function, k1(s), of s only. At present, function k1(s)
can only be obtained by numerically computing W1(x)
numerically [see Germanovich and Astakhov, 2004] and
using equation (14). Nevertheless, two asymptotes, as s !
1 and s! 0, are available. The first one corresponds to the
case of noninteracting joints and represents the upper limit,
kmax = 1, of k, which means that k1(s) ! 1 as s ! 1. The
second one corresponds to the case of infinitesimally close
joints, so that the pressure, p, applied to the joint sides
homogeneously compresses the ideally thin slab between
the joints (Figure 10a). Then, except for the small proximities
of the joint tips, the joint sides are displaced almost uniformly
and become practically parallel (Figure 10a) [see also
Germanovich and Astakhov, 2004, Figure C2]. Therefore,
for small s, W1(s) is proportional to s in the leading term.
Consequently, k1(s) / s3 when s ! 0 because for small s,
W1(x) is almost constant along the joints while W0(x) does
not depend upon s (see also equation (6)).
[40] Therefore k1(s) can now be approximated by

k1 sð Þ ¼ s3

s3 þ asþ b
; ð18Þ

which has correct asymptotics for both small and large s and
any values of parameters a and b. We chose these
parameters by fitting equation (18) to the data for the ratio
k presented in Table 2. The least square method gives the
values of a = 3.546 and b = 2.931, showing very good
agreement between the computed and approximated results
(Figure 11).

Figure 9. Permeability/flow ratio, k, as a function of joint
spacing, s, for different numbers, N, of joints in the set
(indicated on the plots). Curves represent results of this
work (based on equations (6), (7), and (9)) while horizontal
straight lines correspond to Nolte’s [1987] approximation
given by expression (13).
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Figure 10. Leading asymptotic components of the joint side displacements in (a) the infinite array (only
two neighboring joints are shown) and (b) a set of two joints. Dashed lines indicate the original positions
of the joint sides while solid curves show the deformed state. See color version of this figure in the
HTML.
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[41] Another extreme, which can be considered as an
opposite to the case of N ! 1, is given by the set with
N = 2 joints (N = 1 represents a trivial case). Similarly to the
infinite array, k is a function, k2(s), of s alone and for
arbitrary s, this function can only be obtained numerically.
Yet, two asymptotes, for s!1 and s! 0, are also available
in this case, so that k2(s) ! kmax = 1 as s! 1 and k2(s) !
kmin = 1/8 as s ! 0 (see equation (17)). These define the
behavior of k2(s) for the large and small s, respectively. The
latter limit can be determined more accurately, however, by
taking into account that the leading term of W1(x) for s ! 0
is given by W1

�(x), which corresponds to the displacement,
½W0, of the external joint sides (Figure 10b). Then the next
term, W1

+(x), corresponding to the displacement of the
internal joint sides (Figure 10b), is given by the compression
of the ideally thin slab between the joints (see Figure 10b) by
the homogeneous pressure, p, applied to the joint sides.
Similar to the discussed above case of N = 1 and small s,
this additional term W1

+(x) / s (compare Figures 10a and
10b). Since W1

�(x) = O(1), W1
+(x) is of higher order and will

be further omitted.
[42] Therefore a simple approximation given by

k2 sð Þ ¼ 1� 1

cs2 þ dsþ 8=7
; ð19Þ

also has correct asymptotics for both small and large s and
any values of parameters c and d. In equation (19), the 8/7
term assures that k2(s) has the correct limit, 1/8, for s ! 0,

which corresponds to the leading term, ½W0(x), in W1(x).
The values of c = 0.525 and d = 0.365, also obtained by the
least squares method, provide good agreement between the
calculated and approximated results (Figure 11).
[43] All limiting cases for k(s, N) are summarized in

Table 4. A simple interpolation between these cases is given
by

k s;Nð Þ ¼ 4k1 sð Þ N � 2ð Þ þ 8k2 sð Þ
4N

; ð20Þ

which can be verified directly by comparing equation (20)
with Table 4. Note that approximations (18) and (19) are
certainly not unique and can be replaced in equation (20) by
any other appropriate functions as can be equation (20)
itself. However, expressions (18), (19), and (20) have,
probably, the simplest yet asymptotically correct forms and
were chosen based on this consideration. This resulted in a
sufficiently good agreement between the computed and
approximated results (Figure 12) in the whole range of s and
N. Indeed, the relative error given by equation (20) does not
exceed 27%, which can be often ignored in most
applications involving rock permeability. Such a relatively
small inaccuracy is well compensated by the opportunity to
evaluate the stress-dependent flow rate in joint systems with
a very large number of joints. At present, N � 102 and s �
10�2 represent the limits of the computations that can
generally be conducted with the commonly available
computer power. Though these parameters are within the
range observed in the field (see, e.g., the review in the paper
by Germanovich and Astakhov [2004]), they still could be
far from what is needed from a practical standpoint, e.g.,
required for modeling large petroleum reservoirs [e.g., Long
et al., 1996]. The application of the closed-form formula (20)
allows the estimation of the permeability/flow ratio, k, for an
arbitrarily large number of closely spaced joints. In fact, the
greater N and the smaller s, the more accurate the results
given by expression (20), while the case of very large N and
small s is the computationally most difficult. An example for
N = 1000 is shown in Figure 12 by the dashed curve, which
would be a rather challenging task to compute numerically.

5. Discussion

[44] The adopted assumptions of constant spacing and
equal joint size are not critical for the results obtained in the
previous sections. Figure 13 demonstrates that regardless of
details of joint spacing and layer thickness distributions, the
fluid flow through the joint set may become highly hetero-
geneous and focusing in the end-members. This conclusion
is rather robust and appears to be justified in the case of

Figure 11. Comparison of the closed-form approximations
(lines) with computed results for functions k1(s) (circles)
and k2(s) (boxes) given by expressions (18) and (19),
respectively (see also Table 4). See color version of this
figure in the HTML.

Table 4. Asymptotic Properties of the Flow/Permeability Ratio, k
Conditions Limits Auxiliary Limits

s ! 1, N = const k ! 1 N/aa

s ! 0, N = const k ! 1
4N

N/a

N ! 1, s = const k ! k1(s) k1(s) ! 0 (s ! 0)

k1(s) ! 1 (s ! 1)

N ! 2, s = const k ! k2(s) k2(s) ! 1/8 (s ! 0)

k2(s) ! 1 (s ! 1)
aN/a, not applicable.
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uneven distances between the joints as long as the joint
spacing is relatively close to critical scr = 0.94 (Table 3) [see
also Germanovich and Astakhov, 2004]. In this case, the
end-members (i.e., edge joints) will be widely opened while
all internal segments will be suppressed by the interaction
(as shown in Figures 3b–3e and 13). Nevertheless, it should
be mentioned that for joint sets observed in the field, it is
often difficult to determine the exact locations of the edges
of the joint set (e.g., see Figure 1). As a zero approximation,
the ‘‘edges’’ could be defined as places in the joint set
where the spacing between the joints is of the order of the
joint size (i.e., the lithological layer thickness) or greater. As
Figure 3a suggests, the joint aperture should then not be
notably affected by the interaction and, therefore, the
neighboring joints separated by such a ‘‘large’’ distance
will be widely open which corresponds to the edge con-
ditions in the joint set.
[45] The existence of the maximum for k(N, s) (Figure 7)

was probably first suggested by Bai and Pollard [2001]. On
the basis of the three-fracture model [Bai et al., 2000], they
computed the aperture, Wc(x, N, s) = W2(x, N, s) of the

central fracture in the set of N = 3 fractures. They assumed
that this fracture can be used to approximate the aperture,
Wn(x, N, s), of any fracture in a row composed of many
(N � 1) equally spaced fractures. They further introduced
the normalized volumetric flow rate, c(s) = q(s)/q(1), where
q(s) and q(1) are, respectively, the total flow rates in the
fracture set with spacing s and in the reference fracture set
of the same size, L, but with fracture spacing equal to the
fracture size, i.e., s = 1.
[46] For the fracture set of size L (Figure 2a) and with

spacing s, the number of fractures in the set is N = 1 + L/b =
1 + L/(2cs) while for the reference set with s = 1, the number
of fractures N1 = 1 + L/(2c). For a large number of fractures,
N = L/b = L/(2cs) and N1 = L/(2c) (s = 1), so that N/N1 = 1/s.
Since in the three-fracture model, qn(N, s) and qn(N, 1) are
approximated by q2(3, s) and q2(3, 1), respectively, q(s) and
q(1) can be represented by Nq2(3, s) and N1q2(3, 1), where,
as usual, qn(N, s) denotes the flow rate in the nth of N
fractures. Therefore, according to the three-fracture model,
c can be approximated by c1 = (1/s)q2(3, s)/q2(3, 1).
[47] In the case of the infinite array, q(s) = Nq1(s) and

q(1) = N1q1(1) have a meaning of flow rates through the
array segment of dimension L. We can then write c =
(1/s)q1(s)/q1(1), where q1(s) is the flow rate through one
fracture in the infinite array. Apparently, such defined
c coincides with k1(s)/k1(1) plotted in Figure 7 and we
further compare the results obtained by the three-fracture
method to the accurate computations based on equation (14)
(see Appendix C in the paper by Germanovich and Astakhov
[2004] for details on computing W1(s)). Obviously,
considering infinite array instead of the finite set of frac-
tures does not change c1, that is, c1 = (1/s)q2(3, s)/q2(3, 1).
[48] Quantities c and c1 are given in Table 5, which also

includes the error, d1 = (c1 � c)/c of approximating c by
c1, that is, computed based on the three-fracture model.
Because c and c1 are based on different normalization,
these quantities do not converge with increasing spacing.

Figure 13. Apertures (normalized, for better visualization
by 20cmp/Ei, where 2cm is the mean joint size or layer
thickness) in the joint set with N = 10 and slightly varying
s and c (by 18.7% and 5.3% with respect to their mean
values). In the calculations themean normalized joint spacing
sm = bm/(2cm) was 0.049, where bm is the mean dimensional
spacing. See color version of this figure in the HTML.

Figure 12. Comparison of the closed-form approximations
(lines) with computed results (circles) for function k(s, N)
given by expression (20). Horizontal lines show the limiting
values, 1/(4N) (k(s, N) = 1/(4N) as s ! 0), for each N.
Asymptotic approximations of k(s, 1000) and k1(s) =
k(s, 1) are shown by the dashed and dotted curves,
respectively. See color version of this figure in the HTML.
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Indeed, if s ! 1, q2(3, s) ! q1(s), then c1 ! (q1(1)/
q2(3, 1))c = 0.581c, which corresponds to the limiting value
of d1 =�42% (compare to d1 = 41.3% for s = 5 in Table 5). To
clearer see how the three-fracture model represents the total
fluid flow through the individual fractures in the fracture set,
we also computed c2 = (1/s)q2(3, s)/q1(1) = (q2(3, 1)/
q1(1))c1 = 1.720c1. Comparing c and c2 given in
Table 5, we observe that although employing the three-
fracture model overestimates the volumetric flow rate (i.e.,
q2(3, s) > q1(s)), the relative difference, d2 = (c2 � c)/c
between c and c2 (i.e., between q1(s) and q2(3, s)) reduces
as s increases (d2 = 1% for s = 5). This is of course expected
since W2(x, 3, s) ! W1(x, s) ! W0(x) as s ! 1. For
sufficiently large s, the observed overestimation is due to the
inequalityW2(x, 3, s) >W1(x, s), which can be explained by a
greater (infinite) number of ‘‘neighbors’’ and, accordingly,
larger constrain compared to the central fracture in the three-
member set (that only has two ‘‘neighbors’’). As s reduces,
W2(0, 3, s) decreases faster than W1(0, s) (see also Table 2)

and, in particular, the central fracture in the three fracture set
closes at s � scr while W1(x, s) > 0 for any s. However, the
central fracture in the three-fracture sets still has open parts
that are relatively weakly confined by ‘‘only’’ two and
relatively more remote adjacent fractures. These open parts
are still available for fluid flow, which in the three-fracture
model is greater than that through the narrower though fully
open fracture in the infinite array. Therefore, although
somewhat counterintuitive, c1 > c, or in other words,
q2(3, s) > q1(s), even in for small spacing, s. Note, that in
the case of finite number of fractures, the three-fracture
method disregards the (widest) end-members, so that c1

may underestimate c.
[49] On the basis of the three-fracture model, Bai and

Pollard [2001] obtained that the ratio c1 reaches its
maximum value of 1.2 at s � 1.7. Accurately computed
normalized volumetric flow ratio, c, has a maximum value
of 1.7 at s � 1.7 (see also Figure 7). Summarizing the
above discussion, we note that similarly to the case of
fracture aperture [Germanovich and Astakhov, 2004], the
three-fracture model should be used with some care for
evaluating the flow rate through a set of parallel fractures.
More specifically, within the spacing range given in Table 5,
the relative error resulting from employing this method can
be �50% for the total volumetric flow rate and �150% for
the volumetric flow rate through individual fractures, which
may or may not be important depending upon the particular
application.
[50] Taking into account the interaction based on Nolte’s

[1987] suggestion of closely spaced and equally opened
joints, that is, Wn(x) � (1/N)W0(x), results in formula (13),
which, as discussed in section 2, considerably underesti-
mates the permeability and flow rate. This can also be seen

Table 5. Normalized Volumetric Flow Rates, c, c1, and c2, and

the Relative Errors, d1 and d2, Computed for Different Values of s

s c c1 c2 d1,% d2,%

5 1.27 0.746 1.282 �41.3 1.0
3.33 1.617 1.008 1.734 �37.4 7.3
2 1.733 1.255 2.158 �27.6 24.5
1 1 1 1.72 0 72.0
0.5 0.324 0.428 0.736 32.2 127.4
0.33 0.153 0.215 0.369 39.9 140.5
0.2 0.058 0.061 0.106 5.9 82.2
0.1 0.015 0.019 0.033 29.6 123.0
0.05 3.82�10�3 4.86�10�3 8.36�10�3 27.3 119.0
0.02 6.17�10�4 9.47�10�4 1.63�10�3 53.5 164.0

Figure 14. Apertures (normalized by 20cp/E1) of differently pressurized joints in the case of poor
pressure communication between the joints. See color version of this figure in the HTML.
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from Figure 9, where dependencies 1/N3, corresponding to
equation (13), are shown by horizontal lines. Therefore
Nolte’s [1987] approximation, while overestimating the
interaction of joints, gives the lower bound for the perme-
ability of the joint set in the case of small joint spacing.
Note though that this bound is not very accurate since k �
1/N 3 (Figure 9). For the case of large spacing, the approx-
imation of an infinite array results in a more accurate lower
boundary (see Figure 9). Apparently, the approximation of
noninteracting joints gives the upper boundary for the
permeability of a joint set.
[51] As was stressed in section 2, we assumed that the

opening (net) pressure is equal in all joints. From a physical
standpoint, this requires a good pressure communication
between the joints, which, for example, can be provided by
a secondary network of smaller fractures connecting the
main joints. If the conductivities of the secondary fractures
are not sufficiently large (e.g., if the secondary fractures are
small), the pressure communication between the joints may
be rather poor. In this scenario, joints will generally have
different fluid pressures. Accordingly, joints with higher
pressure could have larger apertures and most of the fluid
would flow through them.
[52] Consider an example somewhat related to water

injection into a fractured reservoir (C. Wright, personal
communication, 2002). If pressure communication through
the secondary fracture network is poor, the joint closest to
the point of injection will have the maximum pressure. The
pressure in other joints will generally decrease with increas-
ing distance from the injection point. An example of linear
pressure decrease is shown in Figure 14. In this case, the
apertures of 11 joints, pressurized by the different pressures
(indicated in Figure 14), increase from the end-members to
the central part of the joint set and, therefore, most of the
fluid flows through the central joints adjacent to the
injection point (Figure 14). A rigorous analysis of this
situation is beyond the scope of our paper but we can
certainly conclude that the secondary fracture network may
have a strong influence on the fluid flow distribution in the
main fractures. Depending on the secondary permeability
(in the direction perpendicular to the joints (i.e., y-direction
in Figure 2b), the fluid flow can be highly heterogeneous,
focusing in specific parts of the joint set. Note that as in the
case of equal pressures in the joints, this effect is also a
result of joint elastic interaction since otherwise the flow
would be identical in all (noninteracting) joints.

6. Conclusions

[53] It is well known that the permeability of a set of
joints can significantly vary in response to in situ stress
conditions and pressure of the flowing fluid. Frequently,
joint sets are closely spaced and although joint mechanical
interaction could significantly affect their aperture, the
interaction is usually ignored in the fluid flow models. It
is rather obvious that this approach corresponds to the upper
bound for flow rate and rock permeability. By taking into
account the interaction between the joints, we show that
modeling a joint set by an infinite array provides the lower
bound. The difference between these bounds, however, can
be rather large, so that they may not always be used with the
sufficient accuracy.

[54] From the conceptual standpoint, it is often tempting
to model a set with a finite number of joints by an infinite
array. The results obtained in this work clearly demonstrate
that such a model may result in a significant underestima-
tion (by orders of magnitude) of both the permeability and
flow rate. Similarly, the assumption of noninteracting joints
may significantly overestimate (also by orders of magni-
tude) the stress-dependent permeability and flow rate com-
pared to those computed more accurately when accounting
for joint interaction.
[55] Because the internal pressure can, in fact, close the

pressurized joints while two edge joints (end-members) in
the set remain widely open (since they are not suppressed
from one side by the adjacent joints), unless the number of
joints in the set is exceedingly large (typically, > 103), the
fluid flow through the joint set becomes highly heteroge-
neous, focusing in the edge joints. As a result, the perme-
ability/flow rate dependence on the joint spacing is not
monotonic, but has a maximum and a minimum. The
derived closed-form expression for flow rate/permeability
ratio is asymptotically accurate and allows computations for
rather arbitrary joint sets.
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