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Abstract.  As a first step towards determining the mixing laws for the transport properties of

rocks, we prepared binary mixtures of high- and low-porosity materials by isostatically hot-

pressing mixtures of calcite and quartz fine-grain powders.  We measured the permeability

and storativity of these materials using the oscillating flow technique.  We systematically

varied the effective pressure and the period and amplitude of the input pressure oscillation.

Control measurements were performed using the steady-state flow and pulse decay

techniques.  They showed good agreement with the oscillating flow tests.  The results reveal a

high sensitivity of the hydraulic properties to the volume fraction of the high-porosity quartz-

phase.   Below a critical quartz content, thought to be slightly less than 20 weight-%, the

quartz-aggregate inclusions were disconnected and the overall permeability was low.  Above

the critical quartz content (or, in other words, above the percolation threshold), the high-

permeability inclusions formed a through going connected path and permeability increased

sharply.  We numerically simulated fluid flow through binary materials and found that

permeability should approximately obey a percolation-based mixing law, consistent with the

measured permeability of the calcite-quartz samples.  In addition, the simulations suggested

that, near the percolation threshold, oscillating flow measurements of permeability should

yield decreasing values with increasing oscillation frequency.  We indeed observed that

changing the input frequency affected the measurements in samples above the critical quartz

content but the effect was not at all that predicted by the numerical simulations.
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1. Introduction

One striking characteristic of crustal rocks is their strongly heterogeneous nature at all

observable scales.  However, numerical modeling of geologic formations and/or processes

requires rather coarse discretization.  Thus arises the problem of assigning "effective" values

of the rock properties to the grid-blocks, i.e., averaging out the finer scales of heterogeneity.

Determining the effective physical properties of heterogeneous materials is also of great

interest in mechanical engineering and applied physics (e.g., see Hashin's [1983] classic

review of the theory of composite materials).

 Among the various physical properties of rocks, hydraulic permeability is particularly

challenging.  One reason is that, in nature, rock permeability ranges over more than 11 orders

of magnitude [e.g., Brace, 1980], vastly exceeding the limits of the classic small fluctuations

approach.  It is also well known that permeability does not obey a simple averaging rule [e.g.,

Cushman, 1986; Dagan, 1986; Durlofsky, 1991, 1992; Neuman, 1994; Renard and de

Marsily, 1997].

Here, our goal is to show that one essential ingredient to include in the mixing law for

permeability is the connectivity of the high-permeability heterogeneities.  However, this

statement is somewhat ambiguous in the general case of a continuous distribution of

permeability.  Therefore, following a well-established procedure in applied physics, we

started in the present paper by considering the simplest possible case, i.e., binary mixtures.

Note that binary materials are interesting in their own right.  They can serve as templates for

bimodal geological formations such as sand-shale sequences [e.g., Desbarats, 1987; Rubin,

1995].

Clearly, the effective permeability of a binary mixture must be low (respectively, high) if

the high-permeability phase forms isolated inclusions (respectively, a through going

connected path).  Herrmann and Bernabé [2004] recently proposed a model of the elastic

properties of binary mixtures based on the percolation principle described above and using

cluster statistics from percolation theory [Kirkpatrick, 1973; Stauffer and Aharony, 1992].

We adapted the Herrmann-Bernabé (HB) model to fluid permeability and, in an attempt to test

it, fabricated synthetic rock-like materials that can be described as binary mixtures of high-
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and low-permeability phases.  Three varieties were prepared with different volume fractions

of the two phases.  We cored samples of each variety and measured their permeability and

storativity using the oscillating flow method [Kranz et al., 1990; Fischer, 1992; Faulkner,

1997; Larive, 2002] under varying effective pressure conditions and with different input

periods and amplitudes.

In a seminal study, Kamath et al. [1992] demonstrated that time-dependent flow could be

used in the laboratory to characterize the spatial variations of permeability in rock core-plugs.

Indeed, an apparent decrease of permeability with increasing frequency was observed in

several previous studies [Fischer and Paterson, 1992; Faulkner, 1997; Larive, 2002].  In

principle, this should not happen in homogeneous, isotropic, pressure-insensitive materials.

Hence, the binary materials mentioned above give us the opportunity to test the relation

between frequency dependence and heterogeneity (for example, we speculate that frequency

sensitivity should be maximum near the percolation threshold).  Frequency dependence of

permeability could be also used to quantify heterogeneity in the field.  For example, harmonic

pumping tests with variable frequency has been proposed to characterize fractured formations

[Jouanna, 1992].

The paper is organized as follows.  The materials are described in section 2 and the

experimental procedures in section 3.  In section 4, we report the experimental results.

Section 5 is devoted to numerical modeling.  The percolation-based mixing law and the

frequency effect are discussed in section 6 and some conclusions are drawn in section 7.  The

HB model is described in the Appendix.

2. Materials

As a part of an on-going investigation of the effect of secondary phases on the mechanical

properties of calcite aggregates, Xiao and Evans [2004] recently prepared three large blocks

of porous calcite-quartz aggregates with different proportions of the two minerals (namely,

90-10, 80-20 and 70-30 weight % of calcite and quartz, respectively).   Fine calcite and quartz

powders (grain size < 10 mm) were mixed and subjected to a process called hot isostatic

pressing (HIP) at 200 MPa pressure and 700°C in room-dry conditions.  It turns out that the
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quartz grains tended to form small clumps during mixing, presumably due to electrostatic

forces.  It is believed that clumping should not occur if the powders were saturated with a pH

= 3 solution (i.e., corresponding to zero surface charge in quartz; e.g., Revil and Glover

[1997]).  But that procedure was not employed because of the high solubility of calcite in

acidic solutions.

Owing to a large difference in HIP kinetics between calcite and quartz, the quartz clumps

remained largely uncompacted during the HIP stage while the surrounding calcite matrix

tightly densified.  Thus, the final materials consisted of high-porosity inclusions embedded in

a low-porosity matrix, as confirmed by examining polished sections of the hot-pressed

materials under the scanning electron microscope (SEM) in back-scattered electron mode.

Figure 1 shows SEM micrographs of the 90-10 and 70-30 materials.  In both cases, the quartz

inclusions consist of sharply angular, 6-12 mm large grains and relatively large (3-6 mm),

inter-granular pores.  On the other hand, the calcite matrix shows a typical grain-growth

microstructure (i.e., enlarged 10-50 mm grains and sub-micron pores located at the three-grain

edges), consistent with the observations of Bernabé et al. [1982] on pure hot-pressed calcite.

We cored several samples from the three blocks mentioned above and precisely ground

them to a cylindrical shape.  For reasons that will be made clear latter, two sample sizes were

used.  The S-samples (i.e., 90-10S, 80-20S, 70-30S1 and 70-30S2) had a length of 19.8-20.1

mm and a diameter of 10.0 mm, whereas the L-samples (i.e., 90-10L, 80-20L and 70-30L)

were 38.0-38.2 mm in length and 19.0 mm in diameter.  We measured the connected porosity

fc of each sample using Archimedes method (see Table 1).

3. Experimental Procedures

After jacketing of the sample between two axially bored end-pieces, the sample assembly

was inserted in the pressure vessel, connected to the upstream and downstream vents and

hydrostatically loaded.  For the S-samples, we increased the confining pressure Pc by steps

starting at 30 MPa while keeping pore pressure Pp constant at 20 MPa (the loading sequence

used for each sample can be seen in Figure 2; no measurements were made during unloading).

At each pressure step, we performed a series of oscillating flow tests.  We varied the period T
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of the input pressure oscillation between 10 and 480 s and the input amplitude AU between 0.1

and 1.0 MPa.  We also ran a number of control tests using the steady-state flow and pressure

pulse methods.

We discovered that the downstream reservoir storage was too large compared to that of

the S-samples to allow precise determination of storativity [Bernabé et al., 2004].

Unfortunately, our set-up was such that it was essentially impossible to decrease the size of

the downstream reservoir.  We tried instead to use larger samples (i.e., the L-samples) for

which storativity was measurable.  Since investigating the pressure sensitivity of calcite-

quartz aggregates was not our main goal we did not vary the pressure conditions for the L-

samples (Pc = 50 MPa and Pp = 20 MPa).  This simplified procedure gave us more time to

explore a greater frequency range than with the S-samples.

Since the oscillating flow method has been presented in details in previous studies [e.g.,

Kranz et al., 1990; Fischer, 1992; Faulkner, 1997; Larive, 2002], we will only give a brief

description here.  An oscillation of the upstream pressure (amplitude AU and period T) is

generated using a computer-controlled pump and the resulting pressure oscillation in the

downstream reservoir is recorded.  The early-time transient is discarded and Fourier analysis

is applied to the late-time downstream signal.  A very sharp peak is obtained at the same

frequency as the input (i.e., upstream) oscillation.  After all frequencies except the peak

frequency are filtered out, the downstream oscillation is found attenuated and phase-shifted

with respect to the input signal.  We denote A  = A D/AU<1 the downstream to upstream

amplitude ratio and q  = q D-qU>0 the phase-shift (the subscripts D and U refer to the

downstream and upstream oscillations, respectively).  In the case of a homogeneous material,

the flow configuration is effectively one-dimensional.  The late-time solution of the one-

dimensional, Fourier-transformed, flow equation with the appropriate boundary conditions

(see section 5.2) is [Kranz et al., 1990; Fischer, 1992]:

Ae- iq = 1+ i
xh

sinh 1+ i( )
x
h

È 

Î Í 
˘ 

˚ ˙ + cosh 1+ i( )
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Î Í 
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¯ 
˜ 

-1

(1).

The dimensionless parameters x and h in equation (1) are defined by:
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x =
SLb
bD

, h = STk
pLmbD

(2),

where S is the sample cross-section area, L the sample length, b the sample storativity, bD the

downstream reservoir storage, k the sample permeability and m the fluid viscosity.  Note that

Fischer [1992] used different dimensionless parameters, g = bD/SLb and y = L(pmb/Tk)1/2,

which allow rewriting equation (1) in a slightly nicer form.  The use of y is disadvantageous

however, because y depends on both storativity and permeability.  Therefore, g and y cannot

be interpreted as independent material properties.

Equation (1) is highly non-linear and must be solved numerically for x and h, usually

using some kind of optimization method. Once x and h are determined, k and b  can be

calculated using equations (2).  Here, we applied a method developed by Bernabé et al.

[2004] that allows estimating the uncertainty on k and b assuming the experimental

uncertainty on A and q.

4. Results

4.1. Effective pressure dependence

The values of k measured for the S-samples are shown in Figure 2 as functions of effective

pressure Peff = P c-Pp.  Notice that ensemble-averaged values were plotted in Figure 2 (the

measurements were repeated 3 to 6 times) and that the vertical bars indicate plus or minus two

standard deviations.  The first observation is that k increased significantly with quartz content

(see also Table 1).  A second observation is the moderate pressure sensitivity of permeability.

Interestingly, the pressure sensitivity of k increases with quartz content, implying that the

pores are more deformable within the quartz inclusions than inside the calcite matrix.  This is

consistent with the pore microstructure observed in Figure 1.  The pores in the quartz

inclusions tend to be more elongated than those in the calcite matrix.

4.2. Frequency dependence

First of all, we emphasize that neither permeability nor storativity can really be frequency

dependent in the range of frequencies used here (inertial effects arise at much higher
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frequencies, on the order of tens of kHz; e.g., Johnson et al. [1987]).  However it is entirely

possible that, in the heterogeneous, moderately pressure-sensitive materials considered here,

changing the input period affects the quantities measured in an oscillating flow test, i.e., the

amplitude ratio A and phase-shift q.  Since the standard interpretation method does not include

any correction for this kind of effect, an apparent dependence of k and b on frequency may

then be observed.  Thus, this section is devoted to describing the effect of frequency on

"apparent" k  and b .  Note that the term "apparent" will be omitted but always implied

hereafter.

In order to examine the effect of frequency, we plotted k and b measured on the L-samples

(i.e., the simple optimization solutions of equation (1) indicated by gray dots in Figure 3) as

functions of T.  Furthermore, we estimated the k and b uncertainties [Bernabé et al., 2004]

assuming an uncertainty on A of 0.001 and a time resolution dt = 0.2 s, leading to a phase shift

uncertainty equal to 2pdt/T.  The results of this uncertainty analysis are shown in Figure 3

where the error bars represent the entire range of possible k and b values and the open

diamonds indicate the geometric averages (note that, except for the longest periods, they

nearly coincide with the optimization solutions).  We see that the uncertainty on k and b

strongly increases for T lower than 30 s.  This is consistent with the observed increasing

variability of the S-sample measurements (indicated by stars in Figure 3) at decreasing T and

the fact that we experienced serious difficulties to control the upstream pump at very small

periods and generate an accurate sinusoidal signal.  The relative uncertainty was much larger

on b than on k, a common observation in oscillating flow studies [e.g., Takahashi, 2003] and a

consequence of an overly large downstream reservoir [Bernabé et al., 2004].  Moreover, we

performed very long flow tests on the L-samples, allowing us to run the Fourier analysis in

moving time-windows.  We thus checked that, except for the longest periods, early-time

transients had enough time to die out and did not influence the measured values of A and q.

However, in long-period measurements, the early-time transients most likely led to systematic

overestimations of A and/or underestimations of q.  We tried to take this into account and

applied a range of reasonable corrections to the A and q values, resulting in a significant
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increase of the estimated k and b uncertainties and the discrepancy between corrected and

uncorrected values (compare the open diamonds and gray dots in Figure 3 for T > 300 s).

Figure 3 displays a rather complex and, as will be discussed later, unexpected frequency

dependence of both k and b.  Within the estimated uncertainty, the 90-10L sample did not

display any significant effect of frequency on permeability and storativity, but the 80-20L and

70-30L samples behaved quite differently.  In both samples, k and b decreased with increasing

period, eventually reached a minimum and increased again.  These variations were more

pronounced for 70-30L than 80-20L.  We verified that the S-samples exhibited the same

behavior as described above.  A direct comparison was possible for the measurements

performed at Peff = 30 MPa.  In the other cases, we had to remove the effect of pressure.  The

entire set of pressure-corrected data-points is plotted in Figure 3, showing that the frequency

effects reported above were consistently observed in all samples and under all pressure

conditions.  Finally, as expected in heterogeneous materials, different samples of the same

material variety turned out to have slightly different permeabilities.  The fact that the

permeability of the L-samples was systematically higher than that of the S-samples is

puzzling.  But, in view of the small number of samples considered here, this may merely have

been a coincidence.

5. Numerical simulations

The flow equation in a heterogeneous, porous medium is:

∂
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∂x
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Á ˆ 
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+
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(3),

where Pp, k and b are functions of the space coordinates x, y and z.  In a binary material, k and

b can only take two possible values (denoted k1, k2, and b1, b2, respectively).  Omitting the

early-time transient in an oscillating flow test, we can rewrite equation (3) in the Fourier

domain as:
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where w  = 2p/T is the angular frequency and P is a complex scalar function giving the

amplitude and phase of the late-time pressure oscillations at any point in the sample.  The

upstream, downstream and lateral boundary conditions are respectively written:

Px = L = AU (5),

iwbDPx = 0 =
kx = 0

mS
ÚÚ

∂P
∂x

Ê 
Ë 

ˆ 
¯ x =0

dS (6),

and ∂P
∂y

=
∂P
∂z

= 0 (along the sides) (7).

Equation (5) defines the input pressure oscillation, equation (6) expresses the fluid volume

balance in the downstream reservoir, and equation (7) states that the sample is enclosed in an

impermeable jacket.  We rewrite equations (4-7) in dimensionless form:

∂
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and 2iPx = 0 = a 2hx =0
S
ÚÚ

∂P
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Ë 

ˆ 
¯ x = 0

dS (10),

where x, y and z now denote normalized space coordinates (i.e., divided by L), S represents the

normalized cross-section area, a2 = L2/S  is a measure of the sample aspect ratio, and equation

(7) remains unchanged.

The system above can be solved numerically as follows.  1) We consider a (two- or three-

dimensional) rectangular grid and randomly distribute phase 1 and phase 2 over the (square or

cubic) grid-blocks according to the probabilities p1 and p2 = 1 - p1 (i.e., the volume fractions of

phase 1 and phase 2, respectively).  2) Equations (8) and (10) are discretized using a standard

centered finite-difference scheme (including standard implementation of the upstream and

lateral boundary conditions).  We obtain a system of linear equations, whose unknowns are
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the (complex) values of P at the center of each grid-block.  3) We invert the (complex) matrix

of this system using Cholesky decomposition or the conjugate gradient method depending on

the size of the matrix (i.e., the number of grid-blocks).  An example of a two-dimensional

realization corresponding to p1 = 0.35 (with h1<h2 and x1<x2) is shown in Figure 4 as well as

the resulting amplitude and phase fields (i.e., absolute value and argument of P).  We

observed that, for p1 near 1 or 0, the contour lines in the amplitude and phase fields were

regularly distributed, nearly straight, vertical lines.  But, as illustrated in Figure 4, the

amplitude and phase fields became irregular and intricate for p2 near the percolation threshold

of the high-permeability phase.  In order to interpret the results of these simulations in terms

of effective h and x (i.e., effective, dimensionless permeability and storativity), we recorded P

= Ae-iq on the downstream face and tried to solve equation (1) as was done for the physical

oscillating flow measurements.  This turned out to be a difficult and time-consuming exercise

(because of the existence of relative minima, the initial parameters of the optimization

algorithm had to be adjusted for each individual cases).  As a consequence, we had to limit the

number of realizations to about 10 for each p1 considered.  To remedy this deficiency, we also

performed steady-state simulations.  In this case, the b-term disappears and equation (8) only

depends on the permeability ratio, k1/k2 = h 1/h2.  Note that the finite-difference version of

equation (8) is equivalent to the Kirchoff equations in a square (or cubic) network where the

conductance between two connected nodes (i.e., the centers of two touching grid-blocks) is

given by the harmonic average of h in the corresponding grid-blocks.  This analogy allowed

us to utilize previously implemented network simulation programs.  We could thus consider

two-dimensional square and three-dimensional cubic lattices, significantly increase the size of

the networks up to 50x50x50 and the number of realizations to 500, and explore a larger range

of permeability ratio (i.e., h1/h2 from 10-1 to 10-6).

5.1. Effective Permeability

The results of two-dimensional oscillating flow simulations with h1 = 0.001, h2 = 1., x1 =

0.01 and x2 = 0.1 are displayed in Figure 5.  The dots represent the ensemble geometric

average of h (Figure 5a) and the arithmetic average of x (Figure 5b).   The fluctuations of h

and x  are indicated by the vertical line segments (i.e., they connect the minimum and
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maximum of the set of values corresponding to each volume fraction p2).  We can see that the

fluctuations are small for p2 close to 0 or 1, and become large near the percolation threshold of

the high-permeability phase (i.e., 0.59 in two dimensional square grids).  We see in Figure 5a

that, for p2 up to about 0.55, the effective h (i.e., dimensionless permeability) closely follows

the two-dimensional, lower Hashin-Shtrikman (HS) bound [Hashin and Shtrikman, 1962] and

then increases sharply to finally join the upper HS bound for p2 approaching 1.  This behavior

is in excellent agreement with the HB model with the exponent equal to 0.5 (see the

Appendix).

The steady-state, two- and three-dimensional flow simulations fully concurred with Figure

5a.  This is illustrated in Figure 6 showing the steady-state results for 10x10x10 and 50x50x50

networks and for h1/h2 = 10-4, superposed on the three-dimensional HS bounds and the HB

model (with an exponent of 0.9).  We can see that the fluctuations of h decrease with

increasing network size and become very small in 50x50x50 networks (except near the

percolation threshold).  However, we point out that the conjugate gradient method used with

the large networks did not always converge.  Some of the realizations were therefore rejected,

thus introducing an unknown bias in the statistics of h.  The number of rejected realizations

was very small for p2 near 0 or 1 and for h1/h2 near unity, but reached 20 % near the

percolation threshold for h1/h2 = 10-6.  In addition, we examined the distribution of h as a

function of p2.  For p2 near zero or one, h displayed approximately Gaussian distributions.  In

small networks, for p2 near the percolation threshold, we observed bimodal distributions,

reflecting the fact that, in individual realizations, h was predominantly dependent on the

connectivity of the high-h phase.  In large networks, the bimodal character disappeared,

although the distributions of h were still not Gaussian.  We obtained similar results for

permeability ratios as low as 10-6.

5.2. Effective Storativity

Storativity can be expressed as follows [Brace et al., 1968; Zimmerman, 1991]:

b = CB + fcCF - 1 +fc( )CG (11),
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where CB is the drained bulk compressibility of the material, CF the fluid compressibility and

CG the compressibility of the mineral grains forming the material.  The third term on the right-

hand side is very small compared to the other ones and can be neglected.  The second term is

proportional to porosity and therefore obeys a linear mixing law.  The first term accounts for

the change in pore volume dVp accompanying a change in pore pressure dPp.  We can write

dVp = dVp
(1)+dVp

(2), where the superscripts refer to the phases.  This leads to CBdPeff =

p1CB
(1)dPeff

(1)+p2CB
(2)dPeff

(2), where dPeff, dP eff
(1) and dPeff

(2) denote the average changes in

effective stress induced by dPp in the binary mixture and in both phases, respectively.  In the

description reported at the beginning of section 5, the hydraulic equations are not

supplemented by mechanics equations expressing the stress changes in the solid portion of the

material.  This is equivalent to implicitly assume that dPeff = dP eff
(1) = dPeff

(2) = -dPp, which

may not always be adequate in real situations (e.g., see consolidation theory [Domenico and

Schwartz, 1990]).  This leads to an additive mixing rule for CB.  Hence, in the numerical

simulations, b must satisfy b  = p1b1+p2b2 (or x  = p 1x1+p2x2).  However Figure 5b shows

significant downward deviations for p2 near the percolation threshold.  We verified that this

discrepancy substantially decreased when we increased h1 and h2 while keeping h1/h2, x1 and

x2 constant, which, from equation (2), is equivalent to increasing the period T.  Hence, the

numeric simulations produced a frequency effect, although a quite different one to that shown

in Figure 3.  In the numerical simulations, b tends to decrease with decreasing T.

5.3. Frequency Dependence

Decreasing T in oscillating flow measurements on a single sample can be simulated by

considering a single realization and calculating A and q for decreasing values of h1 and h2

while keeping h1/h2, x1 and x2 constant.  Unfortunately, interpreting A and q in terms of x and

h was so much time-consuming, that we were unable to examine a sufficiently large number

of realizations to obtain statistically meaningful results.  However a number of qualitative

observations were made.  In general, we found that both x and h decreased with decreasing T.

This effect was stronger near the percolation threshold than for p2 close to 1 or 0.  But very

large fluctuations occurred from one realization to another (especially near the percolation

threshold).  We even noted cases where x and h slightly increased with decreasing T.  We
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suspect that the magnitude of the frequency effect diminishes as T is increased and eventually

vanishes below some critical frequency, which we were unfortunately unable to identify.  We

considered two kinds of mixture, those in which b and k were directly related (i.e., b1 < b2

implies k1 < k2), and those with an inverse k-b relation (i.e., b1 < b2 implies k1 > k2).  We found

that the frequency dependence was significant only in mixtures with a direct k-b relation,

which suggests that b and k tend to play opposite roles.

In order to assess the validity of these results, we tested the accuracy of the finite

difference scheme by running purely homogeneous cases and comparing their results to

equation (1).  Even in grids as small as 44x22, the results agreed with equation (1) within less

than 1% for h/x down to 0.02 (the discrepancy grew to 5% for h /x  = 0.01).  All the

simulations mentioned above were performed with a minimum h/x at least 10 times greater

than that last value.

6. Discussion

6.1. Mixing laws

According to the considerations above, we assume an approximately linear mixing law for

b and a percolation-based model for k (see the Appendix).  Note that the same kind of

percolation-based model could be used for 1/CB, but the percolation threshold is not the same

as before (i.e., the binary mixture is incompressible if the incompressible, low-permeability

phase is connected).  Using such a model for 1/CB is not justified here since all the samples

are far above the percolation threshold for incompressibility.

First of all, we must check whether or not our experimental results are consistent with

these two mixing laws.  We simplified this task by using "characteristic" values of fc, b and k

(see Table 1).  For fc, we only had the previously mentioned bench-top measurements, while,

for b and k, we selected measurements performed at Peff = 30 MPa and in an intermediate

range of T (namely, the entire range for 90-10, 20 to 80 s for 80-20 and 10 to 60 s for 70-30).

We thus estimated not only average values of k and b, but also the corresponding two standard

deviation ranges.  We then proceeded in three steps: 1) we guessed the values of the porosity

of the pure phases, fc
(calcite) and fc

(quartz).  Examination of micrographs such as those shown in



14

Figure 1 helped us select a porosity ratio, fc
(calcite)/fc

(quartz) of about 0.2 and a value of fc
(calcite)

agreeing with previously published results on hot-pressed calcite [Bernabé et al., 1982; Zhang

et al., 1994].  These values allowed us to estimate plausible volume fractions p(calcite) and p(quartz)

in all samples (see Figure 7a).  2) We plotted the measured values of b as a function of p(quartz)

and verified that the data-points approximately followed a linear mixing law (see Figure 7b).

This line defined b(calcite) and b(quartz).  We indeed found reasonable values, which confirmed that

the quartz-phase was significantly more deformable than the calcite-phase.  3) We finally

plotted the measured values of k as a function of p(quartz) and compared them to the HB model

with a value for k(calcite) constrained by fc
(calcite) and the results of Zhang et al. [1994], and with

k(quartz) determined by trials and errors (see Figure 7c).  Note that, for the HB model, we used a

percolation threshold of 0.20, consistent with continuous percolation [e.g., Kirkpatrick, 1973],

and an exponent of 0.7 slightly smaller than that of the three-dimensional simulations.

Although we can see that the experimental results are consistent with the percolation-

based HB model, we realize that they do not, by themselves, prove its validity.  Indeed, data

for only three values of p(quartz) are available, while much more would be needed (especially

near the percolation threshold) in order to draw definitive conclusions.  To our knowledge,

there are no other laboratory measurements of the fluid permeability of binary mixtures

reported in the literature.  However, fluid permeability is, in many ways, analogous to

electrical conductivity.  Landauer [1952] analyzed previously published data on the electrical

conductivity of binary alloys.  In Figure 8, we compare laboratory measurements of the

electrical conductivity of Bi-Bi2 Pb, Bi-Sn and Mg2 Pb-Pb alloys [Landauer, 1952, and

references therein] to the HB model.  We can see that these data also give good support to the

HB model.  The other alloys investigated by Landauer [1952] were examined too.  We do not

show the corresponding results here because their conductivity contrasts were very small, but

we can state that they did agree well with the HB model.  Of course, other models (e.g., self-

consistent, Landauer [1952], or Keller's reciprocity theorem, del Rio et al. [1998]) can also

produce an acceptable fit with these experimental data.  But we argue that only a percolation-

based model can match the S-shaped mixing lines, which characterize the binary alloys data

as well as the flow simulations presented in section 5.1.  It is interesting to note that the model
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proposed by del Rio et al. [1998] is based on the assumption that the mixing law is symmetric

with respect to an exchange of the phases.   Such a symmetry assumption is incompatible with

a percolation-based model since the connectivity of the high-conductivity phase is important

whereas that of the low-conductivity phase is irrelevant.

How can we generalize the percolation-based mixing law described in the Appendix, to

heterogeneous media with continuous distributions of permeability?  We cannot answer this

question at present.  However, we anticipate that the method known as critical path analysis

[e.g., Ambegaokar et al., 1971; Pollak, 1972; Friedman and Seaton, 1998; Hunt, 2001] and

the concept of critical permeability (i.e., the maximum permeability kc, for which a through

going path with k > kc exists) will probably be central to the solution of this problem.

Another feature of the percolation-based HB model is the existence of a power-law

singularity at the percolation threshold (approached from above).  The presence of a

singularity could be important in certain applications (e.g., a singularity in the elastic

properties acts as a reflector for seismic waves [Herrmann and Bernabé, 2004]).  Two

questions thus arise: 1) do the experimental and numerical data prove or disprove the

existence of such a singularity?  2) If the singularity exists, what is the value of its exponent

b?  Concerning the first question, we can state that even the experimental data of Landauer

[1952] are too scarce to draw definitive conclusions, but that, at first sight, the numerical

results of Figure 6b suggest a smooth mixing law for permeability.  Nevertheless, Figure 6b is

not, in our opinion, incompatible with a singularity for two reasons.  a) The singularity is not

necessarily located exactly on the lower HS bound as assumed in the HB model (see the

Appendix).  Indeed, it is well known that the accuracy of the HS bounds diminishes when the

inclusion density increases.  b) The fluctuations are quite large near the percolation threshold

(and may, in fact, be even larger since a number of realizations were rejected as explained in

section 5.1).

Despite the fact that we cannot reach a definite conclusion regarding the existence of a

singularity, we can nevertheless observe that the HB model adequately fits the experimental

and numerical data.  We therefore need to consider the second question, i.e., estimate the

exponent b.  For the two- and three-dimensional simulations (Figures 5a and 6b), a good fit
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was obtained with b = 0.5 and 0.9, respectively.  The HB model with b = 0.7 matched very

well our experimental data (Figure 7c) whereas a smaller value, b = 0.5, appeared to be

needed for the electrical conductivity data (Figure 8).  These values are significantly larger

than the values originally proposed in the HB model (i.e., 0.14 and 0.41 in two and three

dimensions, respectively).  Indeed, the HB model assumes that every high-permeability

inclusion attached to the infinite, percolation cluster does contribute equally to the effective

permeability (see the Appendix).  The volume fraction of high-permeability material used in

the higher HS bound is thus given by the strength of the infinite percolation cluster

(proportional to (p – pc)b with b = 0.14 or 0.41, in two or three dimensions, respectively [e.g.,

Stauffer and Aharony, 1992]).  Kirkpatrick [1973] reported very large conductivity exponents,

namely, 1.3 and 1.6 in two and three dimensions, respectively, based on earlier studies where

mixtures of a conducting phase and a perfect insulator were considered.  In a conductor-

insulator mixture, it is clear that the dead-end branches attached to the infinite percolation

cluster do not carry any current.  Hence, only the backbone of the infinite percolation cluster

should be counted, thus yielding an exponent of 1.6 or 1.7 in two or three dimensions,

respectively [e.g., Isichenko, 1992].  However we argue that, if the low-conductivity phase is

not a perfect insulator, then the dead-end branches of the percolation cluster must carry some

current and cannot be totally discounted.  Thus, it is reasonable to conclude that b should lie

between the extreme values mentioned above (i.e., 0.41 and 1.7 in three dimensions) as we

indeed found in the various cases examined.  It would be very interesting to find out if b

approaches the conductor-insulator values mentioned above when the conductivity contrast

grows to infinity.  Answering this question is a very difficult task, out of the scope of the

present paper.

One final remark on this topic must be made.  According to percolation theory, the power

law behavior only holds in the close vicinity of the percolation threshold (approached from

above).  The exponent b defines the order of the singularity and may not characterize the

behavior far from the percolation threshold.  Here however, we were unable to establish the

existence of a singularity and the exponent b was adjusted to maximize the fit of the HB

model with the experimental or numerical data for all volume fractions.  Therefore, our
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estimated values of b do not characterize the singularity itself (if it exists) but the entire

mixing law.  This remark is important in any situation where the sharpness of the singularity

is a relevant parameter (e.g., seismic reflector [Herrmann and Bernabé, 2004]).  The

singularity is sharp for b < 1 and the sharpness increases with decreasing b.  The point we are

trying to make here is that a sharp singularity may still exist even if the globally defined

exponent b is large.

6.2. Frequency dependence

The numerical results of section 5 suggest that an apparent increase of permeability and

storativity with decreasing frequency should be observed in heterogeneous materials.  Instead

we observed a relatively well resolved decrease of k  and b  with decreasing frequency,

followed by a more uncertainty increase.  We do not know how to explain this discrepancy at

the present time.  We did find, however, that, in agreement with the numerical simulations,

the frequency effect was significant near the percolation threshold (i.e., in 80-20 and 70-30

materials) and vanished away from it (i.e., in 90-10).  It is possible that the downstream

reservoir storage in our apparatus is too large to allow accurate measurement of storativity

(indeed, we obtained unphysical, negative values of x in the 80-20S, 70-30S1 and 70-30S2

samples).  But this is not a sufficient explanation for permeability varied by 25 % in the 80-

20L sample and by 18 % in 70-30L, significantly more than the expected uncertainty on k.

This kind of frequency effect is poorly documented in the literature.  Fischer and Paterson

[1992] reported a permeability decrease in Solnhofen limestone of nearly one order of

magnitude when T was lowered from 8000 to 200 s but offered no explanation for the

phenomenon.  They also observed that the permeability variations increased when the

amplitude of the input oscillation was raised.  Faulkner [1997] further verified that the

frequency effect was present only when the amplitude of the input oscillation was not

negligible with respect to the mean effective pressure, which suggests that the phenomenon is

linked to the pressure sensitivity of the rocks investigated (in this case equation (3) becomes

non-linear).  Here, we did not notice any effect of the input amplitude and the materials

displayed only moderate effective pressure sensitivity.  However, effective pressure

sensitivity may have played a role in our experiments.  In other studies the frequency
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dependence of permeability was inexistent or much weaker and only occurring for very small

input periods [e.g., Larive, 2002].

7. Conclusion

Our main goal was to determine the effective permeability and storativity of binary

mixtures with variable volume fractions of the high- and low-permeability phases.  Based on a

combination of experimental and numerical results, we propose that permeability should

approximately obey the percolation-based, HB mixing law described in details in the

Appendix.  Below the percolation threshold (i.e., when the high-permeability phase is

disconnected) the effective permeability is given by the lower Hashin-Shtrikman bound.

Above the percolation threshold, we apply the upper HS bound to a portion of the high-

permeability phase belonging to the infinite cluster and the residual mixed material.

In the numerical simulations, storativity was treated as an additive property like

porosity and therefore followed a linear mixing law.  In the moderately pressure-sensitive

materials used here, a linear mixing law was also approximately verified, but this conclusion

should not be generalized to strongly pressure-sensitive materials such as fractured rocks.

Finally, the numerical simulations revealed that, in the most heterogeneous materials

(i.e., near the percolation threshold), the measured values of permeability and storativity

should decrease with increasing input frequency.  This effect has indeed been observed in

previous oscillating flow studies.  However, the fact that the frequency effect was enhanced

by raising the amplitude of the input oscillation, suggests that pressure-sensitivity might have

played a more important role than heterogeneity.  Here, we observed a rather unexpected

behaviour, namely, a decrease of permeability and storativity with decreasing frequency

followed by a poorly resolved increase.  We cannot offer an explanation for this surprising

behaviour at present.  We did however notice that the frequency dependence was negligible in

the 90-10 material, i.e., the farthest away from the percolation threshold.
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Appendix

The HB model [Herrmann and Bernabé, 2004] can be adapted to the hydraulic flow case

as follows: let us consider an infinitely large body of a binary mixture of a low-permeability

(LP) and a high-permeability (HP) phase.  We denote p and q =1–p the volume fractions of

HP and LP, respectively.  For p = 0, the body exclusively consists of the LP phase.  With

increasing p, HP inclusions are progressively formed until only the HP phase remains for p =

1.  At a critical volume fraction pc (i.e., the percolation threshold) an infinite, connected HP

cluster is formed.  However, for p ≥ pc, not all HP inclusions belong to the infinite cluster.

Isolated HP inclusions can still be found, embedded in the remaining LP material and forming

with it a mixture (M).  Percolation theory predicts that, in the vicinity of the percolation

threshold, the volume fraction p* of HP material that belongs to the infinite cluster is zero for

p < pc and has a power law dependence on (p - pc) for p ≥ pc [Stauffer and Aharony, 1992].

For convenience, we assume that this power law extends all the way to p = 1.  Hence, for p ≥

pc, p* is given by:

p* = p p - pc

1 - pc

Ê 

Ë 
Á ˆ 

¯ 
˜ 

b

(A1),

where the exponent b is a positive, real number, which depends on spatial dimensionality, but

not on the interconnection topology of the inclusions.  Site percolation theory predicts b =

0.14 and 0.41 in two- and three-dimensional discrete lattices, respectively [Stauffer and

Aharony, 1992].  Below pc, the volume fraction of the mixed material M is given by q* = (1 -

p*).  For modelling M, we need the volume fractions of its LP and HP parts, qM = (1 - p)/{(1 -

p) + (p - p*)} and pM = (1 - qM), respectively.  We obtain:

pM =1 -
q

1 - p p - pc

1 - pc

Ê 

Ë 
Á ˆ 

¯ 
˜ 

b (A2).
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We assume that the binary mixture is statistically isotropic.  We argue that the

permeability (or the electrical conductivity) of a statistically isotropic material consisting of

isolated inclusions randomly distributed inside a continuous (connected) matrix can be

accurately estimated using the HS bounds [Hashin and Shtrikman, 1962].  The upper HS

bound must be used when the HP phase forms the connected matrix while the lower one

applies otherwise.  Accordingly, below pc, k is given by the lower HS bound:

k = kLP +
p

1
kHP - kLP

+
q

3kLP

(A3).

Above pc we must switch to the higher HS bound:

k = kHP +
q *

1
kM - kHP

+
p *

3kHP

(A4),

where kM is the permeability of the mixed material M.  Since the HP inclusions in M are

isolated, kM is calculated using the lower HS bound:

k M= kLP +
pM

1
kHP - kLP

+
qM

3kLP

(A5).

Note that equations (A3) to (A5) are valid in three dimensions.  In two-dimensional cases, we

must simply change the value of the constant from 3 to 2.

Finally, if it were demonstrated that only part of the infinite cluster controlled the value of

the effective permeability (see discussion in section 6.1), the HB model could still be applied

provided that the appropriate value of the exponent b was used.
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Table 1: Measured (bold-faced) or inferred (italic) values of the properties (namely, volume

fraction of the calcite-phase, connected porosity, storativity and permeability) of the various

samples and pure phases.  The numbers in parentheses represent two standard deviations.

sample   p(calcite)    fc b (10-11 Pa-1)      k (10-18 m2)

90-10S  0.97 0.037    1.5 (1.7)          0.9 (0.2)

90-10L  0.93 0.043    3.1 (0.6)          1.3 (0.2)

80-20S  0.73 0.070          9.3 (0.4)

80-20L  0.74 0.068    4.3 (1.0)        10.4 (0.2)

70-30S1  0.64 0.082        24.0 (0.2)

70-30S2  0.58 0.091        31.3 (1.7)

70-30L  0.64 0.083    6.6 (1.4)        32.0 (1.9)

Calcite  1. 0.033    2.3            1.

Quartz  0. 0.17  16.       200.
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Captions

Figure 1: SEM micrographs of polished sections of the binary materials, a) 90-10, and b) 70-

30.  Calcite grains appear in a light shade of gray, whereas the quartz grains are dark gray and

the pores black.  A 100 mm scale bar is indicated at the bottom of each micrograph.

Figure 2: Permeability of the samples 90-10S, 80-20S, 70-30S1 and 70-30S2 as a function of

effective pressure (solid diamonds, arithmetic mean of the oscillating flow measurements;

open circles, pulse transients; open squares, steady-state flow).  The variability bars represent

plus or minus two standard deviations.

Figure 3: Permeability and storativity of the S- and L-samples as a function of the input

period.  The gray dots (respectively, open diamonds) indicate the values obtained for the L-

samples without any correction (respectively, corrected for the transient signal).  The errors

bars represent the total estimated uncertainty on the corrected values.  The stars indicate the S-

samples values after correction of the pressure effect (see text for more details).

Figure 4: An example of two-dimensional oscillating flow simulation: a) the spatial

distribution of the phases (white, low-h/low-x phase with volume fraction 0.35; black, high-

h/high-x phase).  b) The amplitude ratio field (white indicates the maximum values and black

the minimum).  c) The phase-shift field (same gray code as above).

Figure 5: Results of the two-dimensional oscillating flow simulations (only the case with h1 =

0.001, h2 = 1., x1 = 0.01 and x2 = 0.1 is shown here): a) Effective h (i.e., permeability) as a

function of p2.  We also plotted the HS bounds (gray curves) and the HB model (black line)

with the exponent b = 0.5 and p2 = 0.59 for the percolation threshold.  b) Effective x (i.e.,

storativity) as a function of p2.  The linear mixing curve is shown for comparison. The

variability bars indicate two standard deviations.

Figure 6: Results of the three-dimensional steady-state flow simulations (only the case with

h1 = 1 and h2 = 10000 is shown here) for two network size: a) 10x10x10, and b) 50x50x50.

We also plotted the HS bounds (gray curves) and the HB model (black line) with the exponent

b = 0.9 and p2 = 0.31 for the percolation threshold.  The variability bars indicate two standard

deviations.
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Figure 7: Summary of the experimental results reported in section 4.  a) Connected porosity:

the values for the calcite- and quartz-phase as well as the volume fractions were guessed from

prior knowledge on hot-pressed calcite [Bernabé et al., 1982; Zhang et al., 1994] and the

linearity of the mixing curve for porosity (black straight line).  b) Storativity: we applied the

previously determined volume fractions and estimated the storativity of the pure phases from

the linearity of the mixing curve (black straight line).  c) Permeability: the values for the pure

phases were guessed, in part based on prior knowledge on hot-pressed calcite, and in part so

that the corresponding HB mixing curve (black line) with the exponent b  = 0.7 and a

percolation threshold of 0.2 would fit the experimental data.  The HS bounds (gray lines) are

also plotted for comparison.

Figure 8: Electrical conductivity of binary alloys [Landauer, 1952].  In each case, we also

plotted the HS bounds (gray curves) and the HB model (black lines) with the exponent b = 0.5

and p2 = 0.2 for the percolation threshold.
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