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[1] Three P wave attenuation models for sedimentary rocks are given a unified
theoretical treatment. Two of the models concern wave-induced flow due to
heterogeneity in the elastic moduli at ‘‘mesoscopic’’ scales (scales greater than grain
sizes but smaller than wavelengths). In the first model, the heterogeneity is due to
lithological variations (e.g., mixtures of sands and clays) with a single fluid saturating
all the pores. In the second model, a single uniform lithology is saturated in mesoscopic
‘‘patches’’ by two immiscible fluids (e.g., air and water). In the third model, the
heterogeneity is at ‘‘microscopic’’ grain scales (broken grain contacts and/or microcracks
in the grains), and the associated fluid response corresponds to ‘‘squirt flow.’’ The
model of squirt flow derived here reduces to proper limits as any of the fluid bulk
modulus, crack porosity, and/or frequency is reduced to zero. It is shown that squirt flow is
incapable of explaining the measured level of loss (10�2 < Q�1 < 10�1) within the seismic
band of frequencies (1–104 Hz); however, either of the two mesoscopic scale models
easily produces enough attenuation to explain the field data. INDEX TERMS: 0935 Exploration

Geophysics: Seismic methods (3025); 5102 Physical Properties of Rocks: Acoustic properties; 5114 Physical

Properties of Rocks: Permeability and porosity; 5144 Physical Properties of Rocks: Wave attenuation;
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1. Introduction

[2] The physics controlling the intrinsic seismic attenua-
tion of sedimentary rock throughout the seismic band of
frequencies (say 1 to 104 Hz) is still not entirely understood.
In particular, seismic data from sedimentary regions often
exhibits more intrinsic attenuation than can be explained
using existing theoretical models. The principal goal of this
paper is to provide models that can help explain the levels
of loss determined from seismograms.
[3] Intrinsic loss is often quantified using the inverse

quality factor Q�1 which represents the fraction of wave
energy lost to heat in each wave period. For seismic
transmission experiments (earthquake recordings, VSP,
cross-well tomography, sonic logs), the total attenuation
inferred from the seismograms can be decomposed as
Qtotal

�1 = Qscat
�1 + Q�1 where both the scattering and intrinsic

contributions are necessarily positive. In transmission
experiments, multiple scattering transfers energy from the
coherent first-arrival pulse into the coda and into directions
that will not be recorded on the seismogram, and is thus

responsible for the effective ‘‘scattering attenuation’’ Qscat
�1 .

Techniques have been developed that attempt to separate the
intrinsic loss from the scattering loss in transmission experi-
ments [e.g., Wu and Aki, 1988; Sato and Fehler, 1998]. In
seismic reflection experiments, backscattered energy from
the random heterogeneity can sometimes act to enhance the
amplitude of the primary reflections. At the present time,
techniques that can reliably separate the total inferred loss of
a reflection experiment into scattering and intrinsic portions
are generally not available.
[4] Cross-well experiments in horizontally stratified sedi-

ments produce negligible amounts of scattering loss so that
essentially all apparent loss (except for easily corrected
spherical spreading) is attributable to intrinsic attenuation.
Quan and Harris [1997] use tomography to invert the
amplitudes of cross-well P wave first arrivals to obtain the
Q�1 for the layers of a stratified sequence of shaly sandstones
and limestones (depths ranging from 500 to 900 m). The
center frequency of their measurements is roughly 1750 Hz
and they find that 10�2 < Q�1 < 10�1 for all the layers in the
sequence. Sams et al. [1997] also measure the intrinsic loss in
a stratified sequence of water-saturated sandstones, siltstones
and limestones (depths ranging from 50 to 250 m) using
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VSP (30–280 Hz), cross-well (200–2300 Hz), sonic logs
(8–24 kHz), and ultrasonic laboratory (500–900 kHz)
measurements. Sams et al. [1997] calculate (with
some inevitable uncertainty) that in the VSP experiments,
Q�1/Qscat

�1 � 4, while in the sonic experiments, Q�1/Qscat
�1 �

19; that is, for this sequence of sediments, the intrinsic loss
dominates the scattering loss at all frequencies. Sams et al.
[1997] also find 10�2 < Q�1 < 10�1 across the seismic band.
[5] It will be demonstrated here that wave-induced fluid

flow generates enough heat to explain these measured levels
of intrinsic attenuation. Other attenuation mechanisms need
not be considered since they are likely contributing much
smaller percentages to the overall observed attenuation. The
induced flow occurs at many different spatial scales that can
broadly be categorized as ‘‘macroscopic,’’ ‘‘mesoscopic,’’
and ‘‘microscopic.’’
[6] The macroscopic flow is the wavelength-scale equil-

ibration occurring between the peaks and troughs of a
P wave. This mechanism was first treated by Biot [1956a,
1956b] and is often simply called ‘‘Biot loss.’’ However, the
flow at such macroscales drastically underestimates the
measured loss in the seismic band (by as much as 5 orders
of magnitude). Two possible alternatives to Biot loss were
therefore proposed in the mid-1970s.
[7] First, Mavko and Nur [1975, 1979], Budiansky and

O’Connell [1976], and O’Connell and Budiansky [1977]
proposed a microscopic mechanism due to microcracks in
the grains and/or broken grain contacts. When a seismic
wave squeezes a rock having such grain-scale damage, the
cracks respond with a greater fluid pressure than the main
pore space resulting in a flow from crack to pore that Mavko
and Nur [1975] named ‘‘squirt flow’’. Dvorkin et al. [1995]
have also presented a squirt flow model applicable to liquid-
saturated rocks. Although squirt flow seems capable of
explaining much of the measured attenuation in the labora-
tory at ultrasonic frequencies and may also turn out to be
important for propagation in ocean sediments at ultrasonic
frequencies [Williams et al., 2002], we show here that this
mechanism cannot explain the attenuation in the seismic
band.
[8] Second, White [1975] and White et al. [1975] mod-

eled the wave-induced flow created by mesoscopic-scale
heterogeneity. Mesoscopic length scales are those larger
than grain sizes but smaller than wavelengths. Heterogene-
ity across these scales may be due to lithological variations
or to patches of different immiscible fluids. When a com-
pressional wave squeezes a material containing mesoscopic
heterogeneity, the effect is similar to squirt with the more
compliant portions of the material responding with a greater
fluid pressure than the stiffer portions. There is a subsequent
flow of fluid capable of generating significant loss in the
seismic band.
[9] White [1975] considered the flow in a concentric

porous sphere model in which the inner sphere is saturated
by one fluid type (say gas), the outer shell is saturated by
another fluid type (say liquid), and the porous frame proper-
ties are everywhere uniform. This is the first so-called
‘‘patchy saturation’’ model. White had the insight to use the
Biot [1956a, 1956b] theory as the local model for the meso-
scopic flow between the spheres. Dutta and Odé [1979a,
1979b] and Dutta and Seriff [1979] went on to make several
important corrections to the initial White [1975] model, add-

ing to our understanding of the low-frequency and high-
frequency limits. White’s [1975] prediction of enhanced
attenuation in the presence of even small volume fractions
of gas phase has been experimentally confirmed [e.g.,
Murphy, 1982, 1984; Cadoret et al., 1998].
[10] White et al. [1975] considered the wave-induced

flow between the mesoscopic-scale layers in a sedimentary
basin. Here the mesoscopic heterogeneity is in the frame
properties of the porous rocks with a single fluid saturating
all layers. Again, Biot theory was used as the local model
for the mesoscopic flow. A host of theoretical refinements
have subsequently been added to White’s initial model of
mesoscopic flow in finely layered media [e.g., Norris, 1993;
Gurevich and Lopatnikov, 1995; Gelinsky and Shapiro,
1997].
[11] More recent work by Johnson [2001] has treated

wave-induced mesoscopic flow due to patchy saturation
without placing restrictions on the patch geometries. The
present study also seeks to model the wave-induced flow
for arbitrary mesoscopic geometry due either to litholog-
ical variations or to patchy saturation, albeit under the
restriction that only two porous phases are mixed together
in each averaging volume. Furthermore, our same formal-
ism is shown to produce new exact results at both low and
high frequencies for the Dvorkin et al. [1995] squirt flow
model.
[12] In section 2, we review the recent theory of Pride

and Berryman [2003a, 2003b] treating the mesoscopic
loss created by lithological patches having, for example,
different degrees of consolidation. This so-called ‘‘double-
porosity’’ model provides the theoretical framework that
will be used throughout. In section 3, we reanalyze the
patchy saturation model of Johnson [2001] and demon-
strate numerically that our double-porosity approach to
the problem is asymptotically identical to Johnson’s result
in the limits of low and high frequencies (both analyses
are exact for the model in the two limits). In section 4,
we provide a new analysis of the Dvorkin et al. [1995]
squirt flow model that is numerically compared to the
approximate analysis of Dvorkin et al. [1995]. Finally, in
the concluding section 5, we summarize what has been
learned from these models.

2. Review of the Double-Porosity Theory

[13] In this theory, the mesoscopic heterogeneity is mod-
eled as a mixture of two porous phases saturated by a single
fluid.
[14] Various scenarios can be envisioned for how two

porous phases might come to reside within a single geo-
logical sample. For example, even within an apparently
uniform sandstone formation, there can remain a small
volume fraction of less consolidated (even noncemented)
sand grains. This is because diagenesis is a transport process
sensitive to even subtle heterogeneity in the initial grain
pack resulting in spatially variable mineral deposition [e.g.,
Thompson et al., 1987] and, supposedly, in spatially vari-
able elastic moduli. Alternatively, the two phases might
correspond to interwoven lenses of detrital sands and clays;
however, any associated anisotropy in the deviatoric seismic
response will not be modeled in the present paper. Jointed
rock is also reasonably modeled as a double-porosity
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material. The joints or macroscopic fractures are typically
more compressible and have a higher intrinsic permeability
than the background host rock they reside within.

2.1. Local Governing Equations

[15] Each porous phase is locally modeled as a porous
continuum and obeys the laws of poroelasticity [e.g., Biot,
1962]

r � TD
i �rpci ¼ r�ui þ rf _Qi; ð1Þ

Qi ¼ � ki

h
rpfi þ rf �ui
� �

; ð2Þ

r � _ui

r �Qi

2
4

3
5 ¼ � 1

Kd
i

1 �ai

�ai ai=Bi

2
4

3
5 _pci

_pfi

2
4

3
5; ð3Þ

TD
i ¼ Gi rui þruTi � 2

3
r � ui I

� �
; ð4Þ

where the index i represents the two phases (i = 1, 2). The
response fields in these equations are themselves local
volume averages taken over a scale larger than the grain
sizes but smaller than the mesoscopic extent of either phase.
The local fields are: ui, the average displacement of the
framework of grains;Qi, the Darcy filtration velocity; pfi, the
fluid pressure; pci, the confining pressure (total average
pressure); andTi

D, the deviatoric (or shear) stress tensor. In the
linear theory of interest here, the overdots on these fields
denote a partial time derivative. In the local Darcy law (2), h is
the fluid viscosity and the permeability ki is a linear time
convolution operator whose Fourier transform ki (w) is called
the ‘‘dynamic permeability’’ and can be modeled using the
theory of Johnson et al. [1987] (see Appendix A).
[16] In the local compressibility law (3), Ki

d is the drained
bulk modulus of phase i (confining pressure change divided
by sample dilatation under conditions where the fluid pres-
sure does not change), Bi is Skempton’s [1954] coefficient of
phase i (fluid pressure change divided by confining pressure
change for a sealed sample), and ai is the Biot and Willis
[1957] coefficient of phase i defined as

ai ¼ ð1� Kd
i =K

u
i Þ=Bi; ð5Þ

where Ki
u is the undrained bulk modulus (confining pressure

change divided by sample dilatation for a sealed sample). In
the present work, no restrictions to single-mineral isotropic
grains will be made. Finally, in the deviatoric constitutive
law (4),Gi is the shearmodulus of the framework of grains. At
the local level, all these poroelastic constants are taken to be
real constants. In Appendix Awe give the Gassmann [1951]
fluid substitution relations that allowBi andai to be expressed
in terms of the porosity fi, the fluid and solid bulk moduli Kf

and Ks, and the drained modulus Ki
d.

2.2. Double-Porosity Governing Equations

[17] In the double-porosity theory, the goal is to deter-
mine the average fluid response in each of the porous
phases in addition to the average displacement of the solid
grains [Berryman and Wang, 1995]. The averages are taken
over regions large enough to significantly represent both
porous phases, but smaller than wavelengths. Assuming an

e�iwt time dependence, Pride and Berryman [2003a] have
volume averaged the local laws (1)–(4) to obtain the
macroscopic ‘‘double-porosity’’ governing equations in
the form

r � TD �rPc ¼ �iw rvþ rf q1 þ rf q2
� �

; ð6Þ

q1

q2

2
4

3
5 ¼ � 1

h

k11 k12

k12 k22

2
4

3
5 �

rpf 1 � iwrf v

rpf 2 � iwrf v

2
4

3
5; ð7Þ

r � v

r � q1

r � q2

2
66664

3
77775 ¼ iw

a11 a12 a13

a12 a22 a23

a13 a23 a33

2
66664

3
77775 �

Pc

pf 1

pf 2

2
66664

3
77775þ iw

0

zint

�zint

2
66664

3
77775; ð8Þ

�iwzint ¼ g wð Þ pf 1 � pf 2

� �
; ð9Þ

�iwTD ¼ G wð Þ � iwg wð Þ½ 
 rvþ rvð ÞT� 2

3
r � v I

� �
: ð10Þ

The macroscopic fields are v, the average particle velocity
of the solid grains throughout an averaging volume of the
composite; qi, the average Darcy flux across phase i; Pc,
the average total pressure in the averaging volume; TD, the
average deviatoric stress tensor; �pfi, the average fluid
pressure within phase i; and �iwzint, the average rate at
which fluid volume is being transferred from phase 1 into
phase 2 as normalized by the total volume of the averaging
region. The dimensionless increment zint represents the
‘‘mesoscopic flow.’’
[18] Equation (7) is the generalized Darcy law allowing

for fluid cross coupling between the phases [cf. Pride and
Berryman, 2003b], equation (8) is the generalized com-
pressibility law where r � qi corresponds to fluid that has
been depleted from phase i due to transfer across the
external surface of an averaging volume, and equation (9)
is the transport law for internal mesoscopic flow (fluid
transfer between the two porous phases).
[19] The coefficients aij and g in these equations have

been modeled in detail by Pride and Berryman [2003a,
2003b]. Before presenting these results in sections 2.4 and
2.5, the nature of the waves implicitly contained in these
laws is briefly commented upon. If plane wave solutions for
v, q1 and q2 are introduced, there is found to be a single
transverse wave, and three longitudinal responses: a fast
wave and two slow waves [Berryman and Wang, 2000]. The
fast wave is the usual P wave identified on seismograms,
while the two slow waves correspond to fluid pressure
diffusion in phases 1 and 2. The only problem with
analyzing the fast compressional wave in this manner is
that the characteristic equation for the longitudinal slowness
s is cubic in s2 and therefore analytically inconvenient.

2.3. Reduction to an Effective Biot Theory

[20] The approach that we take instead is to first reduce
these double-porosity laws (6)–(10) to an effective single-
porosity Biot theory having complex frequency-dependent
coefficients. The easiest way to do this is to assume that
phase 2 is entirely embedded in phase 1 so that the average
flux q2 into and out of the averaging volume across the
external surface of phase 2 is zero. By placing r � q2 = 0
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into the compressibility laws (8), the fluid pressure �pf2 can
be entirely eliminated from the theory. In this case the
double-porosity laws reduce to effective single-porosity
poroelasticity governed by laws of the form (3) but with
effective poroelastic moduli given by

1

KD

¼ a11 �
a213

a33 � g=iw
; ð11Þ

B ¼ �a12ða33 � g=iwÞ þ a13 a23 þ g=iwð Þ
a22 � g=iwð Þ a33 � g=iwð Þ � a23 þ g=iwð Þ2

; ð12Þ

1

KU

¼ 1

KD

þ B a12 �
a13 a23 þ g=iwð Þ

a33 � g=iw

� �
: ð13Þ

Here, KD(w) is the effective drained bulk modulus of the
double-porosity composite, B(w) is the effective Skempton’s
coefficient, and KU(w) is the effective undrained bulk
modulus. An effective Biot-Willis constant can then be
defined using a(w) = [1 � KD(w)/KU(w)]/B(w).
[21] The complex frequency-dependent ‘‘drained’’ mod-

ulus KD defines the total volumetric response when the
average fluid pressure throughout the host phase 1 is
unchanged. Because of the fluid pressure differences
between the two phases, fluid pressure equilibration ensues
which results in KD being complex and frequency-depen-
dent. Similar interpretations hold for the undrained moduli
KU and B. An undrained response is when no fluid can
escape or enter through the external surface of an averag-
ing volume; however, there can be considerable internal
exchange of fluid between the two phases resulting in the
complex frequency-dependent nature of both KU and B.

2.4. Double-Porosity aij Coefficients

[22] The constants aij are all real and correspond to the
high-frequency response for which no internal fluid pres-
sure relaxation can take place. They are given exactly as
[Pride and Berryman, 2003a]

a11 ¼ 1=K; ð14Þ

a22 ¼
v1a1

Kd
1

1

B1

� a1 1� Q1ð Þ
1� Kd

1=K
d
2

� �
; ð15Þ

a33 ¼
v2a2

Kd
2

1

B2

� a2 1� Q2ð Þ
1� Kd

2=K
d
1

� �
; ð16Þ

a12 ¼ �v1Q1a1=K
d
1 ; ð17Þ

a13 ¼ �v2Q2a2=K
d
2 ; ð18Þ

a23 ¼ � a1a2K
d
1=K

d
2

1� Kd
1=K

d
2


 �2 1

K
� v1

Kd
1

� v2

Kd
2

� �
; ð19Þ

where the Qi are auxiliary constants given by

v1Q1 ¼
1� Kd

2=K

1� Kd
2=K

d
1

v2Q2 ¼
1� Kd

1=K

1� Kd
1=K

d
2

: ð20Þ

Here, v1 and v2 are the volume fractions of each phase
within an averaging volume of the composite.
[23] The one constant in these aij that has not yet been

determined is the overall drained modulus K = 1/a11 of the

two-phase composite (the modulus defined in the quasi-
static limit where the local fluid pressure throughout the
composite is everywhere unchanged). It is through K that
the aij acquire their dependence on both the mesoscopic
geometry and shear properties of each porous phase. Having
expressions for how K depends on the properties of the two
constituents is quite useful even though an exact analytical
model applicable to any given double-porosity scenario may
not be known.
[24] The Hashin and Shtrikman [1963] bounds for the

overall low-frequency drained bulk modulus K and shear
modulus G of the composite can be written

1

K þ 4Gi=3
¼ v1

Kd
1 þ 4Gi=3

þ v2

Kd
2 þ 4Gi=3

ð21Þ

1

Gþ zi
¼ v1

G1 þ zi
þ v2

G2 þ zi
; ð22Þ

where zi is defined

zi ¼
Gi

6

9Kd
i þ 8Gi


 �
Kd
i þ 2Gi


 � : ð23Þ

We will find it natural to define phase 2 as being more
compliant than phase 1 so that K2

d < K1
d and G2 < G1. In this

case, the upper limits for K and G are obtained by taking i =
1 and the lower limits by taking i = 2. Interestingly, the
upper limit is exactly realized when phase 2 is a sphere
surrounded by a spherical shell of phase 1 [Hashin, 1962],
while the lower limit is exactly realized when the
differential effective medium theory of Bruggeman [1935]
is used to model phase 2 as a collection of arbitrarily
oriented penny-shaped oblate spheroids or disks [Roscoe,
1973].
[25] To help decide which effective medium model is

most appropriate, consider the following geological sit-
uations. Any small portions of a consolidated sandstone
formation that received little or no secondary mineral
deposition will likely have a shape that is more dendritic
than compact because mineral deposition is a transport
process. Furthermore, scenarios in which thin clay lenses
are engulfed by sand deposits will correspond to an
embedded phase 2 geometry that is more like a penny-
shaped oblate spheroid than a compact sphere. Similar
comments also hold for situations in which phase 2
corresponds to macroscopic fractures or joints embedded
within a stiffer sandstone host. In each of these cases, the
lower Hashin and Shtrikman [1963] bounds are more
appropriate than the upper bounds. Our modeling sugges-
tion is simply to use the lower bounds for modeling K
and G in these situations. As will be demonstrated in a
numerical example, using the upper bound for K and G
produces much less mesoscopic flow loss and dispersion
than using the lower bound.
[26] Finally, all dependence of the aij on the fluid’s bulk

modulus is contained within the two Skempton’s coeffi-
cients B1 and B2 and is thus restricted to a22 and a33. In the
quasi-static limit w ! 0 (fluid pressure everywhere uniform
throughout the composite), equations (12) and (13) reduce

B01201 PRIDE ET AL: WAVE-INDUCED FLOW LOSSES

4 of 19

B01201

 21562202b, 2004, B
1, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/2003JB
002639 by C

ochrane R
ussian Federation, W

iley O
nline L

ibrary on [26/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



to the known exact results of Berryman and Milton [1991]
once equations (14)–(19) are employed.

2.5. Double-Porosity Transport

[27] Pride and Berryman [2003b] obtain the internal
transport coefficient g of equation (9) as

g wð Þ ¼ gm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i

w
wm

r
; ð24Þ

where gm and wm are parameters dependent on the
constituent properties and the mesoscopic geometry. To
obtain useful analytical results for these two parameters,
some type of approximation is required.
[28] Normally, the double-porosity model is useful (or

necessary) only in situations where the two phases have
strong contrasts in their physical properties. When the
embedded phase 2 is much more permeable than the host
phase 1, Pride and Berryman [2003b] obtain

gm ¼ � k1K
d
1

hL21

a12 þ Bo a22 þ a33ð Þ
R1 � Bo=B1

� �
1þ O k1=k2ð Þ½ 
; ð25Þ

where the aij are given by equations (14)–(19) and where
the remaining terms Bo, L1 and R1 are now defined.
[29] The dimensionless quantityBo is the static Skempton’s

coefficient for the composite and is given exactly by

Bo ¼ � a12 þ a13ð Þ
a22 þ 2a23 þ a33

ð26Þ

regardless of the mesoscopic geometry.
[30] The length L1 characterizes the average distance in

phase 1 over which the fluid pressure gradient still exists in
the final stages of equilibration and has the formal mathe-
matical definition

L21 ¼
1

V1

Z
�1

�1 dV ¼ 1

V1

Z
�1

r�1 � r�1 dV ; ð27Þ

where �1 is the region of an averaging volume occupied by
phase 1 and having a volume measure V1. The potential �1

has units of length squared and is a solution of an elliptic
boundary value problem that under conditions where the
permeability ratio k1/k2 can be considered small, reduces to

r2�1 ¼ �1 in �1; ð28Þ

n � r�1 ¼ 0 on @E1; ð29Þ

�1 ¼ 0 in @�12: ð30Þ

Here, @E1 is the external surface of the averaging volume
coincident with phase 1, while @�12 is the internal interface
separating phases 1 and 2. Multiplying equation (28) by �1

and integrating over �1, establishes that second integral of
equation (27).
[31] The dimensionless quantity R1 is the ratio of the

average static confining pressure in phase 1 to the pressure

applied to the external surface of a sealed sample of the
composite. Pride and Berryman [2003a] derive this ratio to
be

R1 ¼ Q1 þ
a1 1� Q1ð ÞBo

1� Kd
1=K

d
2

� v2

v1

a2 1� Q2ð ÞBo

1� Kd
2=K

d
1

; ð31Þ

where the Qi are given by equation (20). Thus, once the
overall drained modulus K is chosen (e.g., using the Hashin
and Shtrikman [1963] lower bound), gm can now be
determined from equation (25).
[32] If it is more appropriate to consider the host phase 1

as being more permeable than the embedded phase 2
(k2/k1 � 1), one must only exchange indices 1 and 2
throughout all of equations (25)–(31).
[33] In passing, if it is assumed that the harmonic mean is

a reasonable approximation for the drained modulus of the
composite (i.e., 1/K = v1/K1

d + v2/K2
d), then Qi = 1, a23 = 0,

R1 = 1 and all of the above expressions exactly reduce to

gm ¼ v1k1

hL21
1þ O k1=k2ð Þ½ 
: ð32Þ

However, the harmonic mean for K is not always
appropriate, and we consider the lower Hashin and
Shtrikman [1963] bound as preferable for most geological
situations of interest.
[34] The transition frequency wm corresponds to the onset

of a high-frequency regime in which the fluid pressure
diffusion penetration distance between the phases becomes
small relative to the scale of the mesoscopic heterogeneity.
It is given by Pride and Berryman [2003b] to be

wm ¼ hB1K
d
1

k1a1

gm
V

S

� �2

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1B2K

d
2a1

k2B1K
d
1a2

s !2

: ð33Þ

The length V/S is the volume-to-surface ratio, where S is the
area of @�12 in each volume V of composite.

2.6. Double-Porosity Modeling Choices

[35] The geometry of the phase 2 inclusion is affecting
four parameters that enter the theory: the lengths L1 and V/S
as well as the drained moduli of the composite K and G.
Putting in a highly complicated multiscale distribution of
phase 2 (even a fractal distribution) changes the values of
these four numbers but does not change the analytic
structure of the above results for gm, wm, and aij.
[36] For complicated geometry, the length L1 can only be

determined numerically or inverted for from data. For
idealized geometries it can be analytically estimated. For
example, in a concentric sphere geometry with k1/k2 � 1,
Pride and Berryman [2003b] obtain

L21 ¼
9

14
R2 1� 7

6

a

R
þ O a3=R3


 �� �
;

where a is the radius of each sphere of phase 2 embedded
within each sphere R of composite. The volume fraction v2
of embedded spheres is v2 = (a/R)3 in this case so that R can
be eliminated using R = a/v2

1/3. In the alternative case where
k2/k1 � 1, the length L2 for this same concentric sphere
geometry is [e.g., Johnson, 2001] L2

2 = a2/15.
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[37] In the scenario of interest in which phase 2 is taken
to be penny-shaped lenses of more compliant material
mixed into a stiffer phase 1 host, the length parameter L1
can at least be approximately estimated. Assuming that each
penny-shaped inclusion has a radius a and a thickness ea
where e is the aspect ratio of the inclusion, one can estimate
�1 using a simple slab geometry. With the volume fraction
v2 and both a and e treated as user-controlled parameters,
one obtains that V/S = ae/(2v2) and L1

2 = a2/12. These
estimates for L1 and V/S along with the Hashin and
Shtrikman [1963] lower bound for K and G will be the
model treated in the numerical examples that follow.
Specific models for determining the properties of each
porous constituent are presented in Appendix A.
[38] The coefficient G(w) � iwg(w) governing shear

generally has a nonzero ‘‘viscosity’’ g(w) associated with
the mesoscopic fluid transport between the compressional
lobes surrounding a sheared phase 2 inclusion. Both of the
frequency functions G(w) and �wg(w) are real and are
Hilbert transforms of each other. The frequency dependence
of g(w) was not modeled by Pride and Berryman [2003b]
but is presently being analyzed by these authors. Here, we
continue to ignore any possible dispersion in the shear
properties and take G to be a real constant given by the
Hashin and Shtrikman [1963] lower bound.
[39] Finally, the dynamic permeability k(w) to be used in

the effective Biot theory can be modeled in several ways. The
appropriate modeling choice when phase 2 is modeled
as small inclusions embedded in phase 1 is the harmonic
mean 1/k(w) = v1/k1(w) + v2/k2(w)� v1/k1(w) [1 +O(v2k1/k2)].

2.7. Phase Velocity and Attenuation

[40] With all of the double-porosity coefficients now
defined, the compressional phase velocity and attenuation
may be determined by inserting a plane wave solution into
the effective single-porosity Biot equations (of the form
(1)–(4)). This gives the standard complex longtitudinal
slowness s of Biot theory

s2 ¼ b


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �

r~r� r2f
MH � C2

s
; ð34Þ

where

b ¼
rM þ ~rH � 2rf C
2 MH � C2ð Þ ð35Þ

is simply an auxiliary parameter and where H, C, and M are
the Biot [1962] poroelastic moduli defined in terms of the
complex frequency-dependent parameters of equations
(11)–(13) as

H ¼ KU þ 4G=3; ð36Þ

C ¼ BKU ; ð37Þ

M ¼ B2

1� KD=KU

KU : ð38Þ

The complex inertia ~r corresponds to rewriting the relative
flow resistance as an effective inertial effect

~r ¼ �h= iwk wð Þ½ 
: ð39Þ

Taking the minus sign in equation (34) gives an s having an
imaginary part much smaller than the real part and that thus
corresponds to the normal P wave. Taking the positive sign
gives an s with real and imaginary parts of roughly the same
amplitude and that thus corresponds to the slow P wave (a
pure fluid pressure diffusion across the seismic band of
frequencies). We are only interested here in the properties of
the normal P wave.
[41] The P wave phase velocity vp and the attenuation

measure Qp
�1 are related to the complex slowness s as

vp ¼ 1=Re sf g ð40Þ

Q�1
p ¼ Im s2

� �
=Re s2

� �
: ð41Þ

2.8. Numerical Examples

[42] In Figure 1, we give an example of Qp
�1 and vp as

determined using the double-porosity theory. The example
models a consolidated sandstone phase 1 host that contains
thin lenses (squashed/oblate spheroids) of an uncemented
granular phase 2 material. The drained properties of phase 2
are determined using the modified Walton theory given in
Appendix A. In this way, the moduli K2

d and G2 are
functions of the background effective stress level Pe. The
host phase 1 is modeled using f1 = 0.20 and c = 2 in the
model given in Appendix A. All mineral moduli are taken to
be that of quartz Ks = 38 GPa and Gs = 44 GPa and the
permeability of the host phase is k1 = 10 mdarcy. The
drained properties of the composite were modeled using
the Hashin and Shtrikman [1963] lower bounds given in
equations (21) and (22). The penny-shaped inclusion of
phase 2 have the following geometric properties: a = 3 cm,
e = 10�2, v2 = 3%, L1 = 8.6 mm, and V/S = 5 mm. The
specific shape of the attenuation curve is highly sensitive to
whether L1 is greater than or less than V/S. The invariant
peak near 106 Hz is that due to the Biot loss (fluid
equilibration at the scale of the seismic wavelength), while
the broad principal peak that changes with the effective
pressure Pe is that due to mesoscopic-scale equilibration.
All dependence on Pe in this example comes from how K2

d

and G2 vary with Pe.
[43] The level of attenuation in the double-porosity theory

is controlled by the factors that allow phase 2 to develop a
different fluid pressure response as compared to phase 1. In
Figure 2, this is demonstrated by comparing phase 2
modeled as spheres to phase 2 modeled as penny-shaped
lenses. Both examples have identically the same volume
fractions of phase 2 as well as phase 1 and 2 material
properties. The difference is that in the sphere model, the
Hashin and Shtrikman [1963] upper bound is used for K
and G while the lower bound is used in the penny-shaped
lens model. A compliant sphere of phase 2 is protected from
an applied compression by the rigidity of the phase 1 host
that surrounds it. Accordingly, not much fluid pressure
difference is created between the two phases and so there
is only a small amount of mesoscopic loss.
[44] In modeling the penny-shaped inclusions in Figure 2,

we have used the parameter values a = 3 cm (inclusion
radius) and e = 10�1 to obtain V/S = 5 cm and L1 = 0.9 cm.
In this case, V/S > L1 which has changed considerably the
look of the attenuation curve as compared to Figure 1 where
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V/S < L1. What is happening can be seen in the effective
moduli of equations (11)–(13). The principal relaxation in
the effective moduli occurs whenever w = g/aij. However,
there is also a relaxation in g(w) when w = wm. For situations
where V/S � L1, the effective moduli relax at a frequency
much less than wm (with g(w) = gm). This is the case in
Figure 2. When V/S < L1, the relaxation in g(w) can begin
prior to the principal relaxation as is seen in Figure 1.
[45] Finally, in Figure 3, we compare the double-porosity

model to the data of Sams et al. [1997], who used different
seismic measurements (VSP, cross-well, sonic log, and
ultrasonic lab) to determine Q�1 and P wave velocity over
a wide band of frequencies at their test site in England. The
variance of the measurements falling within each rectangu-
lar box are due to the various rock layers present at this site.
Data collection was between four wells that are a few
hundred meters deep. The geology at the site is a sequence
of layered limestones, sandstones, siltstones and mudstones.
We model phase 2 as unconsolidated penny-shaped inclu-
sions in which a = 5 cm (inclusion radius), e = 6 � 10�3,
v2 = 1.2%, k1 = 80 mdarcy, V/S = 1.25 cm, and L1 = 1.45 cm.
The phase 1 host is taken to be a well-consolidated
sandstone (f1 = 0.20 and c = 1).

2.9. Discussion

[46] The overall magnitude of attenuation in the double-
porosity model is dominantly controlled both by the contrast
of compressibilities between the two porous phases and the
assumed shape of the embedded phase. Certain assumed
shapes, such as spherical inclusions, allow the rigidity of
the host phase to protect even a soft inclusion from being
compressedmuch and this results inminimalmesoscopic loss
for such a geometry. Less compact and more elongated or
even dendritic mesoscopic geometries are what potentially
allow the mesoscopic loss to be important. However, even in
the presence of such structure, a strong contrast in the drained
properties of the two phases is also required in order to
generate a significant mesoscopic fluid pressure gradient
and mesoscopic loss. A contrast in permeability alone would
generate no such mesoscopic-scale fluid pressure gradients.
[47] The relaxation frequency at which the mesoscopic

loss per cycle is maximum is proportional to k1/(hL1
2). Far

below this relaxation frequency, Q�1 always increases
linearly with frequency as fh/k1. Thus the permeability
information in the double-porosity attenuation is principally
in the frequency dependence of Q�1, not in the overall
magnitude of Q�1, and involves principally the permeability

Figure 1. Attenuation and phase velocity of compres-
sional waves in the double-porosity model of Pride and
Berryman [2003a]. The thin lenses of phase 2 have frame
moduli (K2

d and G2) modeled using the modified Walton
[1987] theory given in Appendix A in which both K2

d and
G2 vary strongly with the background effective pressure Pe

(or overburden thickness). These lenses of porous con-
tinuum 2 are embedded into a phase 1 continuum modeled
as a consolidated sandstone.

Figure 2. A comparison of modeling the embedded phase 2
as either penny-shaped lenses or spheres. All curves have
identical phase 1 and phase 2 material properties and
identical phase 2 volume fractions v2 = 2%. The only
difference is the assumed shape of the phase 2 inclusion
which has a strong influence on the overall drained bulk
modulus of the composite (the Hashin and Shtrikman
[1963] upper bound holds in the case of spheres, while the
lower bound holds in the case of penny-shaped lenses).
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k1 of the host phase, not the overall permeability of the
composite (see Berryman [1988] for a related discussion). If
phase 2 is well modeled as being small penny-shaped
inclusions embedded in phase 1, then k1 is controlling the
overall permeability. If phase 2 corresponds to throughgoing
connected joints, then although Q�1(w) contains informa-
tion about k1, it does not contain information about the
overall permeability which is being dominated by k2 in this
case (i.e., k2 has no significant influence on the mesoscopic
loss process).
[48] In the case of throughgoing joints, the equilibration

at the scale of the wavelength (the Biot loss) has a chance of
being shifted to lower frequencies. The only way to deter-
mine the proper attenuation curve in this case is to solve the
cubic characteristic equation for s2 (the characteristic equa-
tion is obtained by inserting a plane wave solution into the
complete double-porosity equations (6)–(10), as discussed
earlier).

3. Patchy Saturation Model

[49] Another important source of mesoscopic-scale het-
erogeneity having an important influence on seismic prop-

erties is patchy fluid saturation [e.g., Knight et al., 1998].
All natural hydrological processes by which one fluid non-
miscibly invades a region initially occupied by another
result in a patchy distribution of the two fluids. The patch
sizes are distributed across the entire range of mesoscopic
length scales and for many invasion scenarios are expected
to be fractal. As a compressional wave squeezes such a
material, the patches occupied by the less compressible fluid
will respond with a greater fluid pressure change than the
patches occupied by the more compressible fluid. The two
fluids will then equilibrate by the same type of mesoscopic
flow already modeled in the double-porosity model.
[50] An analysis almost identical to that of Pride and

Berryman [2003a, 2003b] can be carried out that leads to
the same effective poroelastic moduli given by equations
(11)–(13) but with different definitions of the aij constants
and internal transport coefficient g(w). In the model, a single
uniform porous frame is saturated by mesoscopic-scale
patches of fluid 1 and fluid 2. We define porous phase 1 to
be those regions (patches) occupied by the less mobile fluid
and phase 2 the patches saturated by the more mobile fluid,
i.e., by definition, h1 > h2. This most often (but not necessar-
ily) corresponds to Kf1 > Kf2 and therefore to B1 > B2.
[51] Johnson [2001] has treated this model using a

different coarse-graining argument while starting from the
same local physics (however, he assumes the porous mate-
rial is a Gassmann monomineral material). Our final
undrained bulk modulus is identical to the result of Johnson
[2001] in the limits of high and low frequency and differs
only negligibly in the transition range of frequencies where
the flow in either model is not explicitly treated.

3.1. Patchy Saturation aij Coefficients

[52] To obtain the aij for the patchy saturation model, we
note that by model assumption, each patch has the same a
and K. The poroelastic differences between patches is
entirely due to B1 being different than B2. Upon averaging
equation (3) and using r � v = r � (v1 _�u1) + r � (v2 _�u2),
where an overline again denotes a volume average over
the appropriate phase, and using the fact that the aij are
defined in the extreme high-frequency limit where the fluids
have no time to traverse the internal interface @�12 (i.e., the
aij are defined under the condition that _zint = 0), one has

r � v ¼ � v1

K
_pc1 �

v2

K
_pc2 þ

v1a
K

_pf 1 þ
v2a
K

_pf 2; ð42Þ

r � q1 ¼
v1a
K

_pc1 �
v1a
KB1

_pf 1; ð43Þ

r � q2 ¼
v2a
K

_pc2 �
v2a
KB2

_pf 2: ð44Þ

The average confining pressures �pci in each phase are not a
priori known; however, they are necessarily linear functions
of the three independent applied pressures of the theory
Pc(= v1�pc1 + v2�pc2), �pf1, and �pf2. It is straightforward to
demonstrate that if and only if the average confining
pressures take the form

v1 _pc1 ¼ v1 _Pc þ b _pf 1 � b _pf 2 ð45Þ

v2 _pc2 ¼ v2 _Pc � b _pf 1 þ b _pf 2; ð46Þ

Figure 3. Attenuation and dispersion predicted by the
double-porosity model of Pride and Berryman [2003a]
(the solid curves) as compared to the data of Sams et al.
[1997] (rectangular boxes). The number of Q�1 estimates
determined by Sams et al. [1997] falling within each
rectangular box are 40 VSP, 69 cross-well, 854 sonic log,
and 46 ultrasonic core measurements. A similar number of
velocity measurements were made. These various measure-
ments come from different depth ranges at their test site.
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will equations (42)–(44) produce aij that satisfy the
thermodynamic symmetry requirement of aij = aji (i.e.,
these aij constants are all second derivatives of a strain
energy function as demonstrated by Pride and Berryman
[2003a]). Upon placing equations (45) and (46) into
equations (42)–(44), we then have

a11 ¼ 1=K; ð47Þ

a22 ¼ �bþ v1=B1ð Þa=K; ð48Þ

a33 ¼ �bþ v2=B2ð Þa=K; ð49Þ

a12 ¼ �v1a=K; ð50Þ

a13 ¼ �v2a=K; ð51Þ

a23 ¼ ba=K; ð52Þ

where b is the single constant remaining to be determined.
[53] To obtain b, we note that in the high-frequency limit,

each local patch of phase i is undrained and thus charac-
terized by an undrained bulk modulus Ki

u = K/(1 � aBi)
and a shear modulus G that is the same for all patches. In
this limit, the usual laws of elasticity (as opposed to those of
poroelasticity) govern the response of the composite. Note
that, even if the rock frame is spatially uniform, an excep-
tion to uniform G can, in principle, occur if cracks are
uniformly present. In this case, it is known [see Berryman et
al., 2002] that the shear modulus in the regions containing
dry cracks can be somewhat different from the shear
modulus in the regions containing wet cracks. In reality,
however, all cracks tend to be water wet in partially
saturated rocks and it is a physically reasonable approxi-
mation to assume that G is the same for each phase even
when cracks are present.
[54] Under these precise conditions (elasticity of an

isotropic composite having uniform G and all heterogeneity
confined to the bulk modulus which in the present case
corresponds to Ki

u), we follow Johnson [2001] by invoking
the theorem of Hill [1963], which states that the overall
undrained-unrelaxed modulus of the composite KH is given
exactly by

1

KH þ 4G=3
¼ v1

Ku
1 þ 4G=3

þ v2

Ku
2 þ 4G=3

: ð53Þ

In terms of the aij, this same undrained-unrelaxed Hill
modulus is given by

1

KH

¼ a11 þ a12
dpf 1
dPc

� �
U

þ a13
dpf 2
dPc

� �
U

; ð54Þ

where upon using r � qi = 0 and _zint = 0 in equation (8) and
then using (47)–(52), the undrained-unrelaxed pressure
ratios are

dpf 1
dPc

� �
U

¼ b� v1v2=B2

b v1=B1 þ v2=B2ð Þ � v1v2= B1B2ð Þ ð55Þ

dpf 2
dPc

� �
U

¼ b� v1v2=B1

b v1=B1 þ v2=B2ð Þ � v1v2= B1B2ð Þ : ð56Þ

Thus, after some algebra, equation (54) yields the exact
result

b ¼ v1v2
v1

B2

þ v2

B1

� �
a� 1� K=KHð Þ= v1B1 þ v2B2ð Þ
a� 1� K=KHð Þ v1=B1 þ v2=B2ð Þ

� �
ð57Þ

with KH given by equation (53). All the aij are now
expressed in terms of known information.

3.2. Patchy Saturation Transport

[55] Next, we must address the internal fluid pressure
equilibration between the two phases with the goal of
obtaining the internal transfer coefficient g of equation (9).
The mathematical definition of the rate of internal fluid
transfer is

_zint ¼
1

V

Z
@�12

n �Q1 dS; ð58Þ

where V is the volume occupied by the composite. A
possible concern in the patchy saturation analysis is whether
capillary effects at the local interface @�12 separating the
two phases need to be considered.
3.2.1. Capillary Effects
[56] At the pore scale, the interface separating one fluid

patch from the next is a series of meniscii. Roughness on the
grain surfaces keeps the contact lines of these meniscii
pinned to the grain surfaces. Pride and Flekkoy [1999]
argue that the contact lines of an air-water meniscus will
remain pinned for fluid pressure changes less than roughly
104 Pa, which corresponds to the pressure range induced by
linear seismic waves. So as a wave passes, the meniscii will
bulge and change shape but will not migrate away.
[57] For the fluid pressure equilibration problem, one

porous continuum boundary condition is that all fluid
volume that locally enters the interface @�12 from one side,
must exit the other side so that n � Q1 = n � Q2(= n � Q).
Another boundary condition is that the rate at which the
fluid pressure difference across the interface is changing is
equal to the surface tension multiplied by the rate at which
the mean curvature of the meniscii is changing. At the level
of the porous continuum, this boundary condition may be
written [cf. Nagy and Blaho, 1994; Nagy and Nayfeh, 1995;
Tserkovnyak and Johnson, 2003]

@pf 1
@t

� @pf 2
@t

¼ Wn �Q on @�12 ð59Þ

where W is called the membrane stiffness. For cylindrical
tube models of the pore space, one has [e.g., Nagy and
Blaho, 1994] W = s/k (where s is the surface tension and k
is the permeability) showing that surface tension effects
become more important in tighter rocks. As W ! 0, the
surface tension provides no resistance to the equilibration
while as W ! 1, the interface becomes effectively sealed
to flow at all frequencies.
[58] Tserkovnyak and Johnson [2003] have performed a

complete analysis of the undrained response problem in the
presence of finite W culminating in an analytic expression
for the complex frequency-dependent undrained bulk
modulus. The dominant effect of finite W is to increase
the low-frequency undrained modulus while leaving the
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high-frequency limit unchanged since this limit already
corresponds to no fluid equilibration. As W ! 1, there is
no dispersion in the bulk modulus since the fluid in each
patch remains in the patch at all frequencies.
[59] Here, we only seek to define the precise conditions

for which the surface tension (or capillary) effects may be
neglected in the static limit where such effects are the most
important. To do so, we follow Tserkovnyak and Johnson
[2003] and integrate equation (59) over @�12 and over time.
Equation (58) may be employed along with the fact that
pfi(r) = �pfi are spatial constants to give

pf 1 � pf 2 ¼
V

S
Wzint; ð60Þ

where S is the amount of fluid interface within a sample of
volume V. If this expression for zint is used in equation (8)
along with sealed sample conditions (r � q1 =r � q2 = 0), one
can solve for both �pf1 and �pf2 and take their difference. The aij
constants of section 3.1 are unaffected by W since they are
defined in the high-frequency limit of no fluid equilibration.
In thismanner, one obtains that the key dimensionless number
C controlling whether �pf1 6¼ �pf2 at low frequencies and
therefore controlling the importance of capillary effects in the
elastic response is (assuming B1 > B2)

C ¼ W
V

S

a b� v1v2=B2ð Þ
K

: ð61Þ

When C � 1, surface tension plays absolutely no role in the
effective moduli.When C� 1, there is no acoustic dispersion
or attenuation because the surface tension keeps the fluid
patches from equilibrating. If B2 > B1, one should replace B2

with B1 in the definition of C.
[60] One way to be in the limit where surface tension is

negligible is to have the fluid bulk moduli in each patch very
similar. In this case, b! v1v2/B2 and C! 0. However, in this
case there is notmuch attenuation and dispersion since there is
not much mesoscopic flow induced by the wave.
[61] Using W = s/k for making estimates, one finds that

for surface tension to be negligible the inequality

sV=S
kK

< 1 ð62Þ

must hold. Using the common sandstone values of k =
100 mdarcy, K = 10 GPa, and s � 10�2 Pa m (order of
magnitude appropriate for water/air and water/oil meniscii),
one obtains that V/S should be smaller than roughly 10�1 m
for surface tension effects to be negligible. In what follows,
we only treat the regime C � 1 which is the regime also
studied by Johnson [2001].
3.2.2. Mesoscopic Flow Equations
[62] To obtain the transport law�iwzint = g(w) (�pf 1� �pf 2),

the mesoscopic flow is analyzed in the limits of low and high
frequencies. These limits are then connected using a fre-
quency function that respects causality constraints. The
linear fluid response inside the patchy composite due to a
seismic wave can always be resolved into two portions:
(1) a vectorial response due to macroscopic fluid pressure
gradients across an averaging volume that generate a mac-
roscopic Darcy flux qi across each phase and that corre-

sponds to the macroscopic conditions �pfi = 0 and r�pfi 6¼ 0;
and (2) a scalar response associated with internal fluid
transfer and that corresponds to the macroscopic conditions
�pfi 6¼ 0 and r�pfi = 0. The macroscopic isotropy of the
composite guarantees that there is no cross coupling between
the vectorial transport qi and the scalar transport _zint within
each sample (‘‘Curie’s principle’’ which is, in fact, a theorem
[cf. deGroot and Mazur, 1984]).
[63] The mesoscopic flow problem that defines _zint is the

internal equilibration of fluid pressure between the patches
when a confining pressure �P has been applied to a sealed
sample of the composite. Having the external surface sealed
is equivalent to the required macroscopic constraint that
r�pfi = 0. Upon taking the divergence of equation (2) and
using equation (3), the diffusion problem controlling the
mesoscopic flow becomes

k

hi
r2pfi þ iw

a
KBi

pfi ¼ iw
a
K
pci in �i; ð63Þ

pfi
� �

¼ 0 n � rpfi
� �

¼ 0 on @�12; ð64Þ

n � rpfi ¼ 0 on @Ei; ð65Þ

where �i is the region that each phase occupies within the
averaging volume, @Ei is that portion of the external surface
of the averaging volume that is in contact with phase i, and
the brackets in equation (64) again denote jumps across the
interface. One also needs to insert equations (3) and (4) into
equation (1) to obtain a second-order partial differential
equation for the displacements ui. In general, the local
confining pressures pci are determined using

pci ¼ �Kr � ui þ apfi ð66Þ

once the displacements ui are known.
3.2.3. Low-Frequency Limit of ;(W)
[64] As w ! 0, we can represent the local fields as

perturbation expansions in the small parameter �iw [e.g.,
Johnson, 2001]

pfi ¼ p
0ð Þ
fi � iwp 1ð Þ

fi þ O w2

 �

ð67Þ

pci ¼ p
0ð Þ
ci � iwp 1ð Þ

ci þ O w2

 �

; ð68Þ

and equivalently for ui. The zeroth-order response corre-
sponds to uniform fluid pressure in the pores and is therefore
given by pc1

(0) = pc2
(0) = �P and

p
0ð Þ
fi

�P
¼ Bo ¼ � a12 þ a13

a22 þ 2a23 þ a33
¼ 1

v1=B1 þ v2=B2

; ð69Þ

where the patchy saturation aij have been employed. The
fact that the quasi-static Skempton’s coefficient in the
patchy saturation model is exactly the harmonic average
of the constituents Bi is equivalent to saying that at
low frequencies, the fluid bulk modulus is given by 1/Kf =
v1/Kf 1 + v2/Kf 2. The quasi-static response is thus completely
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independent of the spatial geometry of the fluid patches; it
depends only on the volume fractions occupied by the
patches.
[65] The leading order correction to uniform fluid pres-

sure is then controlled by the boundary value problem

Kk

ah1
r2p

1ð Þ
f 2 ¼ h2

h1
1� Bo

B2

� �
�P in �2; ð70Þ

Kk

ah1
r2p

1ð Þ
f 1 ¼ 1� Bo

B1

� �
�P in �1; ð71Þ

p
1ð Þ
f 1 ¼ p

1ð Þ
f 2 on @�12; ð72Þ

n � rp
1ð Þ
f 2 ¼ h2

h1
n � rp

1ð Þ
f 1 on @�12; ð73Þ

n � rp
1ð Þ
fi ¼ 0 on @Ei: ð74Þ

It is now assumed that for patchy saturation cases of interest
(air/water or water/oil), the ratio h2/h1 can be considered
small. To leading order in h2/h1, equations (70), (73), and
(74) require that pf 2

(1)(r) = �pf 2
(1) (a spatial constant). The

fluid pressure in phase 1 is now rewritten as

p
1ð Þ
f 1 rð Þ ¼ p

1ð Þ
f 2 � h1a

kK
1� Bo

B1

� �
�P�1 rð Þ; ð75Þ

where, from equations (71), (72) and (74) and to leading
order in h2/h1, the potential �1 is the solution of the same
elliptic boundary value problem (28)–(30) given earlier.
[66] Upon averaging (75) over all of �1, the leading order

in�iw difference in the average fluid pressures can be written

pf 1 � pf 2

�P
¼ �iw

p
1ð Þ
f 1 � p

1ð Þ
f 2

�P

 !
¼ iw

h1a
kK

1� Bo

B1

� �
L21; ð76Þ

where L1 is again the length defined by equation (27).
[67] To connect this fluid pressure difference to the

increment _zint, we use the divergence theorem and the no-
flow boundary condition on @Ei to write equation (58) as

�iwzint ¼
iw
V

k

h

Z
@�12

n � rp
1ð Þ
f 1 dS ¼ iwv1

a
K

1� Bo

B1

� �
�P: ð77Þ

Replacing �P with �pf 1 � �pf 2 using equation (76) then gives
the desired law �iwzint = gp (�pf 1 � �pf 2) with

gp ¼
v1k

h1L21
1þ O

h2
h1

� �� �
ð78Þ

being the low-frequency limit of interest.
3.2.4. High-Frequency Limit of ;(W)
[68] It has already been commented that in the extreme

high-frequency limit where each patch behaves as if it were
sealed to flow ( _zint = 0), the theory of Hill [1963] applies (so
long as all cracks are water wet). Hill demonstrated, among
other things, that when each isotropic patch has the same
shear modulus, the volumetric deformation within each
patch is a spatial constant. The fluid pressure response in
this limit pfi

1 is thus a uniform spatial constant throughout

each phase except in a vanishingly small neighborhood of
the interface @�12 where equilibration is attempting to take
place. The small amount of fluid pressure penetration that is
occurring across @�12 can be locally modeled as a one-
dimensional process normal to the interface.
[69] Using the coordinate x to measure linear distance

normal to the interface (and into phase 1), one has that
equation (63) is satisfied by [Johnson, 2001]

pf 1 ¼ p1f 1 þ C1e
i
ffiffiffiffiffiffiffiffiffi
iw=D1

p
x ð79Þ

pf 2 ¼ p1f 2 þ C2e
�i
ffiffiffiffiffiffiffiffiffi
iw=D1

p
x; ð80Þ

where the diffusivities are defined Di = kKBi/(hia). The
constants Ci are found from the continuity conditions (64)
to be

C1 ¼
�1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2B2= h1B1ð Þ

p p1f 1 � p1f 2

� �
ð81Þ

C2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2B2= h1B1ð Þ

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2B2= h1B1ð Þ

p p1f 1 � p1f 2

� �
: ð82Þ

Although not actually needed here, we have that pfi
1 = Bipci,

where the uniform confining pressure of each patch is given
by equations (45) and (46), so that the fluid pressure
difference between the phases goes as

p1f 1 � p1f 2

�P
¼ B1 � B2

1� b B1=v1 þ B2=v2ð Þ : ð83Þ

Equation (83) is exactly the difference between equations
(55) and (56). Because the penetration distance

ffiffiffiffiffiffiffiffiffiffi
Di=w

p
vanishes at high frequencies, we may state that to leading
order in the high-frequency limit, �pf1 � �pf2 = pf1

1 � pf2
1.

[70] To obtain the high-frequency limit of the transport
coefficient g(w), we use the definition (58) of the internal
transport (note that �n � rpf 1 = @pf 1/@x)

�iwzint ¼
1

V

k

h1

Z
@�12

@pf 1
@x

dS ð84Þ

along with equations (79) and (81). The result is

g wð Þ � i3=2
ffiffiffi
w

p S

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ka= h1B1Kð Þ

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2B2= h1B1ð Þ

p
 !

ð85Þ

as w ! 1. Here, S is again the area of @�12 contained
within a volume V of the patchy composite.
3.2.5. Full Model for g(w)
[71] The high- and low-frequency limits of g are then

connected by a simple frequency function to obtain the final
model

g wð Þ ¼ gp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� iw=wp

q
; ð86Þ

where the transition frequency wp is defined

wp ¼
B1K

h1a
k v1V=Sð Þ2

L41
1þ

ffiffiffiffiffiffiffiffiffiffi
h2B2

h1B1

s !2

; ð87Þ

and where gp = v1k/(h1L1
2). Equation (86) has a single

singularity (a branch point) at w = �iwp. Causality requires
that with an e�iwt time dependence, all singularities and
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zeroes of a transport coefficient like g(w) must reside in the
lower half complex w plane. Equation (86) satisfies this
physically important constraint.

3.3. Patchy Saturation Modeling Choices

[72] To use the patchy saturation model, appropriate
values for the two geometric terms L1 and V/S must be
specified. Immiscible fluid distributions in the earth have
very complicated geometries since they arise from slow
flow that often produces fractal patch distributions. In
particular, analytical solutions of the boundary value prob-
lem (28)–(30) that defines L1 for such real Earth situations
are impossible. Recall that L1 is a characteristic length of
phase 1 (the phase having the smaller fluid mobility k/h)
that defines the distance over which the fluid pressure
gradient is defined during the final stages of equilibration.
For complicated geometries it may either be numerically
determined, treated as a target parameter for a full waveform
inversion of seismic data, or simply estimated qualitatively.
In the numerical examples that follow, we will assume (for
convenience) that the individual patches correspond to
disconnected spheres for which simple analytical results
are available for L1 and V/S.
[73] If we consider phase 2 (porous continuum saturated

by the less viscous fluid) to be in the form of spheres
of radius a embedded within each radius R sphere of the
two-phase composite, then v2 = (a/R)3, V/S = av2/3, and
L1
2 = 9v2

�2/3a2/14[1 � 7v2
1/3/6]. This model is particularly

appropriate when v2 � v1. Since the fluid 2 patches are
disconnected, the definitions (11)–(13) of the effective
poroelastic moduli again hold. Furthermore, fluid 2 may
be taken to be immobile relative to the framework of grains
in the wavelength-scale Biot equilibration so that the inertial
properties of equations (34) and (35) are identified as rf =
rf1, r = (1 � f)rs + f(v1rf1 + v2rf2) and ~r = �h1/(iwk).
[74] In situations where it is more appropriate to treat

fluid 1 (the more viscous fluid) as occupying disconnected
patches (e.g., when v1 � v2), the effective poroelastic
moduli are defined by interchanging 2 and 3 in the sub-
scripts of equations (11)–(13). Again assuming the phase 1
patches to be spheres of radius a embedded within each
radius R sphere of the two-phase composite, we have that
v1 = (a/R)3 and V/S = av1/3. The elliptic boundary value
problem (28)–(30) can be solved in this case to give L1

2 =
a2/15. Furthermore, the effective inertial coefficients in the
Biot theory are defined rf = rf 2, r = (1 � f) rs + f(v1rf1 +
v2rf 2), and ~r = �h2/(iwk).
[75] In situations where both phases form continuous

paths across each averaging volume, it is best to determine
the attenuation and phase velocity by seeking the plane
longtitudinal wave solution of nonreduced ‘‘double-poros-
ity’’ governing equations of the form (6)–(10). However,
this approach is not pursued here. We conclude by noting
that, if the embedded fluid is fractally distributed, the
lengths L1 will remain finite while (V/S)/L1 ! 0 as the
fractal surface area S becomes large (however, V/S never
reaches zero because the fractality has a small-scale cutoff
fixed by the grain size of the material).

3.4. Numerical Examples

[76] In Figure 4 we compare the Johnson [2001] prediction
of KU to our own for a consolidated sandstone (frame

properties as determined in Appendix Awith k = 100 mdarcy,
c = 10, f = 0.20) in which phase 1 is saturated with water and
phase 2 is taken to be spherical regions saturated with air. The
two estimates have identical asymptotic dependence in both
the limits of high and low frequencies. In the crossover range,
the physics is not precisely modeled in either approach.
However, even in the crossover range, the differences in the
two models is slight.
[77] Figure 5 gives the P wave velocity and attenuation

for a model in which the frame properties correspond to k =
10 mdarcy, c = 15, and f = 0.15. Phase 2 is saturated by air
and is taken to be isolated spheres of radius a = 1 cm.
Phase 1 is saturated with water. The volume fraction v2
occupied by these 1 cm spheres of gas is as shown in Figure
5. Even tiny amounts of gas saturation yield rather large
amounts of attenuation and dispersion; yet these predictions
are consistent with the magnitudes of observed attenuation
and dispersion in rocks.

4. Squirt Flow Model

[78] Laboratory samples of consolidated rock often have
broken grain contacts and/or microcracks in the grains.
Much of this damage occurs as the rock is brought from
depth to the surface. Since diagenetic processes in a
sedimentary basin tend to cement microcracks and grain

Figure 4. Undrained bulk modulus KU (w) in both the
patchy saturation model presented in this article and the
model of Johnson [2001]: (top) Re{KU} and (bottom)
QK

�1 = �Im{KU}/Re{KU}. The physical model is 10 cm
spherical air pockets embedded within a water-saturated
region. The volume fraction of gas saturated rock is 3% in
this example. The properties of the rock correspond to a
100 mdarcy consolidated sandstone.
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contacts, it is uncertain whether in situ rocks have signifi-
cant numbers of open microcracks. Nonetheless, when such
grain-scale damage is present, as it always is in laboratory
rock samples at ambient pressures, the fluid pressure
response in the microcracks will be greater than in the
principal pore space when the rock is compressed by a P
wave. The resulting flow from crack to pore is called
‘‘squirt flow’’ [e.g., Mavko and Nur, 1975].
[79] In the squirt model ofDvorkin et al. [1995], the grains

of a porous material are themselves allowed to have porosity
in the form of microcracks. The effect of each broken grain
contact is taken as equivalent to a microcrack in a grain. The
number of such microcracks per grain is thus limited by the
coordination number of the packing and so the total porosity
contribution coming from the grains is always negligible
compared to the porosity of the main pore space.
[80] The grain space in the Dvorkin et al. [1995] model is

taken to be a spatially uniform porous continuum. Dvorkin et
al. provide an approximate analysis of their model in which
the terms that are left out of the bulkmodulus dispersion are as
large as the dispersion itself. In this section, we use the
double-porosity framework to analyze the Dvorkin et al.
[1995] squirt model with the goal of obtaining exact results
at both low and high frequencies. As in sections 2 and 3,
our exact limits are approximately connected by a causal
frequency function containing a relaxation frequency appro-
priate for a grain space of arbitrary geometry.
[81] Phase 1 is now defined to be the pure fluid within the

main pore space of a sample and is characterized elastically
by the single modulus Kf (fluid bulk modulus). Phase 2 is

taken to be the porous (i.e., cracked) grains and character-
ized by the poroelastic constants K2

d (the drained modulus of
an isolated porous grain), a2 (the Biot-Willis constant of
an isolated grain), and B2 (Skempton’s coefficient of an
isolated grain) as well as by a permeability k2. The overall
composite of porous grains (phase 2) packed together within
the fluid (phase 1) has two distinct properties of its own that
must be specified; an overall drained modulus K, and an
overall permeability k associated with flow through the
main pore space. The volume fractions occupied by each
phase are again denoted vi where v1 = f is the porosity
associated with the main pore space.
[82] The theoretical approach is to again obtain the average

fluid response in each of these two phases and then tomake an
effective Biot theory by saying that the fluid within the grains
cannot communicate directly with the outside world; that is,
the fluid in the grains can only communicate with the main
pores. Equations (11)–(13) again define the effective poroe-
lastic moduli in the squirt model and we need only determine
the aij constants and internal transport coefficientg(w) that are
appropriate to squirt.

4.1. Squirt aij Coefficients

[83] To obtain the aij coefficients in the squirt model, we
first note that these coefficients are defined under conditions
where _zint = 0 (no fluid passing between the porous grains
and the principal pore space). Under these conditions, the
rate of fluid depletion r � q1 of a sample (rate of fluid
volume being extruded from the principal pore space via the
exterior sample surface as normalized by the sample vol-
ume) is due to the difference between the rate of dilatation
of the principal pore space (denoted here as _e1) and the rate
at which fluid in the pores is dilating � _�pf1/Kf. If we also
perform a volume average of equation (3) over the porous
grain space and use the notation that v2 _e2 = r � (v2 _�u2) we
obtain the following three equations:

�r � q1 ¼ v1 _e1 þ
v1

Kf

_pf 1; ð88Þ

�r � q2 ¼ � v2a2

Kd
2

_pc2 þ
v2a2

B2K
d
2

_pf 2; ð89Þ

�v2 _e2 ¼
v2

Kd
2

_pc2 �
v2a2

Kd
2

_pf 2: ð90Þ

The macroscopic dilatation of interest is r � v = v1 _e1 + v2 _e2.
In order to obtain the macroscopic compressibility laws for
the porous grain/principal pore space composite, we
introduce linear response laws of the form

_pc2 ¼ a1 _Pc þ a2 _pf 1 þ a3 _pf 2 ð91Þ

_e1 ¼ b1 _Pc þ b2 _pf 1 þ b3 _pf 2; ð92Þ

where the ai and bi must be found. We note immediately
that from the definition _�Pc = v1 _�pf1 + v2 _�pc2 one has

0 ¼ 1� v2a1ð Þ _Pc � v1 þ v2a2ð Þ _pf 1 � v2a3 _pf 2; ð93Þ

which must hold true for any variation of the independent
pressure variables so that a1 = 1/v2, a2 = � v1/v2, a3 = 0.

Figure 5. P wave velocity and attenuation of a sandstone
saturated with water and containing small spherical pockets
of gas having radius 1 cm and occupying a fraction of the
volume v2 as shown.
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[84] To obtain the bi, we now combine the above into the
macroscopic laws

�r � v ¼ �v1b1 þ
1

Kd
2

� �
_Pc � v1b2 þ

v1

Kd
2

� �
_pf 1 � v1b3 þ

v2a2

Kd
2

� �
_pf 2;

ð94Þ

�r � q1 ¼ v1b1 _Pc þ v1b2 þ
v1

Kf

� �
_pf 1 þ v1b3 _pf 2; ð95Þ

�r � q2 ¼
�a2

Kd
2

_Pc þ
v1a2

Kd
2

_pf 1 þ
v2a2

Kd
2B2

_pf 2 ð96Þ

and use the fact that the coefficients of the matrix must be
symmetric (aij = aji). With a11 = 1/K corresponding to the
overall drained frame modulus of the composite (to be
independently specified), we obtain v1b1 = �(1/K � 1/K2

d),
v1b2 = 1/K � (1 + v1)/K2

d, and b3 = a2/K2
d. The final aij

coefficients are exactly

a11 ¼ 1=K; ð97Þ

a22 ¼ 1=K � 1þ v1ð Þ=Kd
2 þ v1=Kf ; ð98Þ

a33 ¼
v2a2

B2K
d
2

; ð99Þ

a12 ¼ �1=K þ 1=Kd
2 ; ð100Þ

a13 ¼ �a2=K
d
2 ; ð101Þ

a23 ¼ v1a2=K
d
2 : ð102Þ

Reasonable models for K and K2
d will be discussed shortly.

4.2. Squirt Transport

[85] We next must obtain the coefficient g(w) in the
mesoscopic transport law �iw zint = g(w) (�pf1 � �pf2). Again,
the approach is to first obtain the limiting behavior at low
and high frequencies and then to connect the two limits by a
simple function.
[86] The fluid response in phase 1 (the principal pore

space) is governed by the Navier-Stokes equation �rpf1 +
hr2v1 = �iwrfv1 and the compressibility law Kfr � v1 =
iwpf1 where v1 is the local fluid velocity in the pores. Since
for all frequencies of interest we have that w � Kf /h (note
that Kf /h � 1012 s�1 for liquids and 1010 s�1 for gases), the
fluid pressure in phase 1 is governed by the wave equation

r2pf 1 þ w2
rf
Kf

pf 1 ¼ 0; ð103Þ

and since the acoustic wavelength in the fluid is always
much greater than the grain sizes, the fluid pressure in the
principal pore space satisfies pf1(r) = �pf1 (a spatial constant)
at all frequencies.
[87] The focus, then, is on determining the flow and fluid

pressure within the cracked grains (phase 2) that is governed
by the local porous continuum laws Q2 = �(k2/h)rpf2 and

k2

h
r2pf 2 þ iw

a2

Kd
2B2

pf 2 ¼ �iw
a2

Kd
2

pc2; ð104Þ

where pc2 = �K2
dr � u2 + a2pf2. This deformation and

pressure change is excited by applying a uniform normal

stress ��Pn to the surface of the averaging volume with
the fluid pressure satisfying the boundary conditions n �
rpf2(r) = 0 on @E2 and pf2(r) = �pf1 on @�12.
4.2.1. Low-Frequency Limit of ;(W)
[88] The fluid pressure and confining pressure in the

grains can again be developed as a power series in �iw
(as in equations (67)–(68)). The zero-order response corre-
sponds to the static limit in which the fluid pressure is
everywhere the same and given by pf2

(0) = �pf1 = Bo�P with
Bo = �(a12 + a13)/(a22 + 2a23 + a33) and with the aij as
given by equations (97)–(102). The detailed result for Bo

can be expressed

1=K � 1� a2ð Þ=Kd
2

Bo

¼ 1

K
� 1� a2ð Þ

Kd
2

þ v1
1

Kf

� 1� a2ð Þ
Kd
2

� �

þ v2
a2

Kd
2

1

B2

� 1

� �
; ð105Þ

which reduces to the standard Gassmann expression given
in Appendix A (with a total porosity given by v1 + f2v2),
when B2 and a2 are themselves given by the Gassmann
expressions. In this same zero-order limit, the undrained
bulk modulus is defined as 1/Ko

u = a11 + (a12 + a13)Bo,
which also reduces to the standard Gassmann expression,
when B2 and a2 are themselves given by Gassmann
expressions.
[89] The leading order in �iw correction to uniform fluid

pressure is thus governed by the problem

r2p
1ð Þ
f 2 ¼ ha2

k2K
d
2

p
0ð Þ
c2 ; ð106Þ

n � rp
1ð Þ
f 2 ¼ 0 on @E2; ð107Þ

p
1ð Þ
f 2 ¼ 0 on @�12: ð108Þ

Here, pc2
(0) is the local confining pressure in the grain space

in the static limit that can be written pc2
(0)(r) = �pc2

(0) + dP(r).
The average static confining pressure throughout the
grains is determined from equation (84) with Pc = �P
and pf 2 = pf1 = Bo�P to yield

p
0ð Þ
c2 ¼ 1� v1Boð Þ

v2
�P: ð109Þ

The deviations dP(r) thus integrate by volume to zero dP =
0 and are formally defined

dP rð Þ ¼ � 1� v1 þ v2a2ð ÞBo

v2

� �
�P � Kd

2

a2

r � u 0ð Þ rð Þ: ð110Þ

The local perturbations dP(r) are thus highly sensitive to the
detailed nature of the grain packing and grain geometry.
Fortunately, the details of these perturbations do not play an
important role in the theory.
[90] The fluid pressure in the grains is now written in the

scaled form

p
1ð Þ
f 2 rð Þ ¼ � ha2 1� v1Boð Þ

v2k2Kd
s

�P� rð Þ; ð111Þ
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where the potential �(r) is independent of �P and is a
solution of the elliptic problem

r2� rð Þ ¼ �1� v2

1� v1Bo

dP rð Þ
�P

; ð112Þ

n � r� ¼ 0 on @E2; ð113Þ

� ¼ 0 on @�12: ð114Þ

To leading order in �iw, an average of equation (111) gives

pf 1 � pf 2 ¼ iwp 1ð Þ
f 2 þ O w2


 �
¼ �iw

ha2 1� v1Boð Þ
v2k2Kd

s

L22�P þ O w2

 �

; ð115Þ

where the squared length L2
2 is defined

L22 ¼ � ¼ �o 1þ v2

1� v1Bo

�odP
�o�P

� �
; ð116Þ

with overlines denoting volume averages over the grain
space and with the potential �o defined as the solution of

r2�o ¼ �1; ð117Þ

n � r�o ¼ 0 on @E2; ð118Þ

�o ¼ 0 on @�12: ð119Þ

Although it is not generally true that �odP = 0 for all grain
geometries, we nevertheless expect this integral to be small
in general because �o is a smooth function and dP = 0. The
local perturbations in the static confining pressure dP(r)
require a solution of the static displacements throughout the
entire grain space, a daunting numerical task. Whenever
the length L2 needs to be estimated, such as in the numerical
results that follow, our approach is simply to use the
reasonable approximation that L2

2 = ��o.
[91] Last, from the definition _zint of the internal transfer

we have that to leading order in �iw:

�iwzint ¼
iwk2
Vh

Z
@�12

n � rp
1ð Þ
f 2 dS

¼ �iwk2
Vh

Z
�2

r2p
1ð Þ
f 2 dV ¼ �iw

a2

Kd
2

v2p
0ð Þ
c2

¼ v2k2

hL22
pf 1 � pf 2

� �
; ð120Þ

where equation (120) follows from equations (109)
and (115). The desired result is thus limw!0 g(w) = gsq =
v2k2/(hL2

2).
4.2.2. High-Frequency Limit of ;(W)
[92] In the extreme high-frequency limit, the fluid has no

time to escape in significant amounts from the porous grains
(phase 2) and enter the main pore space (phase 1). As such,
the fluid pressure distribution in each phase is reasonably
modeled as

pf 1 rð Þ ¼ B1
1 �P ð121Þ

pf 2 rð Þ ¼ B1
2 �P þ C2�Pe�i3=2

ffiffiffiffiffiffiffiffi
w=D2

p
x; ð122Þ

where x is again a local coordinate measuring distance
normal to the interface @�12 and where D2 is the fluid
pressure diffusivity within the porous grains that is given by
D2 = k2K2

dB2/(ha2). In reality, the local confining pressure

pc2(r) throughout the grains has spatial fluctuations about
the average value and we have made the approximation that
the average fluid pressure throughout the grain space is
B2pc2(r) � B2

1�P. It is easy to demonstrate that under
undrained and unrelaxed conditions,

B1
1 ¼ a13a23 � a33a12

a22a33 � a223
ð123Þ

B1
2 ¼ a12a23 � a22a13

a22a33 � a223
: ð124Þ

However, since these Bi
1 do not appear in the final result,

they will not be algebraically developed.
[93] The continuity of fluid pressure pf 2 = pf 1 along @�12

(x = 0) requires that C2 = B1
1 � B2

1. The definition of _zint
may now be used to write

�iwzint ¼
1

V

Z
@�12

k2

h
@p2
@x

¼ k2

h
i3=2

ffiffiffiffiffiffi
w
D2

r
S

V
B1
1 � B1

2


 �
�P

¼ i3=2
ffiffiffi
w

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2a2

hB2K
d
2

s
S

V
pf 1 � pf 2

� �
; ð125Þ

where we have used, to leading order in the high-frequency
limit, �pf 1 � �pf 2 = (B1

1 � B2
1)�P. The desired result is then

g wð Þ � S

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iwk2a2

hB2Kd
s

s
ð126Þ

as w ! 1.
4.2.3. Full Model for g(w)
[94] The high- and low-frequency limits are again caus-

ally connected via the simple function

g wð Þ ¼ gsq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� iw

wsq

s
; ð127Þ

but now the parameters are defined as

gsq ¼
v2k2

hL22
ð128Þ

wsq ¼
B2K

d
2

ha2

k2

L22

v2V=S

L2

� �2

: ð129Þ

4.3. Squirt Flow Modeling Choices

[95] To make numerical predictions of attenuation and
dispersion, models must be proposed for the phase 2
(porous grain) parameters.
[96] If the grains are modeled as spheres of radius R, the

fluid pressure gradient length within the grains can be
estimated as L2 = R/

ffiffiffiffiffi
15

p
and the volume to surface ratio

as V/S = R/(3v2). The grain porosity is assumed to be in the
form of microcracks and so it is natural to define an
effective aperture h for these cracks. If the cracks have an
average effective radius of R/NR (where NR is roughly 2 or 3)
and if there are on average Nc cracks per grain (where Nc is
also roughly 2 or 3), then the permeability and porosity of
the grains are reasonably modeled as

f2 ¼
3Nc

4N2
R

h

R

k2 ¼ f2h
2=12;

ð130Þ
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where f2 is the fracture porosity within the porous grains.
The dimensionless parameters k2/L2

2 and (v2V/S)/L2
required in the expressions for gsq and wsq are now given
by

k2

L22
¼ 15Nc

16N2
R

h

R

� �3

v2V=S

L2

� �2

¼ 5

3
:

ð131Þ

The normalized fracture aperture h/R is the key parameter
in the squirt model.
[97] The drained grain modulus K2

d is necessarily a
function of the crack porosity f2 (and therefore h/R). Real
crack surfaces have micron (and smaller) scale asperities
present upon them. If effective stress is applied in order to
make the normalized aperture h/R smaller (so that, for
example, the peak in squirt attenuation lies in the seismic
band), new contacts are created that make the crack stron-
ger. In the limit as h/R ! 0 (large effective stress), the
cracks are no longer present and K2

d ! Ks, where Ks is the
mineral modulus of the grain.
[98] Many models for such stiffening could be proposed.

We intentionally make a conservative estimate here in
proposing a simple linear porosity dependence K2

d = Ks(1
� sf2), where s is a fixed constant determined from fitting
ultrasonic attenuation data. Effective medium theories [see,
e.g., Berryman et al., 2002] predict that s should be
inversely proportional to the aspect ratios of the cracks
present. As a crack closes and asperities are brought into
contact, there is naturally a decrease in f2, but there should
also be a decrease in s due to the fact that the remaining
crack porosity becomes more equant as new asperities come
into contact. Taking s to be constant as crack porosity
decreases is thus a minimalist estimate for how the drained
modulus increases.
[99] Thus the porous grain elastic properties are taken to be

Kd
2 ¼ Ks 1� sf2ð Þ; ð132Þ

a2 ¼ 1� Kd
2=Ks; ð133Þ

1

B2

¼ 1þ f2

Kd
2

Kf

1� Kf =Ks

1� Kd
2=Ks

� �
; ð134Þ

where we have used the Gassmann fluid substitution
relations for a2 and B2. The overall drained modulus K of
the collection of porous (cracked) grains can be modeled,
for example, as

K ¼ Kd
2 1� v1ð Þ
1þ cv1

; ð135Þ

which is the same drained modulus model as given in
Appendix A but with the solid grain modulus Ks replaced
by the cracked grain modulus K2

d.

4.4. Numerical Examples

[100] In Figure 6 we plot the P wave attenuation predicted
using the above model when the overall grain packing

corresponds to a consolidated sandstone (v1 = 0.2 and
c = 5) having a permeability of 10 mdarcy. For the grain
properties, we take s = 0.8/(5 � 10�3), 3Nc/(4NR

2) = 1, and
Ks = 38 GPa (quartz) as fixed constants. This s value was
chosen so that there would be a significant peak in atten-
uation at ultrasonic frequencies and is taken to be the same
for all values of h/R. The various curves can be thought of
as being due to the application of effective stress. The peak
in Q�1 near 1 MHz that is invariant to h/R is the one due to
the macroscopic Biot loss (fluid pressure equilibration at the
scale of the wavelength). The peak that shifts with h/R is the
one due to the squirt flow.
[101] Figure 6 indicates that although the squirt mecha-

nism is probably operative and perhaps even dominant at
ultrasonic frequencies, it does not seem to be involved in
explaining the observed levels of intrinsic attenuation in
exploration work. For real cracks inside of real grains, the s
value will diminish with effective stress (i.e., with h/R), so
that the effects of squirt in the seismic band are likely to be
even less than shown in Figure 6.
[102] We next introduce the grain parameters k2, f2, and

K2
d as modeled here along with the same overall drained

modulus K into the equations of Dvorkin et al. [1995] and
compare their results to our own when h/R = 5 � 10�3

(Figure 7). Dvorkin et al. [1995] have made a series of
approximations in their analysis (starting with equation (3)
in their paper) in which the error introduced is often as large
as the dispersion being modeled. Figure 7 quantifies this
error since our analysis of their model, at least in the limits
of both low and high frequencies, is exact.

5. Conclusions

[103] Models for three different P wave attenuation
mechanisms were derived using a single theoretical frame-
work. The resulting models differ only in the values of the
aij constants and in the values of the parameters contributing
to the mesoscopic transport coefficient g(w). These three

Figure 6. Squirt flow model of P wave attenuation when
the grains are modeled as being spherical of radius R and
containing microcracks having effective apertures h. The
overall drained modulus of the rock corresponds to a
consolidated sandstone.
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models correspond to (1) mesoscopic-scale heterogeneity in
the frame moduli (‘‘double porosity’’), (2) mesoscopic-scale
heterogeneity in the fluid type (‘‘patchy saturation’’), and
(3) grain-scale heterogeneity due to microcracks in the
grains (‘‘squirt’’). In all three models, the amount of
attenuation is controlled principally by the contrast of elastic
compressibility among the constituents along with the
assumed mesoscopic geometry. In the double-porosity
model, it is necessary that the embedded phase have an
elongated or squashed form and that the contrast between
the frame bulk modulus of the two porous phases is strong
in order for the mesoscopic loss to be significant. In the
patchy saturation model, the contrast in the fluid bulk
modulus must be strong (immiscible patches of different
fluids that have nearly identical bulk moduli would not
produce much attenuation), while in the squirt model, it is
the contrast between the drained modulus of an isolated
cracked grain and that of the entire packing of grains that
controls the amount of attenuation.
[104] Putting in thin lenses of unconsolidated sand grains

into an otherwise consolidated sandstone can produce atten-
uation in the seismic band that is comparable to what is

measured in the field even when the embedded phase repre-
sents only a small amount of the total volume (<1% volume
fractions). Such a model might correspond to a jointed
sandstone. Since mesoscopic-scale heterogeneity is rather
ubiquitous throughout the earth’s crust, it seems reasonable
to suppose that this mechanism may be responsible for most
of the attenuation observed in seismograms. The squirt
mechanism produces a great deal of attenuation at the
ultrasonic frequencies used in laboratory measurements, but
has trouble explaining attenuation in the seismic band. This
result is important for some applications of the theory because
the rate at which the mesoscopic-scale fluid pressure equili-
brates is a strong function of the permeability of the porous
material. The rate at which microcracks equilibrate with the
main pores in squirt flow is not permeability-dependent.
This leaves open the possibility of extracting permeability
information from the frequency dependence of seismically
measured Q.

Appendix A: Constituent Properties

[105] In order to use the unified double-porosity frame-
work of the present paper, it is convenient to have models
for the various porous continuum constituent properties.
[106] For unconsolidated sands and soils, the frame mod-

uli (drained bulk modulus Kd and shear modulus G) are well
modeled using the following variant of the Walton [1987]
theory (see Pride [2003] for details)

Kd ¼ 1

6

4 1� foð Þ2n2oPo

p4C2
s

" #1=3
Pe=Poð Þ1=2

1þ 16Pe= 9Poð Þ½ 
4
n o1=24

ðA1Þ

G ¼ 3Kd=5; ðA2Þ

where Pe is the effective overburden pressure (e.g., Pe =
(1 � f)(rs � rf) gh, where g is gravity and h is overburden
thickness) and Po is the effective pressure at which all grain-
to-grain contacts are established. For Pe < Po, the
coordination number n (average number of grain contacts
per grain) is increasing as (Pe/Po)

1/2. For Pe > Po, the
coordination number remains constant n = no. The
parameter Po is commonly on the order of 10 MPa. As
Po ! 0, the Walton [1987] result is obtained (all contacts in
place starting from Pe = 0). The porosity of the grain pack is
fo and the compliance parameter Cs are defined

Cs ¼
1

4p
1

Gs

þ 1

Ks þ Gs=3

� �
ðA3Þ

where Ks and Gs are the mineral moduli of the grains. For
unimodal grain-size distributions and random grain packs,
one typically has 0.32 < fo < 0.36 and 8 < no < 11. In
the numerical examples we use fo = 0.36, no = 9, and Po =
10 MPa.
[107] For consolidated sandstones, the frame moduli are

modelled in the present paper as (see Pride [2003] for details)

Kd ¼ Ks

1� f
1þ cf

; ðA4Þ

G ¼ Gs

1� f
1þ 3cf=2

: ðA5Þ

Figure 7. Dispersion (top) in the real parts of the drained
bulk modulus KD (w), (middle) the undrained bulk modulus
KU(w), and (bottom) the Skempton’s coefficient B(w) as
determined both in the present study and by Dvorkin et al.
[1995]. The plots were all generated with h/R = 5 � 10�3.
Both theories use identically the same input parameters and
are treating identically the same model. The present study
may be considered exact in both the low- and high-
frequency limits of the model.
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The consolidation parameter c represents the degree of
consolidation between the grains and lies in the approximate
range 2 < c < 20 for sandstones. If it is necessary to use a c
greater than say 20 or 30, then it is probably better to use the
modified Walton theory.
[108] The undrained moduli Ku and B are conveniently

and exactly modeled using the Gassmann [1951] theory
whenever the grains are isotropic and composed of a single
mineral. The results are

B ¼ 1=Kd � 1=Ks

1=Kd � 1=Ks þ f 1=Kf � 1=Ks


 � ðA6Þ

Ku ¼ Kd

1� B 1� Kd=Ksð Þ ; ðA7Þ

from which the Biot-Willis constant a may be determined to
be a = 1 � Kd/Ks. These Gassmann results are often called
the ‘‘fluid substitution’’ relations.
[109] The dynamic permeability k(w) as modeled by

Johnson et al. [1987] is

k wð Þ
ko

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i

4

nJ

w
wc

r
� i

w
wc

� ��1

; ðA8Þ

where the relaxation frequency wc, which controls the
frequency at which viscous boundary layers first develop, is
given by

wc ¼
h

rf Fko
: ðA9Þ

Here, F is exactly the electrical formation factor when grain
surface electrical conduction is not important and is
conveniently (though crudely) modeled using Archie’s law
F = f�m. The cementation exponent m is related to the
distribution of grain shapes (or pore topology) in the sample
and is generally close to 3/2 in clean sands, close to 2 in shaly
sands, and close to 1 in rocks having fracture porosity (indeed,
a reasonable model is m = 3/2 + 1/c). In the numerical
modeling, the parameter nJ is, for convenience, taken to be 8
(cylinder model of the pore space).
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