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[1] Wave trains in high-frequency seismograms of local earthquakes are mostly composed
of incoherent waves that are scattered by distributed heterogeneities within the lithosphere.
Their phase variations are very complex; however, their wave envelopes are systematic,
frequency-dependent, and vary regionally. Stochastic approaches are superior to
deterministic wave-theoretical approaches for modeling wave envelopes in random media.
The time width of a wavelet is broadened with increasing travel distance mostly because
of diffraction caused by the long-wavelength components of random velocity
inhomogeneity. The Markov approximation for the parabolic wave equation is effective
for the synthesis of envelopes for random media whose spectra are poor in short-
wavelength components; however, we have to consider the contribution of large-angle
nonisotropic scattering if the random media are rich in short-wavelength inhomogeneities.
Multiple nonisotropic scattering can be reliably modeled as isotropic scattering by using
an effective isotropic scattering coefficient given by the momentum transfer scattering
coefficient, which is a reciprocal of the transport mean free path. It is mostly controlled by
the short-wavelength spectra of random media. We propose a hybrid method for the
synthesis of whole wave envelopes that uses the envelope derived from the Markov
approximation as a propagator in the radiative transfer integral equation for isotropic
scattering. The envelopes resulting from the hybrid method agree well with ensemble
average envelopes calculated by averaging envelopes from individual finite difference
simulations of the wave equation for a suite of random media. INDEX TERMS: 0902
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1. Introduction

[2] Seismic waves radiated with a very short duration time
from a microearthquake source are scattered by distributed
random heterogeneities in the lithosphere and undergo
amplitude decay and envelope broadening as illustrated in
Figure 1. Observational and theoretical studies of this
envelope collapsing phenomenon have led to methods for
measuring medium heterogeneity and the earthquake source
process [Aki, 1980; Atkinson, 1993]. Models of scattering by
random inhomogeneity predict that the frequency depen-
dence of scattering loss is related to the spectra of random
media. A comprehensive review of attenuation and scatter-

ing in the earth is given by Sato et al. [2002]. Most studies
about attenuation in the earth have focused on direct wave
amplitudes; however, we have proposed that the amplitude
decay of the direct arrival with increasing travel distance and
the excitation of coda waves that follow the direct arrivals
should be simultaneously explained by a unified model. Sato
[1984] proposed a model for amplitude attenuation and
envelope formation of three-component seismograms in
random elastic media. His model is based on the single
scattering approximation of the radiative transfer theory with
the Born approximation for polarized elastic waves. Sato
noted that forward scattering by long-wavelength compo-
nents of velocity inhomogeneity lead to travel time fluctua-
tions but do not remove energy from a propagating wave
field. Thus, for the calculation of scattering loss during
propagation, he ignored forward scattering and summed up
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waves scattered at large angles by short-wavelength compo-
nents, which form the coda wave envelope.
[3] While forward scattering does not remove energy

from a propagating wave field, it is very important
to consider forward scattering and/or diffraction when
modeling complex envelopes around direct arrivals.
Focusing on the diffraction due to long-wavelength
components of velocity inhomogeneity, Sato [1989] and
Scherbaum and Sato [1991] explained the broadening of
S wave envelopes of microearthquakes with increasing
travel distance observed in Kanto, Japan, by using a model
based on the Markov approximation for the parabolic wave
equation for scalar waves in random media [Lee and Jokipii,
1975]. This approximation is valid when the wavelength is
smaller than the characteristic scale of medium inhomoge-
neity. Fehler et al. [2000] confirmed that the envelope that
is directly simulated by the Markov approximation is in
agreement with the statistical average envelope of waves
that are synthesized numerically by using the finite differ-
ence (FD) method. We will call the former and the latter the
Markov envelope and the FD envelope, respectively. Fehler
et al. [2000] used Gaussian spectra for characterizing
random media because they allowed us to easily deal with
the mathematically tractable problem of modeling envelope
formation. Envelope broadening in media with Gaussian
spectra is frequency-independent; however, observed envel-
opes vary with frequency. Obara and Sato [1995] reported
that the S-wave envelope broadening for frequencies higher
than 3 Hz in the back arc side of the volcanic front is larger
that that in the forearc side in Kanto-Tokai, Japan. Beneath
this area, the Pacific plate is subducting. The regional
difference in envelope broadening might reflect the regional
difference in the spectra of lithospheric inhomogeneity. In
the laboratory, Fukushima et al. [2003] measured the
collapse of the envelope of ultrasonic shear waves propa-
gating through different kinds of rock samples by using a
laser Doppler vibrometer. They reported that the envelope
broadening in Oshima granite is much larger than in Tamura
gabbro at 1 MHz. They suggested the importance to
envelope broadening of large-angle scattering by small-
scale random heterogeneities and cracks in addition to
diffraction effects due to large-scale inhomogeneities.

[4] Recently, extending Shishov’s work [1974] on three-
dimensional (3-D) random media having Gaussian spectra,
Saito et al. [2002] succeeded in formulating the envelope
synthesis of spherically outgoing waves radiated from a
point source in 3-D random media of von Kármán–type,
which are more appropriate to describe the inhomogeneities
of the real earth having a power law spectra [e.g., Shiomi et
al., 1997]. In a following paper [Saito et al., 2003], we
compared Markov envelopes with FD envelopes in 2-D von
Kármán–type random media. The comparison is generally
good for a small time window containing the peak arrival.
The fit is good from the onset to coda in random media
with weak short-wavelength spectra; however, Markov
envelopes are smaller than FD envelopes at a large lapse
time in random media with rich short-wavelength spectra
since the large-angle scattering contribution is not reliably
modeled in the Markov approximation. To extend the
Markov approximation approach for envelope synthesis
around the peak arrival, Saito et al. [2003] proposed a
partial addition of scattered wave power by using the
conventional radiative transfer equation for the isotropic
scattering process in order to explain the coda excitation.
They used the fact that the scattering process is well
represented by isotropic scattering when multiple scattering
dominates, where the effective isotropic scattering coeffi-
cient is given by the momentum transfer scattering coeffi-
cient [see Morse and Feshbach, 1953]. Their model
succeeded in explaining the whole envelope of scalar waves
radiated from a point source in 2-D von Kármán–type
random media; however, their model has a defect that the
propagator used in the radiative transfer equation is a delta
function and it does not contain the diffraction effect due to
long-wavelength spectra of random media.
[5] We note that Kravstov [1992] developed a model for

describing the scattering of waves by small inhomogeneities
in the background of large-scale inhomogeneities as an
extension of the distorted-wave Born approximation used
in the quantum theory. Here we propose a hybrid method to
synthesize the whole envelope of scalar waves radiated
from a point source from the onset to coda. We focus on
the case of 2-D random media especially having rich short-
wavelength spectra. The basic idea is to use the Markov
envelope as a propagator in the radiative transfer integral
equation for isotropic scattering. The propagator includes
the diffraction effect due to long-wavelength spectra and, in
addition, isotropic scattering reliably models the contribu-
tion of short-wavelength spectra.
[6] First, we briefly describe the mathematical basics for

the statistical study of wave propagation in random media
and the derivation of Markov envelopes, and then we show
comparisons of Markov envelopes with FD envelopes.
Second, we propose a hybrid method for the whole envelope
synthesis on the basis of the radiative transfer theory, and then
we compare the simulated envelopes with FD envelopes.
Finally, we discuss possible future developments.

2. FD Envelopes and Markov Envelopes
in Random Media

2.1. von Kármán––Type Random Media

[7] For the study of stochastic wave propagation through
2-D inhomogeneous media, we imagine an ensemble of

Figure 1. Schematic illustration of wave propagation in a
random medium. A wavelet impulsively radiated from a
point source decays with increasing travel distance.
Envelopes represent the modulation effect due to scattering.
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random media. In each medium, the wave-velocity inho-
mogeneity is written as V(x) = V0{1 + x(x)}, where V0 is the
average wave velocity and fractional velocity fluctuation
x(x) is a random function of space coordinate x. The
ensemble of random media is mathematically given by a
set of random functions {x(x)}, where hx(x)i = 0. The
angular brackets mean the ensemble average. We assume
that the randomness is statistically homogeneous and
isotropic. The random media can be characterized by the
auto-correlation function (ACF) of fractional velocity
fluctuation R(x) � hx(x + x0)x(x0)i. The magnitude of
inhomogeneity is given by the mean square (MS) fractional
fluctuation e2 � R(0) = hx(x)2i, and the characteristic scale
is given by the correlation distance a. The power spectral
density function (PSDF) is given by the Fourier transform
of the ACF, P(m) =

R R1
�1R(x)e�imxdx, where argument m

is the wave number vector.
[8] Well log data and seismic studies suggest that the

PSDF of fractional fluctuation of seismic velocity obeys a
power law in wave number [e.g., Wu and Aki, 1985; Shiomi
et al., 1997; Goff and Holliger, 1999]. The most typical
random media having power law spectra as asymptote are
von Kármán–type, which were first introduced for the study
of turbulent in fluids [Tatarskii, 1971]. In 2-D, the von
Kármán–type PSDF of order k is given by

P mð Þ ¼ P mð Þ ¼ 4pe2a2k

1þ a2m2ð Þkþ1

/ m�2k�2 for am � 1; ð1Þ

where wave number m = jmj. The PSDF obeys a power law
for large wave numbers and the exponent is �2k � 2, which
means that short-wavelength components in the spectra

increase with decreasing order k. The corresponding ACF is
written by

R yð Þ ¼ R yð Þ ¼ e221�k

G kð Þ
y

a

� �k
Kk

y

a

� �
; ð2Þ

where y = jyj, G is a Gamma function, and Kk is the
modified Bessel function of the second kind.
[9] As an example, PSDFs for k = 0.1 and 1.0 are

shown in Figure 2. We take k = 1.0 to represent random
media with poor short-wavelength spectra. We choose k =
0.1 for a typical example of random media with rich short-
wavelength spectra. Note that K0(y) for k = 0 diverges as
y ! 0.

2.2. FD Envelopes

[10] We numerically simulate wave propagation through
50 realizations of 2-D von Kármán–type random media
having V0 = 4 km/s, e = 5%, a = 5 km, for each case of
k = 0.1 and k = 1.0. The dimension of each medium is
205 km by 300 km. We use a finite difference solution of
the acoustic wave equation to numerically simulate the
wave field from a 2 Hz Ricker wavelet isotropic point
source in each random medium realization. Finite differ-
ence modeling is accomplished with a 2-D FD code that
has fourth-order accuracy in space and second-order accu-
racy in time. The code uses Holberg [1987] coefficients,
which are optimal for minimizing grid dispersion for a
given number of grid points per wavelength. We use
Higdon absorbing boundaries [Higdon, 1991]. We use a
grid spacing of 50 m and a time step of 4 ms. Waveforms
are simulated at receivers with 25 km spacing at distances
of 0 to 200 km from the source. In our model, there is
50 km between the source location and the nearest
boundary of the model and 50 km between the most
distant receiver and the nearest model boundary. Boundary
reflections from the near-source and near-receiver regions
should not arrive until 25 s after the direct arrival in the
background medium. A detailed description of the FD
simulation is given by Fehler et al. [2000]. Figures 3a
and 3b show examples of FD simulations for k = 0.1 and
k = 1.0, where the abscissa is reduced time by travel time
calculated by background velocity V0. Broadening of a
pulse, travel time fluctuation and excitation of scattered
waves are clearly seen in these FD wave traces. Travel
time fluctuation for the case of k = 1.0 is larger than that
for the case of k = 0.1 because of the difference in long-
wavelength spectra. Excitation of scattered waves for the
case of k = 0.1 is larger than that for the case of k = 1.0
because of the difference in short-wavelength spectra.
[11] Smoothing the average of 50 squared wave traces

over a 0.32 s window at each receiver, we obtain the MS
envelope. Taking the square root of MS envelope, we get
the root-mean-square (RMS) envelope at each receiver. We
call them FD envelopes. Shaded curves in Figures 4a and 4b
show the temporal changes in FD envelopes at eight
receivers in von Kármán–type random media of k = 0.1
and k = 1.0, respectively. The maximum peak amplitude of
the envelope decreases and the time width broadens with
increasing travel distance. The excitation of coda waves in
media with k = 0.1 is larger than that in media with k = 1.0

Figure 2. Power spectral density functions (PSDFs) of
two-dimensional (2-D) von Kármán–type random media
used in this study.
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as shown by the long envelope tails after the large initial
peaks for the case of k = 0.1.

2.3. Markov Envelopes

2.3.1. Parabolic Wave Equation
[12] When the fractional velocity fluctuation is small,

jx(x)j � 1, the wave equation for scalar waves u(x, t) is
written as

D� 1

V 2
0

@2

@t2

� �
u x; tð Þ þ 2

V 2
0

x xð Þ @
2

@t2
u x; tð Þ ¼ 0: ð3Þ

For the study of cylindrically outgoing waves radiated from
a point source, we take the source at the origin of a polar
coordinate system, where r = jxj and angle q is measured
from the direction toward a receiver from the source. Scalar
waves are written as a superposition of harmonic cylindrical
waves of amplitude U at angular frequency w as

u x; tð Þ ¼ 1

2p

Z1

�1

U r; q;wð Þffiffi
r

p ei kr�wtð Þdw; ð4Þ

where wave number k = w/V0. If we model the scattering
contribution of long-wavelength spectra, we may use the
parabolic approximation for the wave equation. Substituting
equation (4) into equation (3) and neglecting the second
derivative with respect to r, we obtain the parabolic wave
equation:

2ik
@

@r
U r; q;wð Þ þ 1

r2
@2

@q2
U r; q;wð Þ � 2k2x r; qð ÞU r; q;wð Þ ¼ 0:

ð5Þ

Liu and Wu [1994] and Saito et al. [2003] reported that it is
enough to consider forward scattering and diffractions
around the global ray direction when we focus on waves
around direct arrivals. We note that the parabolic approxima-
tion is used under the condition that the wave number is much
larger than the reciprocal of correlation distance k � 1/a.
2.3.2. Markov Approximation for
Quasi-Monochromatic Waves
[13] In order to derive the temporal change in wave

envelopes in random media we define the two-frequency
mutual coherence function (TMCF) on a transverse axis at a
distance r from the source [e.g., Ishimaru, 1978]. It means
the correlation of the wave field between different locations
q1 and q2 and different angular frequencies w1 and w2,

G2 q1; q2; r;w1;w2ð Þ � U r; q1;w1ð ÞU* r; q2;w2ð Þh i; ð6Þ

where the asterisk means complex conjugate. The following
procedure is along the line given by Fehler et al. [2000] and
Saito et al. [2003]. Since the random media are statistically
homogeneous, G2 depends on the difference angle qd � q1 �
q2 only. For quasi-monochromatic waves, that is, w1 � w2,
the master equation for G2 is written as

@

@r
G2 þ i

kd

2k2c

1

r2
@2

@q2d
G2 þ k2c A 0ð Þ � A rqdð Þ½ �G2 þ

k2d
2
A 0ð ÞG2 ¼ 0;

ð7Þ

where the center of mass and difference coordinates in
the wave number space are kc = (k1 + k2)/2 and kd = k1 � k2

Figure 3. Variation of wave traces with travel distance for
a 2 Hz Ricker wavelet source radiation in von Kármán–type
random media by using the finite difference (FD) method,
where numerals are distances from the point source and
amplitude is normalized by the peak value in each trace:
(a) k = 0.1 and (b) k = 1.0.

Figure 4. FD envelopes (shaded) and Markov envelopes
(solid) for a 2 Hz Ricker wavelet source radiation in 2-D
von Kármán–type random media, where numerals are
distances from the point source: (a) k = 0.1 and (b) k = 1.0.
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(kd � kc), respectively. Corresponding coordinates for
angular frequency will also be used. The above derivation
is called the Markov approximation [Tatarskii, 1971]. Note
that this approximation accounts only for strong forward
scattering and diffraction effects; no back scattering is
considered.
[14] The contribution of inhomogeneity is given by the

longitudinal integral of the ACF,

A rqdð Þ ¼
Z1

�1

dzR rqd ; zð Þ; ð8Þ

where the z axis is chosen to be the radial direction and rqd is a
distance on the transverse axis at a distance r from the source.
For von Kármán–type random media, the longitudinal
integral A is directly calculated from the PSDF (1) as

A rqdð Þ ¼
Z1

�1

dz
1

2pð Þ2
Z Z1

�1

P mð Þeimxrqdþimzzdmxdmz

¼ 2�kþ3
2

ffiffiffi
p

p
e2a

G kð Þ
rqd
a

� �kþ1=2

Kkþ1=2
rqd
a

� �
: ð9Þ

The longitudinal integral A represents the correlation on a
transverse direction. At a long travel distance from the
source, the correlation of the wave field at two points
spatially separated on a transverse axis rapidly decreases to
zero with increasing lag distance [Sato and Fehler, 1998].
Then, the value of A(0) � A(rqd) at small transverse-distance
rqd � a becomes important in the third term of equation (7).
We may write the value as

A 0ð Þ � A rqdð Þ � e2aC kð Þ rqd
a

� �p kð Þ
for rqd=a � 1: ð10Þ

Saito et al. [2002, 2003] numerically evaluated equation (10)
by using equation (9) and estimated parameters C(k)
and p(k) for given k value at small transverse distances
10�4 < rqd/a < 10�1. For example, C = 0.56 and p = 1.19
for the von Kármán–type random media of k = 0.1, and
C = 1.50 and p = 1.99 for k = 1.0. The accuracy of the
approximation (10) is graphically illustrated in Figure 4 of
Saito et al. [2002].
[15] The TMCF G2 can be decomposed into a product

of 0G2 and the wandering effect term, exp[�A(0)kd
2r/2].

This term does not correspond to the broadening of the
individual wave packet but shows the wandering effect from
the statistical averaging of the travel time fluctuations of
different rays at distance r [Lee and Jokipii, 1975]. Then the
master equation for 0G2 is given by

@

@r
0G2 þ i

kd

2k2c

1

r2
@2

@q2d
0G2 þ k2c A 0ð Þ � A rqdð Þ½ �0G2 ¼ 0: ð11Þ

The ensemble average of the wave intensity at radial
distance r and at lapse time t is

u x; tð Þj j2
D E

¼ 1

2pð Þ2
1

r

Z1

�1

dwc

Z1

�1

dwd e
�A 0ð Þr

2V2
0

w2
d

� 0G2 qd ¼ 0; r;wd ;wcð Þe�iwd t�r=V0ð Þ

¼ V0

2p

Z1

�1

dwc

Z1

�1

dt0w x; t � t0ð ÞG0 x; t0;wcð Þ; ð12Þ

where the wandering effect in the time domain is given
by

w x; tð Þ ¼ 1

2p

Z1

�1

dwde
�A 0ð Þr

2V2
0

w2
d

e�iwd t ¼ V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pA 0ð Þr

p e
�

V2
0
t2

2A 0ð Þr: ð13Þ

The wave intensity at distance r is given by a convolution
integral of the wandering effect and function G0 in the
time domain. Function G0 in equation (12) is given by the
inverse Fourier transform of 0G2 with respect to difference
angular frequency wd,

G0 x; t;wcð Þ ¼ 1

2prV0

1

2p

Z1

�1

dwd 2p0G2 qd ¼ 0; r;wd ;wcð Þ½ �

� e�iwd t�r=V0ð Þ: ð14Þ

Function G0 must be real, that is, 0G2(qd, r = 0, wd, wc) =

0G2(qd, r = 0, � wd, wc)*. We also note the causality G0 =
0 for t < r/V0. As the initial condition for the coherent
isotropic radiation from a point source, we take 0G2 to be
nondimensional for a unit source radiation,

2p0G2 qd ; r ¼ 0;wd ;wcð Þ ¼ 1: ð15Þ

Then, G0 has a dimension of spatial density and satisfies
G0(x ! 0, t; wc) = d(t � r/V0)/(2pV0r) as a limit. Function
G0 represents the MS envelope at central angular
frequency wc for a unit source radiation. This is the
mathematical definition of the Markov envelope. Numeri-
cally integrating equations (11) with (10) by using the
Crank-Nicholson method [Press et al., 1988], we obtain

0G2 [see Saito et al., 2002, 2003]. We plot the real and the
imaginary parts of 0G2 against difference angular fre-
quency for von Kármán–type random media of k = 0.1 in
Figure 5a. By using the FFT of 0G2 we can easily obtain
the Markov envelope G0. Figure 5b shows the time trace
of the Markov envelope G0, where the reduced time t �
r/V0 is normalized by the characteristic time,

tM ¼ C kð Þ
2

p kð Þe
4

p kð Þa

2V0

awc

V0

� ��2p kð Þþ4

p kð Þ r

a

� �p kð Þþ2

p kð Þ
: ð16Þ

The time width of envelope is well characterized by the
characteristic time, whose frequency dependence is
controlled by parameter p(k). Figure 6a shows plots of
characteristic time tM against travel distance at 2 Hz.
The distance dependence of characteristic time is small
when k = 1.0 but large when k = 0.1. Figure 6b shows
plots of tM against frequency at a distance of 200 km.
When k = 0.1, the characteristic time increases with
increasing frequency and becomes larger than the travel
time for frequencies higher than 7.5 Hz. However, it is
small and nearly independent of frequency when k =
1.0: tM = 3.82 s at 2 Hz and 3.88 s at 10 Hz.
[16] Figure 7 schematically shows the scattering contribu-

tion of long-wavelength components and short-wavelength
components of random inhomogeneity, where long-wave-
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length components cause the envelope broadening because of
diffraction and forward scattering.

2.4. Comparison of Markov Envelopes With
FD Envelopes

[17] In Figure 4, solid curves show MS envelopes in von
Kármán–type random media directly simulated by using a
convolution of the Markov envelope G0(x, t; wc), the
wandering effect w(x, t) and the temporal change in the
power of a 2 Hz Ricker wavelet source WR(t). We may say
that solid curves well explain FD envelopes (shaded curves)
around the peaks for both cases, k = 0.1 and 1.0. The
Markov approximation for the parabolic wave equation is
able to predict at least the early wave envelopes quantita-
tively even for random media with rich short-wavelength
spectra, because the early part is mainly composed of
forward scattered waves. For the case of k = 1.0, Markov
envelopes and FD envelopes coincide well even in the coda;
however, we find a departure of the Markov envelope from
the FD envelope as lapse time increases at each receiver for
the case of k = 0.1. We may say that the coda part is mostly
composed of waves that are scattered at large angles from
short-wavelength inhomogeneities and they are correctly
synthesized in FD envelopes; however, the large-angle

scattering is completely neglected in the derivation of the
Markov envelope.
[18] Saito et al. [2003] proposed to use the Markov

envelope for the direct propagation term and to use the
conventional radiative transfer theory for isotropic scatter-
ing to incorporate the effects of wide-angle scattering that
leads to coda excitation. They have succeeded in simulating
whole envelopes from onset to coda; however, their formu-
lation contains some inconsistency: The propagator used in
their radiative transfer equation is a delta function-type as
d(t � r/V0)/(2pV0r), which does not represent diffraction
effect due to long-wavelength spectra. In the following,
extending their idea in a consistent manner, we propose a
hybrid method for the envelope synthesis, in which we use
the Markov envelope containing diffraction effect as a
propagator in the radiative transfer integral equation.

3. Hybrid Simulation Based on the Radiative
Transfer Theory

3.1. Momentum Transfer Scattering Coefficient

[19] Scattering power per unit area of a 2-D random
media is characterized by the scattering coefficient, which
can be estimated by using the Born approximation. The

Figure 5. (a) Real and imaginary parts of 0G2 as a function of difference frequency wd in von Kármán–
type random media of k = 0.1, where tM is the characteristic time. (b) Markov envelope G0 represents the
mean square (MS) envelope for an impulsive isotropic source radiation in 2-D von Kármán–type random
media of k = 0.1.

Figure 6. (a) Distance dependence of the characteristic time. (b) Frequency dependence of the
characteristic time of the Markov approximation. Solid curves and shaded curves correspond to k =
0.1 and k = 1.0 for 2-D von Kármán–type random media of V0 = 4 km/s, e = 5%, a = 5 km.
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angular dependence of scattering coefficient g(y) at scat-
tering angle y for waves of angular frequency wc is
controlled by the PSDF as [Frankel and Clayton, 1986;
Sato and Fehler, 1998],

g y;wcð Þ ¼ wc

V0

� �3

P 2
wc

V0

sin
y
2

� �
: ð17Þ

In Figure 8a, a fine solid curve shows the angular
dependence of g(y) at 2 Hz in von Kármán–type random
media with V0 = 4 km/s, e = 5%, a = 5 km, and k = 0.1. We
find that the scattering pattern is far from isotropic. A large
lobe in the forward direction represents strong forward
scattering due to long-wavelength components of the
random media.
[20] Even though scattering is nonisotropic, scattering

process can be well described by isotropic scattering when
multiple scattering is dominant. Deriving the diffusion
equation from the transport equation for nonisotropic scat-
tering, Morse and Feshbach [1953] introduced the momen-
tum transfer scattering coefficient as the effective isotropic
scattering coefficient,

gm wcð Þ ¼ 1

p

Zp

0

1� cosyð Þg y;wcð Þdy

¼ 1

p

Zp

0

2 sin2
y
2

wc

V0

� �3

P
2wc

V0

sin
y
2

� �
dy: ð18Þ

A reciprocal of gm gives the transport mean free path.
In the Monte Carlo simulation of energy particles in
scattering media, Gusev and Abubakirov [1996] used gm
for characterizing the coda excitation. For the von Kármán–
type randommedia of V0 = 4 km/s, e = 5%, a = 5 km, and k =

0.1, gm = 0.00273 km�1 at 2 Hz. In Figure 8b, a bold solid
curve shows a circle of radius gm representing the effective
isotropic scattering for 2 Hz waves, where a fine solid curve
shows the scattering coefficient predicted by the Born
approximation. Scattering at large angles is 3 orders of
magnitude smaller than the forward scattering. A dashed
curve shows the plot of the integrand of equation (18), (1 �
cos y)g(y; wc). The factor (1 � cos y) eliminates forward
scattering, and the dashed curve is very close to the circle
of gm. This factor also works as a filter that eliminates

Figure 7. Schematic illustration of the decomposition of random media into long-wavelength
components and short-wavelength components.

Figure 8. (a) Scattering pattern of 2 Hz waves in 2-D von
Kármán–type random media of V0 = 4 km/s, e = 5%, a =
5 km, and k = 0.1. (b) Zoom up of the scattering pattern.
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small-wave number components of the spectra (long-
wavelength spectra) of the random media. That is, the
momentum transfer scattering coefficient represents the
effective isotropic scattering, which is the average contribu-
tion of large-angle scattering due to short-wavelength
spectra of random media as conceptually illustrated in
Figure 7.

3.2. Radiative Transfer Equation

[21] We develop an envelope synthesis on the basis of the
radiative transfer theory [Shang and Gao, 1988; Zeng et al.,
1991], where the energy density in the radiative transfer
equation represents the MS wave amplitude at a given
angular frequency. We here propose to use the Markov
envelope G0 as a propagator in the radiative transfer integral
equation. The Markov envelope reliably represents causality
and envelope broadening caused by scattering due to the
long-wavelength spectra of random media. We use the
momentum transfer scattering coefficient gm, which reliably
models the large-angle scattering caused by the short-

wavelength spectra of random media, as the effective
isotropic scattering coefficient in the radiative transfer
equation. The objective is to derive the space-time distri-
bution of energy density G(x, t; wc) for an isotropic unit
source radiation. Figure 9 shows the geometry used for the
description of radiative transfer integral equation. The
radiative transfer equation for a unit isotropic source radi-
ation in a 2-D medium with no intrinsic absorption is
written by using the convolution integral equation as

G x; t;wcð Þ ¼ G0 x; t;wcð Þe�mgmV0 t þ V0 gm

Z1

�1

Z1

�1

Z1

�1

� G0 x� x0; t � t0;wcð Þ
� e�mgmV0 t�t0ð ÞG x0; t0;wcð Þdt0dx0; ð19Þ

where the exponential term exp[�mgmV0t] representing
scattering loss is introduced to conserve the total energy.
The conservation of total energy

R R1
�1G(x, t; wc)dx = 1

gives the value of parameter m. We may call G(x, t; wc) the
Green function for the hybrid synthesis and the time trace as
the hybrid envelope. We note that the scattering loss term
exp[�gmV0t] was introduced for the delta function propa-
gator d(t � r/V0)/(2pV0r) in the conventional radiative
transfer theory [Shang and Gao, 1988].
[22] As schematically illustrated in Figure 10a, the delta

function propagator describing causality with a constant
velocity is used in the conventional radiative transfer theory
for isotropic scattering [Shang and Gao, 1988; Zeng et al.,
1991; Yoshimoto, 2000] and/or nonisotropic scattering
[Sato, 1994; Hoshiba, 1995; Gusev and Abubakirov,
1996]. The Born approximation predicts large forward
scattering due to the long-wavelength spectra of random
media. The concept of the new hybrid synthesis is sche-
matically shown on Figure 10b, where we assume isotropic
scattering due to short-wavelength components but include

Figure 9. Configuration of a source, a receiver, and a last
scattering point used in the radiative transfer integral
equation.

Figure 10. Concept of the (a) conventional radiative transfer theory and (b) hybrid synthesis.
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envelope broadening due to long-wavelength components
during propagation between isotropic scatterers.

3.3. Scale Parameter Characterizing Envelope
Broadening due to Diffraction

[23] Introducing a new parameter gb having a dimension
of the reciprocal of length, we can represent the character-
istic time for envelope broadening due to diffraction as

tM ¼ gb rð Þ1þ
2

p kð Þ

gbV0

; ð20Þ

where

gb wcð Þ ¼ C kð Þ
2
p kð Þ
2

e2

a

awc

V0

� �2�p kð Þ
: ð21Þ

We call new parameter gb the broadening coefficient. For
the von Kármán–type random media of V0 = 4 km/s, e =
5%, a = 5 km, and k = 0.1, gb = 0.0017254 km�1 at 2 Hz.
[24] We note that there are two scales gb and gm, which

characterize the diffraction effect due to long-wavelength
components and the average scattering contribution due to
short-wavelength components. Table 1 shows mutual rela-
tions between the wave theory, the Markov approximation,
and the hybrid synthesis.

3.4. Radiative Transfer Equation in
Nondimensional Form

[25] We normalize all the parameters for describing the
scattering process by using broadening coefficient gb and
the average velocity V0 as

r ¼ gbr; t ¼ gbV0t;wd ¼
wd

gbV0

; tM ¼ gbV0tM ¼ r
1þ 2

p kð Þ;

gm ¼ gm

gb
; g2bG0 ¼ G0; g

2
bG ¼ G:

ð22Þ

For example, a distance of 200 km is 0.345 in normalized
distance and a time of 50 s is 0.345 in normalized time. For
the von Kármán–type random media of V0 = 4 km/s, e = 5%,
a = 5 km, and k = 0.1, both gb and gb increase with increasing
frequency as shown in Figure 11a; however, the ratio gm =
gm/gb = 1.58 at 2 Hz and converges to a finite value 1.63
with increasing frequency as shown in Figure 11b.

[26] Then, the Markov propagator equation (14) in non-
dimensional form is

G0 x; t;wcð Þ ¼ 1

2p

Z1

�1

dwde
�iwd t

1

2pr
eiwdr2p0G2 r1þ

2
pwd

� �� �
: ð23Þ

The radiative transfer equation in nondimensional form is
written as

G x; t;wcð Þ ¼ G0 x; t;wcð Þe�mgmt

þ gm

Z1

�1

Z1

�1

Z1

�1

G0 x� x0; t � t
0;wc


 �
e�mgm t�t

0ð Þ

� G x0; t0;wc


 �
� dt0dx0: ð24Þ

As shown in Figure 5b, we have already obtained the
Markov envelope in space and time. Substituting the
Fourier transform of G0 x; t;wcð Þe�mgmt in space and time
into the Fourier transform of equation (24), we can easily
solve the radiative transfer integral equation. By using the

Table 1. Mutual Relations Between Three Approaches

Wave Theory Markov Approximation Hybrid Synthesis

Field wave field u(x, t) = 1
2p

ffiffi
r

p
R
Uei(kr�wt)dw two-frequency mutual

coherence function
G2 = hUU*i

energy density G(x, t; wc)

Medium
inhomogeneities

wave velocity V(x) = V0{1 + x(x)} longitudinal integral of

ACF A(rqd) =
R1

�1
R(rqd, z)dz

broadening coefficient

gb(wc) =
C kð Þ

2
p kð Þ
2

e2
a

awc

V0

� �2�p kð Þ

ensemble of random media {x(x)} A(0) � A(rqd) � e2aC(k) rqd
a


 �p kð Þ

for
rqd
a

�� �� � 1
von Kármán– type
random media

ACF
R(x) � hx(x + x0)x(x0)i

momentum transfer scattering coefficient

gm(wc) =
1
p

Rp
0

(1 � cos y)g(y; wc)d

PSDF
P(m) =

R R1
�1R(x)e�imxdx = 4pe2a2k

1þa2m2ð Þkþ1

scattering coefficient (Born approximation)

g(y; wc) =
wc

V0

� �3

P 2wc

V0
sin y

2

� �

Figure 11. (a) Frequency dependence of the broadening
coefficient (solid) and the momentum transfer scattering
coefficient (shaded) for 2-D von Kármán–type random
media of V0 = 4 km/s, e = 5%, a = 5 km, and k = 0.1.
(b) Frequency dependence of the ratio.
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inverse Fourier transform, we numerically obtain G x; t;wcð Þ
in space and time.
[27] From the requirement of total energy conservation,

we numerically evaluate the value of m for a given lapse
time range. At 2 Hz, in the case of von Kármán–type
random media of V0 = 4 km/s, e = 5%, a = 5 km, and k =
0.1, we have to take m = 0.50 in order to satisfy the total
energy conservation with accuracy of 99% for a normalized
lapse time interval from 0.02 to 0.4. In Figure 12, shaded
curves show RMS FD envelopes at four receivers with a
50 km separation for the 2 Hz Ricker-wavelet isotropic
source radiation, where the thick shaded curve is the mean
RMS envelope and the fine shaded curves are ±1 standard
deviation curves at each distance. Solid curves show RMS
envelopes synthesized by the new hybrid method. In the
synthesis of MS envelopes, we used the convolution in
time of the hybrid envelope G(x, t; wc), the wandering effect
w(x, t) and the temporal change in the power of 2 Hz Ricker
wavelet source WR(t). We label the abscissa to show both
seconds and normalized lapse time. At all travel distances,
the hybrid envelopes are in good agreement with the FD
envelopes from the onset through coda.
[28] Figure 13 zooms up RMS envelopes at a distance of

100 km from the source. We can see that the fit of the hybrid
envelope (thick solid curve) to the FD envelope (shaded
curve) is excellent around the peak arrival and through the
coda; however, the hybrid envelope is a little smaller than
the FD envelope in a transient stage around normalized
lapse time of 0.2. We also plot the contribution of
the Markov envelope with scattering loss by a fine solid
curve and the large-angle scattering term by a fine dashed
curve separately. The Markov envelope dominates around
the peak arrival and the effective isotropic scattering
representing large-angle scattering mainly contributes to

the coda. The small disagreement in the transient stage is
due to the use of effective isotropic scattering earlier than
the multiple scattering regime since the momentum transfer
scattering coefficient well characterizes effective scattering
process only in the multiple scattering regime. Figure 13
shows a good coincidence between FD envelope and hybrid
envelope as lapse time increases. Gusev and Abubakirov
[1996] confirmed the validity of the use of the momentum
transfer scattering coefficient at large lapse time based on
the Monte Carlo method.

4. Summary and Discussions

[29] As a mathematical basis for the study of high-
frequency seismic wave propagation through the heteroge-
neous lithosphere, we developed a method to synthesize
scalar wave envelopes for 2-D media containing random
velocity inhomogeneities, particularly those containing
structure that is smaller than the propagation wavelength.
The main framework is the radiative transfer theory for the
isotropic scattering process. Instead of the delta function type
propagator, the envelope derived from the Markov approx-
imation is used as a propagator in the radiative transfer
integral equation. That propagator reflects the envelope
broadening effect due to diffraction caused by the long-
wavelength spectra of random velocity inhomogeneity. In
the radiative transfer integral equation, large-angle scattering
caused by the short-wavelength inhomogeneity can be effec-
tively modeled by using the isotropic scattering process,
where the momentum transfer scattering coefficient is used
as the effective isotropic scattering coefficient. For the case of
a 2 Hz Ricker wavelet isotropic source radiation in 2-D von
Kármán–type random media of V0 = 4 km/s, e = 5%, a =
5 km, and k = 0.1, we found an excellent agreement between
the envelopes calculated by using the new hybrid method and
the FD envelopes. In random media having poor short-
wavelength spectra, for example, von Kármán–type random
media of k = 1.0, the simple use of theMarkov approximation

Figure 12. Root-mean-square (RMS) envelopes of waves
for a 2 Hz Ricker wavelet source radiation in 2-D von
Kármán–type random media of V0 = 4 km/s, e = 5%, a =
5 km, and k = 0.1. Each numeral shows the distance from
the source. Solid curves and thick shaded curves show RMS
envelopes based on the hybrid synthesis and those by FD
simulations, respectively. Fine shaded curves show ±1
standard deviation of FD envelopes.

Figure 13. Thick solid curve shows the RMS envelope of
waves at a distance of 100 km predicted by the hybrid
synthesis for a 2 Hz Ricker wavelet source radiation in 2-D
von Kármán–type random media of V0 = 4 km/s, e = 5%,
a = 5 km, and k = 0.1. A fine solid curve and a fine dashed
curve show the Markov envelope with scattering loss and
the contribution of large-angle scattering, respectively. A
shaded curve shows the FD envelope.
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is enough for simulating envelopes from the onset to coda.
Thus we have now succeeded in directly simulating
envelopes in both extreme cases, k = 0.1 and k = 1.0.
[30] We made a comparison only for the case of 2 Hz

waves since the FD simulations take considerable time to
calculate [see Fehler et al., 2000]. We may say that the
model is applicable when the fractional fluctuation is small.
We expect that the hybrid method would be successful for
higher-frequency bands because of self-similarity of the
media spectra; however, as noted, the characteristic time
of the Markov approximation increases to the order of the
travel time and the transport mean free path becomes shorter
with increasing frequencies. It suggests that the applicable
range of the proposed synthesis for higher frequencies
should be carefully examined by comparison with numer-
ical simulations. It is the key to get the Markov envelope
that is used as a propagator in the radiative transfer integral
equation; however, we have practically succeeded in getting
Markov envelopes in limited types of spectra as Gaussian
and von Kármán– type only. It is necessary for us to
examine the applicability of the hybrid method to random
media having different spectral types. We should be more
cautious in using the Born approximation in high frequen-
cies even if large scattering in the forward direction is
neglected in the calculation of momentum transfer scatter-
ing coefficient. The validity of momentum transfer scatter-
ing coefficient as an effective isotropic scattering coefficient
should be practically examined as noted by Saito et al.
[2003]. Furthermore, it will be necessary to extend the
hybrid synthesis to the 3-D case and examine the validity
from a comparison with envelopes of waves numerically
synthesized by the finite difference simulation.
[31] This paper gives a possible approach for the direct

derivation of wave envelopes in random media. If we
carefully examine the frequency dependence of envelopes
more precisely in relation with the spectral structure of
random media, we will be able to construct a mathematical
basis of the inversion scheme for estimating the spectral
structure of random media. An extension of scalar wave
theory to elastic wave theory is highly desired. Such an
approach can be considered as one of the practical methods
to interpret high-frequency seismograms.
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