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Abstract.

Thermal perturbations associated with seismic slip on faults may significantly affect
the dynamic friction and the mechanical energy release during earthquakes. This paper
investigates details of the co-seismic temperature increases associated with the elasto-
dynamic propagation of shear cracks, and effects of fault heating on the dynamic fault
strength. Self-similar solutions are presented for the temperature evolution on a surface
of a Mode II shear crack and a self-healing pulse rupturing at a constant velocity. The
along-crack temperature distribution is controlled by a single parameter, the ratio of the
crack thickness to the width of the conductive thermal boundary layer, w̄. For “thick”
cracks, or at early stages of rupture (w̄ > 1), the local temperature on the crack sur-
face is directly proportional to the amount of slip. For “thin” cracks, or at later times
(w̄ < 1), the temperature maximum shifts toward the crack tip. For faults having slip
zone thickness of the order of centimeters or less, the onset of thermally-induced phe-
nomena (e.g., frictional melting, thermal pressurization, etc.) may occur at any point along
the rupture, depending on the degree of slip localization, and rupture duration. In the
absence of significant increases in the pore fluid pressure, localized fault slip may raise
temperature by several hundred degrees, sufficient to cause melting. The onset of fric-
tional melting may give rise to substantial increases in the effective fault strength due
to an increase in the effective fault contact area, and high viscosity of silicate melts near
solidus. The inferred transient increases in the dynamic friction (“viscous braking”) are
consistent with results of high-speed rock sliding experiments, and might explain field
observations of the fault wall rip-out structures associated with pseudotachylites. Pos-
sible effects of viscous braking on the earthquake rupture dynamics include 1) de-localization
of slip and increases in the effective fracture energy, 2) transition from a crack-like to
a pulse-like rupture propagation, or 3) ultimate rupture arrest. Assuming that the pulse-
like ruptures heal by incipient fusion, the seismologic observations can be used to place
a lower bound on the dynamic fault friction. This bound is found to be of the order of
several megapascals, essentially independent of the earthquake size. Further experimen-
tal and theoretical studies of melt rheology at high strain rates are needed to quantify
the effects of melting on the dynamic fault strength.

1. Introduction

The efficiency at which earthquakes convert the potential
energy of elastically deformed rocks into seismic radiation
depends on dissipative losses (e.g., work done against fric-
tion) on earthquake faults. Although the amount of energy
dissipated during earthquakes is generally unknown, indi-
rect estimates suggest that frictional losses may constitute
a significant (if not dominant) part of the earthquake en-
ergy budget [e.g., Kanamori and Anderson, 1975; McGarr ,
1980; Scholz , 1990, p.165]. Because most of the energy dissi-
pated on a fault is ultimately converted into heat, there is a
possibility that the co-seismic increases in temperature may
affect the frictional properties of rocks in the fault zone,
and the dynamic stress drop during earthquakes [Sibson,
1977; Lachenbruch, 1980]. Over the last two decades, signif-
icant insights into the earthquake dynamics have been ob-
tained using the laboratory-derived rate and state friction
models [Dieterich, 1992; Ruina, 1983; Tse and Rice, 1986].
While the rate and state friction may adequately describe
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the nucleation and initial rupture phases of seismic instabili-

ties, theoretical arguments [e.g.,McKenzie and Brune, 1972;

Cardwell et al., 1978], field observations [Price, 1970; Sib-

son, 1975; Swanson, 1992], and experimental data [Spray ,

1993; Tsutsumi and Shimamoto, 1997; Goldsby and Tullis,

2002] indicate that the co-seismic temperature increases may

dramatically modify the constitutive behavior of the fault

zone rocks at seismic slip rates of the order of 1 m/s. A

better understanding of interactions between the frictional

heating and the dynamic fault strength requires a detailed

knowledge of spatiotemporal variations in temperature that

lead to the onset of the thermally-induced variations in fric-

tion. In this paper I investigate thermal evolution of two-

dimensional (2-D) elastodynamic ruptures having a finite

thickness of a slip zone, and propagating at a finite veloc-

ity. In particular, I address the question of where on the

slipping fault the onset of the thermally-induced weaken-

ing (or strengthening) is likely to occur. Implications from

theoretical results are then discussed in the light of avail-

able experimental and field data relevant to the dynamics of

seismic slip.
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2. Spatiotemporal evolution of temperature
on a fault plane

Thermal aspects of seismic faulting were considered by
a number of studies. Jeffreys [1942] obtained dimensional
estimates for the co-seismic temperature increases on a fault
slipping at a constant velocity, assuming that the fault is in-
finitesimally thin, and the frictional heat production is bal-
anced by the conductive heat loss to the surrounding rocks.
He found that temperature increases of the order of 103 K
(i.e., sufficient to cause melting) should occur after only a
few centimeters of slip at 1 km depth. McKenzie and Brune
[1972] obtained one-dimensional time-dependent solutions
for the Jeffrey’s problem, and Cardwell et al. [1978] extended
the results of McKenzie and Brune [1972] to a case of a fi-
nite thickness of the slip zone. Solutions of Jeffreys [1942];
McKenzie and Brune [1972] and Cardwell et al. [1978] all
assume a constant slip velocity (or, equivalently, an infinite
rupture velocity, or an infinite fault size). Such an assump-
tion is invalid for the elastodynamic shear instabilities char-
acterized by significant along-rupture variations in particle
velocities [Scholz , 1990; Freund , 1998]. Richards [1976] pre-
sented double integral expressions for a temperature distri-
bution on a surface of an infinitesimally thin circular shear
crack expanding at a constant velocity. However, he did not
evaluate his results numerically, and such an evaluation ap-
pears to be difficult (P. Richards, personal communication,
2000). Lee and Delaney [1987] and Andrews [2002] have
considered temperature increases near the leading edge of a
propagating crack in the context of thermal pressurization
of pore fluids.
Dimensionally, the temperature increase ∆T due to fault

slip D may be obtained by balancing the work against fric-
tion, σfD, and the conductive heat loss to the ambient rocks,
2wcρ∆T [e.g., Cardwell et al., 1978],

∆T =
σfD

2wcρ
, (1)

where σf is the shear stress acting on a fault, c and ρ are
the heat capacity and density of the host rock, respectively,
and 2w is the thickness of the slip zone (gouge layer), or the
width of the conductive thermal boundary layer, whichever
is larger. For infinitesimally thin shear cracks, the width
of the thermal boundary layer is wc =

√
2κts, where κ is

the thermal diffusivity of the host rocks, and ts is the dura-
tion of slip. Note that in case of fluid-assisted heat removal
from the fault surface (e.g., due to thermal pressurization),
the effective width of the thermal boundary layer may be
significantly larger than the width of the conductive bound-
ary layer wc. More detailed predictions of the temperature
increase accounting for the along-fault variations in slip ve-
locity, and the non-steady heat transfer require numerical
experiments. I start by considering the time-dependent ther-
mal evolution of a two-dimensional shear crack.

2.1. Co-seismic temperature increases due to a crack-

like rupture

Consider a Mode II (plain strain) crack rupturing bilater-
ally at a constant speed Vr (Figure 1). The crack half-length
a is zero prior to the rupture initiation, and linearly increases
with time after the onset of seismic instability, a(t) = tVr.
The host rock temperature T is presumed to obey a 1-D
diffusion equation (heat conduction in slip-parallel direction
is neglected),

∂T

∂t
= κ
∂2T

∂y2
+
Q

cρ
, (2)

where y is the crack-perpendicular coordinate, and Q is the
rate of frictional heat generation within the slipping zone,

Q(x, y, t) =

{

σf (x)

2w(x)
∂D(x,t)
∂t , t > 0, |y| < w
0, |y| > w,

(3)

where ∂D/∂t is the local slip velocity. For simplicity, I as-
sume that the thickness of the gouge layer is constant along
the crack, and the shear strain rate is uniform across the
gouge layer [Cardwell et al., 1978]. Laboratory measure-
ments of the frictionally generated heat indicate that the as-
sumption of a uniform shear within the slip zone may be ad-
equate [Mair and Marone, 2000]. A solution to equation (2)
subject to the initial condition T (x, y, 0) = T0, where T0 is
the temperature of the host rocks prior to faulting, is [e.g.,
Morse and Feshbach, 1953; Cardwell et al., 1978],

T (x, y, t)− T0 = 1

2cρ
√
πκ

∫ t

t0

∫

∞

−∞

exp

[

(y − ζ)2
4κ(τ − t)

]

×Q(x, ζ, τ)√
t− τ

dζdτ, (4)

where t0 = x/Vr is the time at which the rupture front passes
point x. Substituting equation (3) into (4), and taking the
improper inner integral, one obtains

T − T0 =
1

4cρw

∫ t

x/Vr

(

erf

[

y + w

2
√

κ(t− τ )

]

− erf
[

y − w
2
√

κ(t− τ )

])

∂D(x, τ )

∂τ
σf(x)dτ. (5)

Further analytic insights are possible for a case of a self-
similar crack propagation. The latter implies that the along-
crack displacement profile D(x, t) may be expressed in terms
of a single similarity variable χ = χ(x, t) (that is, the crack
propagates preserving its shape),

D(x, t) = a(t)ǫD(χ), (6)

where ǫ is the characteristic shear strain due to the crack,
ǫ = D(0, t)/a(t). The strain ǫ is of the order of the ratio of
the earthquake stress drop to the shear modulus of the host
rocks, and is apparently independent of the earthquake size
[Kanamori and Anderson, 1975; Scholz , 1990; Abercrombie,
1995]. Hereafter, ǫ is taken to be constant. It is convenient
to introduce similarity variables

non-dimensional along-fault coordinate χ =
x

tVr
, (7)

non-dimensional fault thickness w̄ =

√

2

κt
w. (8)

An expression for the local slip rate in terms of the new
variables is obtained by differentiating equation (6),

∂D

∂t
= Vrǫ

[

D(χ)− χ∂D
∂χ

]

. (9)

A dimensional analysis of equations (5) and (9) suggests the
following similarity variable for temperature,

non-dimensional temperature θ =
T − T0
T̂

, (10)

where

T̂ =
σdVrǫ

cρ

√

t

πκ
, (11)
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] A schematic view of a dynamically propagating Mode II crack. The crack has a thickness 2w, and is rupturing
bilaterally at a constant velocity da/dt = Vr.

Figure 1. [
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] Variations of the non-dimensional excess temperature
θ(χ) along a Mode II crack propagating at a constant rup-
ture speed under constant frictional stress. Labels denote
the non-dimensional thickness of a slipping zone w̄ (see equa-
tion (8)). Open circles denote finite difference solutions to
equations (3), (2), and (9), for w̄ = 2 and 0.5.

Figure 2. [

is a characteristic temperature scale for frictional heating

assuming a perfectly sharp fault contact (cf. equation (1)).

2.1.1. Linear Elastic Fracture Mechanics approxi-

mation

A classic case of a self-similar elastodynamic rupture is

a crack slipping under constant dynamic friction, σf (x) =

const = σd. A zone of inelastic yielding (or, in case of slip

on a pre-existing fault, a zone of transition from static to

dynamic friction) at the crack tip is neglected. This is the

Linear Elastic Fracture Mechanics (LEFM) approximation,

in which the displacements along the crack are characterized

by a well-known elliptic profile [e.g., Lawn, 1993; Freund ,

1998],

D(x, t) = a(t)ǫ
√

1− χ2, t > 0, |χ| < 1, (12)

and the corresponding slip velocity is

∂D

∂t
=

Vrǫ
√

1− χ2
. (13)

Substituting equation (13) into (5), and making use of

the similarity variables (8) and (10), one obtains the follow-

ing expression for the along-crack temperature distribution

in the middle of the slip zone (y = 0),

θ(χ) =

√
π

w̄
√
2

∫ 1

χ

erf

[

w̄

2
√

2(1− ξ)

]

ξdξ
√

ξ2 − χ2
. (14)

Numerical solutions to equation (14) are shown in Figure 2,
and further discussed in Appendix A. A family of curves in
Figure 2 illustrates a spatio-temporal evolution of tempera-
ture on the slipping fault surface. For faults that are thicker
than the thermal diffusion lengthscale, or at early stages of
rupture (i.e., w̄ > 1), the temperature increase along the
fault is proportional to the amount of slip, as one might ex-
pect. For thin faults, or later during the rupture (w̄ ≪ 1),
the temperature distribution is very different, with temper-
ature being maximum near the crack tip, and monotonically
decreasing from the tip toward the crack center. Note that
the instantaneous temperature maximum near the crack tip
does not imply cooling of the crack surface behind the tip
(see Appendix A). For the non-dimensional fault thickness w̄
of the order of unity, the maximum temperature is reached
somewhere between the crack center and the rupture front
(Figure 2). The semi-analytical solution (14) has been veri-
fied with numerical simulations of the boundary value prob-
lem (2)-(6) using a finite difference code DifFuse [Fialko and
Rubin, 1998]. The finite difference calculations are in ex-
cellent agreement with the semi-analytic solution (14) (see
open circles in Figure 2).
The elevated temperatures near the crack tip produced

by thin shear cracks are perhaps surprising, given that shear
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] Temperature field θ(χ, y/w) associated with the dy-
namic propagation of a shear crack given constant friction
on the crack surface, for w̄ = 0.5. The dashed line denotes
the boundary of the slip zone.

Figure 3. [
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] A two-dimensional plain strain shear crack in an infinite elastic medium. The imposed shear stress at the infinity is
σ0. The crack has a constant thickness 2w, and a constant interfacial shear stress σd. At the crack tips there are process
zones having length ∆T , and shear stress σs.

Figure 4. [

displacements are always maximum at the crack center. The
inferred anti-correlation between the temperature and the
amount of slip stems from a competition between the rates
at which the frictional heat is generated at the crack surface,
and removed to the ambient rocks by conduction. Genera-
tion of frictional heat at the tip of a perfectly sharp LEFM
crack is singular as the thickness of the conductive bound-
ary layer is zero, while the slip velocity is infinite (see equa-
tion (13)). Nonetheless, the excess temperature at the tip is
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(b)

Non−dimensional along−fault distance χ
] Temperature distribution along a 2-D shear crack hav-

ing a cohesive zone at the tip (Figure 4). The ratio of the
cohesive zone length to the crack half-length is taken to be
0.05. The base of the cohesive zone is marked by a vertical
dotted line. Solid lines denote temperatures in the middle
of the gouge layer (y = 0), for a range of non-dimensional
fault thicknesses w̄. Dashed lines denote the respective pre-
dictions of the LEFM model (Figure 2). (a) σs/σd = 2.664.
(b) σs/σd = 1.

Figure 5. [

zero for cracks having finite thickness (w̄ > 0). For cracks
that are much thinner than the conductive boundary layer
(w̄ ≪ 1), the temperature field develops a shock-like struc-
ture, with the tip temperature exceeding the temperature at
the crack center by about 10% (Figure 2). Assuming that
the thickness of the slip zone is constant during an earth-
quake, equation (14) predicts that the maximum tempera-
tures are initially attained at the center of a crack-like shear
instability. As the earthquake rupture expands, the tem-
perature maximum may migrate toward the rupture fronts.
For the thermal diffusivity of the ambient rocks κ = 10−6

m2/s, and rupture durations of t = 1− 10 s (corresponding
to the rupture sizes of ∼5-50 km), this transition will occur
for faults that have thickness of the order of

√
2κt ∼ 2 − 5

mm or less. The critical fault thickness may be larger still
if the heat removal from the fault involves some advective
transport by the pressurized pore fluids, and the in situ hy-
draulic diffusivity exceeds the thermal diffusivity κ. Because
both the conductive heat transfer and the fluid percolation
obey the diffusion equation, the effects of a non-negligible
pore fluid flow may be accounted for by using the effective
thermal diffusivity κe > κ that lumps the conductive and
advective components of heat transfer.
The distribution of temperature off the crack plane is il-

lustrated in Figure 3 for a particular case w̄ = 0.5. As
expected, the thermal boundary layer develops behind the
rupture front, and expands into the surrounding rocks as
the crack grows. Heating of thick shear cracks (w̄ ≫ 1) is
essentially adiabatic, and gives rise to a nearly isothermal
core having thickness of the order of the crack thickness.
In the limit of an infinite rupture velocity (Vr → ∞) and
uniform slip (D(x) = const), results presented above coin-
cide with the infinitesimally thin fault solutions ofMcKenzie
and Brune [1972], and the finite-thickness fault solutions of
Cardwell et al. [1978] upon replacing ǫVr with D/t in equa-
tion (11), and putting χ = 0 in equation (14).
2.1.2. Effect of the crack tip process zone

Experimental studies of the dynamic crack propagation
in various materials including glasses, metals, and polymers
reveal the near-tip temperature increases of the order of 10-
100 K even for the tensile mode of failure under atmospheric
pressure [e.g., Guduru et al., 2001]. These temperature in-
creases are thought to result from plastic working within the
process zone at the crack tip [Rice and Levy , 1969]. Because
the rate of the inelastic energy dissipation at the crack tip is
likely to be significantly greater in case of shear failure un-
der high confining pressure, it is instructive to quantify the
thermal contribution of the process zone involved in shear
rupture. An elegant refinement of the LEFM approach that
avoids the stress singularity at the crack tip is the cohe-
sive zone model [Leonov and Panasyuk , 1959; Barenblatt,
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1959; Dugdale, 1960]. Originally proposed for tensile (Mode
I) cracks, this model postulates that a thin in-plane region
of strength degradation exists at the rupture front. Cohe-
sive stresses within the process zone are assumed to balance
the driving stresses acting on the developed crack, so that
the stresses are finite everywhere. Some macroscopic yield
strength σs is usually taken to represent the peak stresses
attainable within the process zone. The crack growth occurs
when a critical displacement Dc is exceeded at the base of
the process zone. Ida [1972] and Palmer and Rice [1973]
have adopted the cohesive zone model for shear cracks (in
which case it is also referred to as the slip-weakening, or
post-yielding model). Although the assumption of a thin
in-plane process zone may not be quite valid for either ten-
sile or shear cracks in the Earth [e.g., Levy et al., 1971; Fi-
alko and Rubin, 1997; Manighetti et al., 2001], the cohesive
zone model provides an instructive end member description
of deformation in the near-tip region (e.g., unlike the LEFM
model that predicts a blunt crack tip with infinite slip ve-
locity, the cohesive model predicts a cusp-like crack tip with
zero slip velocity).
Consider a crack having a cohesive zone with a constant

yield stress σs. The rest of the crack surface is subject to a
constant friction σd, as illustrated in Figure 4. Assuming
that the crack is rupturing bilaterally at a constant velocity
Vr, solutions for the crack displacements and particle veloc-
ities (equations (6) and (9)) can be obtained in a closed
analytic form (Appendix B). Figure 5a shows solutions to
equation (14) for a crack having a cohesive zone that com-
prises 5% of the crack half-length a, ∆T/a = 0.05, and a
ratio of the stress drop (σ0 − σd) to dynamic friction σd
of 0.336. Conditions of equilibrium (equation (B4) in Ap-
pendix B) dictate that the corresponding ratio of the yield
stress σs to dynamic friction σd is 2.664. Assuming that all
work done against cohesive stresses and static friction in the
process zone is ultimately converted into heat, results shown
in Figure 5a suggest that the thermal effects of the process
zone can be significant. In particular, higher shear stresses
within the process zone give rise to temperature increases
in the crack tip region that are about a factor of 2 greater
compared to predictions of the LEFM model (cf. solid and
dashed curves in Figure 5a). Also, the tendency for a shift of
the temperature maximum toward the crack tip, as well as
the magnitude of the temperature increase are appreciably
amplified, especially for thin faults (w̄ < 1). Simulations in
which the size of the process zone is decreased at the ex-
pense of a decrease in Dc, and an increase in σs, such that
the fracture energy is unchanged (see Appendix B), indicate
that for the infinitesimally thin cracks the maximum near-
tip temperature θ is proportional to the ratio of the process
zone friction to the crack friction σs/σd. It is interesting
to note that in the limiting case σs/σd → ∞ the process
zone becomes infinitesimally small, and the displacements
and velocities along the crack asymptotically approach the
LEFM solution (eqs. 1 and 13), yet the along-crack tem-
perature distribution significantly deviates from the LEFM
solution (Figure 2). This difference is due to the LEFM as-
sumption of no slip (and hence no thermal dissipation) in
the region of singular stresses at the crack tip. The mag-
nitude of the near-tip heating is substantially attenuated in
case of thick faults (Figure 5a).
The crack tip model assuming a constant cohesive stress

predicts that the slip velocity has a weak logarithmic sin-
gularity at the base of the process zone χ = 1−∆T /a (see
equations (9) and (B5)). I point out that the near-tip tem-
perature increases seen in Figure 5a (solid lines) are due
to higher stresses, and not the singular particle velocities
within the process zone. This conclusion is corroborated by
calculations that use the same particle velocities, but as-
sume no increase in friction in the process zone compared to
the rest of the crack (i.e., σs = σd, Figure 5b). In the latter

case, the temperature increases predicted by the cohesive
zone model are smaller than those predicted by the LEFM
model, especially near the crack tip, due to lower rates of
the energy dissipation. At distances greater than several
process zone lengths behind the rupture front, the temper-
ature increases inferred from the LEFM and the cohesive
zone model are similar, as one might expect. Simulations
shown in Figure 5b might be relevant if the fracture energy
is consumed off the fault plane, or spent on processes other
than frictional heating, such as the creation of new surfaces,
chemical and phase transformations, etc. Such non-thermal
dissipation, however, may be small compared to the amount
of work done against friction for earthquakes occuring on
mature faults [e.g., Sibson, 1980].

2.2. Co-seismic temperature increases due to a self-

healing pulse

Detailed near-field observations of a large number of
crustal earthquakes indicate that the slip duration, or the
so-called rise time, at any point on the fault appears to con-
stitute only a fraction of the total rupture duration [e.g.,
Kanamori and Anderson, 1975; Heaton, 1990; Beroza and
Mikumo, 1996; Olsen et al., 1997]. This is inconsistent with
the crack-like models of the earthquake rupture (e.g., Fig-
ure 1) which predict that the slip should continue until the
rupture front has ceased propagating (equation (9)). In
this section I consider frictional heating associated with the
pulse-like seismic ruptures. The geometry of the problem
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] A self-healing pulse having length a propagating at a
constant speed Vr. The remote shear stress is σ0, and fric-
tional stress on the slipping surface is σd. The pulse length
is a, and the thickness of the slipping zone is 2w.

Figure 6. [
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θ(χ) along a self-healing pulse. Labels denote the non-
dimensional thickness of a slipping zone w̄ (see equa-
tions (18)).

Figure 7. [
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is shown in Figure 6. As in the previous analysis, it is as-
sumed that the slipping zone has a constant thickness 2w,
and a constant dynamic friction σd. The rupture front prop-
agates at velocity Vr, and is trailed by the healing front at
a distance a. Elastodynamic solutions to this problem were
discussed by Yoffe [1951] for a Mode I pulse, and Freund
[1979] for a Mode II pulse. For a self-healing pulse having a
constant length a, I anticipate steady state solutions for the
co-seismic temperature field in the reference frame of the
moving rupture front. The appropriate similarity variables
are

along-fault coordinate χ =
x− tVr
a

+ 1, (15)

non-dimensional fault thickness w̄ =

√

2Vr
aκ
w, (16)

non-dimensional temperature θ =
T − T0
T̂

, (17)

T̂ =
σdǫ

cρ

√

aVr
πκ
. (18)

The along-fault displacements and the rate of slip are as-
sumed to obey the following relationships,

D(χ) = aǫ
√

1− χ2, (19)

∂D

∂χ
=

Vrǫχ
√

1− χ2
. (20)

That is, the LEFM-like asymptotic behavior is assumed at
the fault tip (χ = 1). Because the assumption of a con-
stant dynamic friction does not warrant fault healing [Fre-
und , 1979; Heaton, 1990], the latter is artificially imposed
at the trailing edge (χ = 0); possible physical mechanisms
of fault healing are discussed in Section 3. Upon non-
dimensionalization using variables (18), equation (5) gives
rise to the following formula for the along-fault temperature
variations in the middle of the slip zone (y = 0) given the
slip velocities (20),

θ(χ) =

√
π

w̄
√
2

∫ 1

χ

erf

[

w̄

2
√

2(χ− ξ)

]

ξdξ
√

1− ξ2
. (21)

Solutions to equation (21) are shown in Figure 7 (also, see
Appendix A). The near-tip structure of the temperature
field due to a steady state pulse is similar to that due to
a self-similar expanding crack (cf. Figures 2 and 7). At the
leading edge of an infinitesimally thin shear pulse there is a
thermal shock of amplitude T̂ (equation 18). The fault tem-
perature monotonically decreases toward the healing front,
where the temperature falls to about one half of the maxi-
mum value (Figure 7 and Appendix A). For “thick” pulses
(w̄≫ 1), the fault temperature increases toward the healing
front proportionally to the amount of slip. For intermedi-
ate fault thicknesses of the order of unity, the initial fault
heating behind the rupture front eventually gives way to
cooling before the arrival of the healing front. This behav-
ior is qualitatively different from the temperature variations
on a surface of an expanding crack, which indicate a pro-
gressive heating at every point along the crack as long as
the rupture continues (Appendix A). The inferred cooling
toward the healing front of the steady state pulse for w̄ < 5
is caused by a decreasing heat generation due to a vanishing
slip velocity, and efficient removal of heat by thermal diffu-
sion. For the characteristic rise times a/Vr of the order of
seconds, the steady state LEFM pulses need to be thicker

than 5
√

2κa/Vr ≈ 1 cm to experience maximum tempera-
tures at the healing front. Simulations including a process
zone at the leading edge of a pulse predict a near-tip tem-
perature field that is analogous to that due to a self-similar
crack (e.g., Figure 5a).

3. Discussion

Theoretical modeling of the co-seismic frictional heating
(Figures 2 and 7) indicates that the effective thickness of
the earthquake slip zone controls not only the magnitude
of the temperature increase, but also where on a fault the
maximum temperature is reached. The intrinsic lengthscale
that separates the thin fault heating (characterized by the
inverse proportionality between the fault temperature and
the amount of slip) from the thick fault heating (in which
the temperature is directly proportional to slip) is the thick-
ness of the thermal boundary layer

√
2κt. For typical rise

times of moderate-to-large earthquakes of t = 1 − 10 s, the
corresponding lengthscale is of the order of several millime-
ters (assuming a purely conductive cooling) or greater (if
the heat advection by pore fluids is non-negligible). There is
field evidence that the primary slip surfaces of major crustal
faults may have widths of the order of 1 cm or less [e.g., Sib-
son, 1975; Suppe, 1985; Chester and Chester , 1998]. While
faults are also known to be associated with considerably
wider (1 − 103 m), and possibly scale-dependent zones of
damaged rock with reduced effective elastic moduli [Scholz ,
1990; Ben-Zion, 1998; Fialko et al., 2002; Vidale and Li ,
2003], it is conceivable that these macroscopic compliant
fault zones do not accommodate significant inelastic shear
strain. In particular, wide damage zones may be a result
of volumetric deformation generated off the fault plane by
passing rupture fronts, and/or multiple earthquakes on sub-
parallel slip planes within the fault zone. The characteristic
thickness of a layer that accommodates the bulk of slip in
individual earthquakes is poorly known, especially at the
seismogenic depths. Laboratory experiments and theoreti-
cal modeling indicate that shear deformation of rocks tends
to produce an extreme slip localization that is ultimately
limited by the rock microstructure (e.g., grain size) [Sam-
mis et al., 1987; Mora and Place, 1994; Scruggs and Tullis,
1998; Sleep et al., 2000]. If so, both the thin and thick fault
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heating regimes discussed above might be relevant to earth-
quakes.
The magnitude of maximum temperature perturbations

due to frictional heat dissipation on a surface of a crack-
like earthquake rupture is shown in Figure 8 for a range of
the slip zone thicknesses 2w. A transition from a thick to
a thin fault heating regime results in a change in scaling
of the maximum temperature with time from ∆T ∝ t to
∆T ∝

√
t, respectively. This transition occurs at a char-

acteristic time tc = 2w
2/κ (i.e., corresponding to w̄ = 1).

Using the laboratory-derived estimates of fault friction at
the seismogenic depths of the order of the σd = 10

8 Pa [e.g.,
Byerlee, 1978], solutions to equation (14) suggest that faults
that are thinner than a few meters are capable of generating
the co-seismic temperature increases of the order of 10-103K.
In case of high friction, the melting temperatures are likely
to be reached before the transition from a thick to a thin
fault heating regime, even for faults that are as thin as a
few millimeters (solid lines in Figure 8). Only extremely
localized faults slipping under a low dynamic friction are
predicted to experience such a transition (see dashed lines
in Figure 8 corresponding to σd = 10

7 Pa). Note that the
magnitude of the temperature increase is proportional to the
dimensionless group σdVrǫw/cρκ (equations 10 and 11), so
that the maximum temperatures due to loading conditions
other than those assumed can be readily obtained by a sim-
ple rescaling of the dimensional results shown in Figure 8
(e.g., a factor of two decrease in the assumed strain drop ǫ
would result in a factor of two decrease in ∆T , and so on).
As one can see from Figure 8, thermal effects are expected

to be especially significant for faults with highly localized
slip zones (i.e., having characteristic thicknesses of the or-
der of 0.1 m or less) [also, see Sibson, 1977; Cardwell et al.,
1978; Kanamori and Heaton, 2000]. Theoretical results pre-
sented in Section 2 describe thermal evolution of the slipping
fault prior to the onset of the thermally-induced variations
in friction, and become inapplicable after the the consti-
tutive properties of the slipping fault surface are substan-
tially modified by the co-seismic temperature perturbations.
Thermally-activated mechanisms that may affect the fault
resistance to shear include thermal pressurization [Sibson,
1973; Lachenbruch, 1980; Mase and Smith, 1987; Segall and
Rice, 1995], frictional melting [Jeffreys, 1942;McKenzie and
Brune, 1972; Sibson, 1975; Maddock , 1986], and flash heat-
ing of fault asperities [Rice, 1999]. These mechanisms are
generally believed to result in a substantial fault weakening,
and increases in the earthquake stress drop. Given a possi-
bility of a feedback between the dynamic fault friction and
the co-seismic heating, calculations shown in Figures 2, 5,
and 7 predict quite different slip histories for thick and thin
faults. For thick (w̄ > 1) crack-like ruptures (Figure 1), the
initial phase of unstable slip is expected to have a relatively
low stress drop. The onset of the thermally-induced weak-
ening occurs around the earthquake nucleation site, and is
followed by a secondary rupture phase with a higher stress
drop propagating toward the rupture front. The initiation
of the secondary high stress drop phase corresponds to a
characteristic rupture size 2w∆Tcρ/σdǫ, where σd is the dy-
namic fault friction prior to thermal weakening, and ∆T is
the activation temperature. Assuming the fault thickness
of 10 cm, the activation temperature of the order of 102

K, and the fault friction of the order of 108 Pa [Byerlee,
1978], the corresponding rupture size is of the order of hun-
dreds of meters to kilometers for typical earthquake strains
of 10−4 − 10−5, respectively. There is no tendency for a
transition from a crack-like to a pulse-like rupture mode,
as the central part of a crack continues to weaken with in-
creasing temperature. Pulse-like ruptures that are thicker
than 5w̄ (∼ 1 cm assuming conductive cooling and typical
rise times of the order of seconds) are likely to experience
highest temperatures at the healing front, so that in case

of thermal weakening and thick faults, healing is ought to
be caused by non-thermal mechanisms. In contrast, thin
(w̄ < 1) elastodynamic instabilities may thermally weaken
near the rupture front, so that the region of high stress drop
will propagate in the direction opposite to the rupture di-
rection until it reaches the nucleation site. The initiation of
the secondary high stress drop phase corresponds to a char-
acteristic rupture size πκ(∆Tcρ)2/Vr(σdǫ)

2. Note that the
thermal weakening can occur nearly instantaneously along
a significant portion of a slipping fault (Figures 2 and 7).
In case of an extreme slip localization, or provided that the
tip process zone substantially perturbs the near-tip temper-
ature field, the temperature weakening might be one of the
physical mechanisms causing healing of the pulse-like earth-
quake ruptures. However, there is still no tendency for a
transition from a crack to a pulse mode of propagation.
If the initial frictional heating does not result in a sub-

stantial fault weakening (e.g., in the absence of pore fluids,
or due to high dynamic permeability of the fault gouge zone
during rupture), continued slip on faults that are thinner
than 1-10 cm may produce temperature increases of the or-
der of several hundred degrees (Figure 8), sufficient to cause
melting. While it is commonly believed that the onset of
melting results in a dramatic drop in the fault friction [Jef-
freys, 1942; McKenzie and Brune, 1972], there exist the-
oretical arguments and laboratory data suggesting that a
transition from frictional to viscous sliding may be in fact
accompanied by considerable increases in the dynamic fault
strength.
For shallow crustal faults, the frictional stress on a fault

σf is presumed to obey an empirical Mohr-Coulomb rela-
tionship,

σf ∝ µ(σn − p), (22)

where µ is the effective coefficient of friction, σn is the fault-
normal stress, and p is the pore fluid pressure. The direct
proportionality between the shear and normal stresses in
equation 22 is a consequence of an imperfect contact be-
tween the sliding rock interfaces [Bowden and Tabor , 1954;
Byerlee, 1978]. Laboratory experiments suggest that most
of the resistance to slip comes from a relatively small contact
area between riding asperities that are likely to sustain much
higher stress than σf [e.g., Teufel and Logan, 1978]. Given
sufficiently high slip rates, temperature increases on such
contacts may result in weakening of the asperities (e.g., via
plasticity, dislocation creep, microscopic melting, etc.). This
weakening may manifest itself in an apparent reduction in
the frictional stress σf [Rice, 1999]. However, as the asper-
ity contacts are progressively weakened and flattened, the
total contact area between the mating surfaces is expected
to increase, both at the expense of the thermo-mechanical
erosion of the asperities, and due to accumulation of melt in
the “lowlands”. This increase in the total contact area may
in principle offset the reduction in the peak stress supported
by the asperities, so that the overall frictional resistance to
sliding may increase. A spectacular increase in shear stress
at the onset of macroscopic melting has been observed in
the rotary shear experiments of Tsutsumi and Shimamoto
[1997] at sliding velocities of 70 cm/s. A similar transient
strengthening is also reported in the high-speed rock sliding
experiments of Spray [1993].
After a continuous film of melt is formed on a fault sur-

face, most of the resistance to slip comes from viscous de-
formation of a melt layer, rather than a Mohr-Coulomb fric-
tion (22). Assuming that the melt has a Newtonian rheology,
the viscous stress σv due to simple shear of fluid between two
parallel surfaces (Couette flow) is given by [e.g., Turcotte and
Schubert , 2002, p.229]

σv =
Ḋη

2w
, (23)
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where Ḋ is the sliding velocity (hereafter, the dot operator
denotes differentiation with respect to time t, ḟ = ∂f/∂t),
η is the dynamic melt viscosity, and 2w is the thickness of
the melt layer. Viscosity of silicate melts varies greatly. For
super-solidus crystal-free granitic melts, η is of the order of
104 − 108 Pa s, depending on a volatile content [McBirney ,
1993; Rubin, 1995]. A comparison of equations 22 and 23
suggests that frictional fusion does not necessarily imply a
drop in shear stress on a fault surface. For example, assum-
ing Ḋ = 1m/s, η = 106 Pa s, and 2w = 1 mm, from equa-
tion (23) one obtains a shear stress of ∼1 GPa, of the order
of the theoretical strength of crystalline rocks, and an order
of magnitude greater than the average Mohr-Coulomb fail-
ure stress for the upper crust [equation (22); Scholz , 1990,
p. 136]. Mafic melts have considerably lower viscosities
O(10 − 103) Pa s, and are likely to provide smaller viscous
resistance during incipient melting. Nonetheless, increases
in the apparent frictional resistance of gabbro reported in
the high shear rate experiments of Tsutsumi and Shimamoto
[1997] suggest that melting of mafic rocks may as well re-
sult in viscous braking. Factors that might contribute to
increases in the effective viscosity of frictional melts include
a high volume fraction of solid particles, viscoelastic effects,
and non-linear melt rheology at high strain rates.
If the onset of melting is accompanied by increases in

shear stress exceeding the static friction, or the intrinsic rock
strength, the fused fault may be abandoned, and the slip
may be transferred to a new sub-parallel plane. Side-wall
rip-out structures associated with some pseudotachylite-
bearing faults [e.g., Swanson, 1992] may be an example of
such a thermally-induced “defocusing” of seismic slip. Sim-
ilarly, Otsuki et al. [2003] describe sub-parallel sequences of
millimeter-wide pseudotachylite layers in the exposed core
of the Nojima fault in southwest Japan. While they suggest
that the total number of the observed pseudotachylite layers
is representative of the number of past earthquakes on the
fault, it is possible that the multiple melt layers could be pro-
duced during individual earthquakes by slip transfer due to
viscous braking. The progressive jumping of the slip surfaces
in the fault-perpendicular direction might contribute to an
increase in the effective fracture energy of an earthquake. If
the available driving stress is insufficient to initiate sliding
on a new surface, the slip velocity will initially decrease. The
subsequent evolution of slip depends on the thickness of the
formed melt layer. Provided that the driving shear stress
is constant, there is a critical thickness that separates the
layers that monotonically decelerate and ultimately freeze
from those that eventually accelerate and localize strain, re-
sulting in a so-called thermal runaway [Fialko, 1999]. The
timescale corresponding to the transition from viscous brak-
ing to lubrication is controlled by rheologic properties of the
friction-generated melts. A necessary condition for melt lu-
brication to occur is that the timescale for thermal runaway
is small compared to the duration of seismic slip. A detailed
analysis of the thermodynamics of frictional melting is hin-
dered by the lack of empirical data pertinent to the rheologic
properties of silicate melts at strain rates O(102 − 104) s−1
that might be typical of seismic slip.
The transient thermal strengthening may affect the earth-

quake rupture in several ways. If the near-solidus tempera-
tures are first reached near the rupture front (i.e., for w̄ < 1),
they might give rise to fault branching and increases in the
effective fracture energy, as discussed above. If the onset of
viscous braking occurs near the crack center (i.e, for w̄ > 1),
the resulting patch of high friction is expected to extend to-
ward the rupture front. If the patch size becomes large com-
pared to the crack size, the crack propagation may be ulti-
mately terminated. Faults having thickness of the order of
the thermal boundary layer, w̄ ∼ O(1), are most vulnerable
for the thermal lock-up (see Figure 2). Finally, if the length
of the crack segment between the rupture front and the melt-
ing front is greater than the critical length for the dynamic

instability (i.e., the length of an equilibrium crack on the
verge of propagation), there may be a transition from the
bi-lateral crack to the uni-lateral pulse propagation. That
is, as the central section of the crack becomes permanently
locked once the temperature approaches solidus, the expand-
ing melting front becomes the healing front of a pulse of slip
trailing the rupture front. In this scenario, the slip occurs as
long as the fault surface remains sub-solidus. A necessary
condition for the pulse healing due to thermal strengthening
is that the fault has to be sufficiently thick compared to the
diffusion lengthscale (to ensure the along-fault increases in
temperature, see Figures 2 and 7), yet sufficiently thin to
raise temperature to solidus (see equations 1 and 18),

5
√
2κt < 2w <

σdD

∆Tcρ
. (24)

Equation 24 suggests the following lower bound on the level
of the dynamic friction σd,

σd >
5
√
2κt∆Tcρ

D
. (25)

All parameters on the right hand side of equation 25 can
be either inferred from laboratory measurements (i.e., the
thermophysical constants κ, c, and ρ), or determined from
seismic data (i.e., the rise time t and the slip amplitude
D). Table 1 lists the observational data for several pulse-
like earthquake ruptures compiled by Heaton [1990], along
with the respective estimates of the minimum dynamic fault
friction calculated using equation (25), assuming the activa-
tion temperature ∆T = 500 K. While the seismic energies of
earthquakes listed in Table 1 differ by more than two orders
of magnitude, the inferred lower bound on the dynamic fric-
tion is essentially independent of the earthquake size, and
is found to be of the order of several megapascals. This is
comparable to the earthquake stress drops, but significantly
smaller than the average Mohr-Coulomb strength of the up-
per crust (assuming Byerlee’s friction and hydrostatic pore
pressures). Assuming that viscous braking is the mechanism
responsible for pulse healing, it can be argued that the ac-
tual dynamic friction cannot significantly exceed the lower
bound (25). This is because an increase in the fault thick-
ness necessary to offset the higher friction imply an increase
in the thickness of the fused layer, which may ultimately
render the viscous braking inefficient (equation 23). Other
mechanisms proposed to explain the short duration of seis-
mic slip, and the pulse-like mode of rupture include stress
heterogeneities [e.g., Day , 1982; Beroza and Mikumo, 1996],
strong velocity weakening [Perrin et al., 1995; Zheng and
Rice, 1998], and slip between dissimilar material interfaces
[Ben-Zion and Andrews, 1998]. It is possible that a variety
of mechanisms may be responsible for the observed short
rise times of large earthquakes.
Field observations of pseudotachylites (veins of dark

aphanitic rock in the cores of the exposed fault zones) are
evidence that at least in some cases the co-seismic frictional
heating is sufficiently robust to produce macroscopic melting
[Price, 1970; Sibson, 1975; Wallace, 1976; Swanson, 1992;
Wenk et al., 2000]. However, pseudotachylites are not com-
monly found in the majority of the exposed fault zones. As-
suming hydrostatic pore pressures and Byerlee’s friction [By-
erlee, 1978], melting during moderate-to-large earthquakes
can be prevented only if seismic slip is distributed over a
zone having thickness of the order of tens of centimeters to
meters (or greater). Even if the fault friction is low (e.g.,
σd <20 MPa, sufficient to satisfy the heat flow paradox of
the San Andreas fault [Brune et al., 1969; Lachenbruch and
Sass, 1980]), melting seems unavoidable if the thickness of
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a slipping region is less than a few centimeters (Figure 8).
The apparent paucity of pseudotachylites in thin cores of
the exposed faults that presumably produced earthquakes
in the past [e.g., Chester and Chester , 1998] therefore con-
stitutes what may be called a second, or a local heat flow
paradox. One possible explanation is that pseudotachylites
might ubiquitously form in situ, but not be readily preserved
in the exhumed rocks [Wallace, 1976]. The absence of melt-
ing might be also interpreted as evidence for extremely low
shear stresses associated with faulting [e.g., Price, 1970].
An alternative possibility is that the viscous braking arrests
slip during early stages of melting. This implies that the
fault fusion is generally a self-terminating process, and the
formation of macroscopic melt veins may require special cir-
cumstances (e.g., high shear stress, favorable thickness of the
slip zone, and volatile-rich frictional melt). If so, greater ef-
forts may be warranted for obtaining field constraints on the
maximum temperatures experienced by seismogenic faults.

4. Conclusions

I presented semi-analytic solutions for fault heating dur-
ing seismic instabilities. The thermal history of seismic slip
is deduced for 2-D models of the elastodynamic shear rup-
ture. Self-similar solutions for the temperature evolution on
the fault surface are obtained for the case of a Mode II crack,
and a self-healing pulse having a constant thickness of the
slip zone, and rupturing at a constant velocity. Provided
that friction on a slipping fault is constant (or variations
in friction are small compared to the subsequent thermally-
induced stress perturbations), the along-fault temperature
distribution depends on a ratio of the fault thickness to the
thickness of the thermal boundary layer. Faults that are
thicker than the thermal boundary layer experience maxi-
mum temperatures in the center (in case of a bi-laterally
rupturing crack), or at the healing front (in case of a pulse-
like rupture). Conversely, faults that are thinner than the
thermal boundary layer generate maximum temperatures at
the rupture front. For the observed earthquake rise times
of the order of seconds, and using the laboratory values of
the thermal diffusivity of ∼ 10−6 m2/s, the corresponding
transitional thickness is of the order of millimeters. The
near-tip temperature increases may be also encouraged by
high shear stresses acting in the crack tip process zone. The
thermal effect of the process zone is inversely proportional
to the fault thickness.
The inferred along-fault temperature variations may af-

fect the pattern and amount of seismic radiation, depend-
ing on whether the fault rheology is temperature weakening
or temperature strengthening. The experimental measure-
ments of the rate and state dependent friction properties in-
dicate a modest temperature strengthening at low slip rates
[e.g., Blanpied et al., 1998]. However, it is believed that such
strengthening is offset by velocity weakening at high (seis-
mic) slip rates. Other models that explicitly consider the
effect of temperature on the dynamic fault friction, includ-
ing the thermal pressurization, and frictional melting, as-
sume that faults generally weaken at elevated temperatures.
However, few available measurements of dynamic friction at
the seismic slip velocities reveal that the onset of macro-
scopic melting (i.e., a transition from a dry friction to a
viscous rheology) may result in significant increases in the
fault resistance to shear. This resistance likely stems from
increases in the effective contact area between the fault sur-
faces, and high viscosities of the frictionally generated sil-
icate melts. Transient increases in viscous stresses at the
onset of frictional fusion (termed “viscous braking”) may
affect the earthquake ruptures in several ways, including (1)
de-focusing of seismic slip, (2) transition from a crack-like

to a pulse-like rupture mode, or (3) ultimate rupture arrest.
This implies that frictional fusion may be a self-terminating
process, which may explain a relative paucity of pseudo-
tachylites in the exposed fault zones. Assuming that the vis-
cous braking is a dominant mechanism for healing of narrow
slip pulses, a combination of theoretical results presented in
this paper with seismologically-determined characteristics of
several pulse-like earthquakes [Heaton, 1990] allows one to
place a lower bound on the dynamic fault friction of the
order of several megapascals.
The semi-analytic solutions for the thermal evolution of

shear instabilities have been verified with the fully numeri-
cal finite difference simulations. The finite difference model
can be readily used to perform more sophisticated simula-
tions accounting for, e.g., the along-fault variations in the
dynamic friction and the thickness of the gouge layer, as well
as the coupling between the local shear stress, temperature,
and slip rate. Such simulations are not yet warranted due
to a lack of empirical data describing the fault zone proper-
ties and the characteristic seismic strain rates. Further un-
derstanding of the energetics of faulting requires laboratory
investigations of the rheologic properties of the frictionally
generated melts at high strain rates, and constraints from
field observations on (i) the range of fault thicknesses in-
volved in individual slip events, and (ii) the average tem-
peratures attained on the surface of exposed faults that pre-
sumably generated seismic events in the past.
The feedbacks between the frictional heat generation, the

temperature dependent fault resistance to shear, and the
seismic radiation are likely to result in a wide range of possi-
ble behaviors, implying a significant richness and complexity
in the earthquake rupture dynamics. As seismic and geode-
tic observations in the near field of large earthquakes provide
an increasingly detailed view of the rupture histories [Wald
and Heaton, 1994; Beroza and Mikumo, 1996; Olsen et al.,
1997; Ide and Takeo, 1997], future models of the earthquake
source may benefit from explicitly considering the thermo-
dynamic effects of faulting.
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Appendix A: Solutions for co-seismic heating
in the limit of zero fault thickness

For an infinitesimally thin LEFM crack (w̄→ 0) one may
take advantage of the limiting relationship

lim
x→0

erf(xk)

x
=
2√
π
k, (A1)

and reduce equation 14 to

θ(χ) =
1

2

∫ 1

χ

dξ
√
1− ξ

√

1−
(

χ
ξ

)2
. (A2)

A further evaluation of equation A2 leads to elliptic inte-
grals, and so one must resort to numerical integration. The
latter is somewhat complicated by the fact that the inte-
grand is singular on both limits of integration. Therefore
special treatments, such as analytical removal of singulari-
ties, and custom integration quadratures, are needed for an
accurate solution to equation (A2).
A numerical solution to equation (A2) is shown in Fig-

ure 2 (case w̄ = 0). The temperature on a perfectly sharp
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Mode II crack monotonically increases from the crack cen-
ter (χ = 0) toward the crack tip (χ = 1). The exact values
of the non-dimensional temperature at the crack center and
the crack tip can be readily obtained from equation (A2),

θ(0) =
1

2

∫ 1

0

dξ√
1− ξ = 1, (A3)

θ(1) =
1

2
√
2
lim
χ→1

∫ 1

χ

dξ√
1− ξ√ξ − χ =

π

2
√
2
≈ 1.1107. (A4)

The temperature at the crack tip exceeds the temperature at
the crack center by about 10%, in agreement with numerical
calculations shown in Figure 2.
Note that the along-crack increases in the dimensionless

temperature θ inferred for thin shear cracks (Figure 2) do
not imply that the crack walls cool off behind the propagat-
ing rupture front. It can be shown using equations (8) and
(14) that the time derivative of the (dimensional) tempera-
ture,

∂T

∂t
=
∂(θT̂ )

∂t
=
∂T̂

∂t
θ +
∂χ

∂t

∂θ

∂χ
T̂ =

T̂

t

(

θ

2
− χ ∂θ
∂χ

)

, (A5)

is positive at any point along the crack. In particular, for
perfectly sharp cracks (w̄ = 0), θ/2 > 0.5, while χ∂θ/∂χ <
max (∂θ/∂χ) < 0.2 (see Figure 2), so that the temperature
on the crack surface T (x,0, t) steadily increases with time.
The characteristic rate of the temperature increase is pro-
portional to the inverse square root of time, ∂T/∂t ∝ t−1/2,
as expected of a conduction-dominated heat transfer [e.g.,
Carslaw and Jaeger , 1959].
Let’s now consider a temperature rise due to an infinites-

imally thin self-healing pulse. For the case w̄ → 0, equa-
tion 14 becomes

θ(χ) =
1

2

∫ 1

χ

ξdξ
√
ξ − χ

√

1− ξ2
. (A6)

A numerical solution to equation A2 is shown in Figure 7
(w̄ = 0). The non-dimensional temperature at the healing
front of the pulse is obtained by putting χ = 0 in equa-
tion (A6),

θ(0) =
1

2

∫ 1

0

√
ξdξ√
1− ξ =

√
πΓ (3/4)

Γ (1/4)
≈ 0.5991, (A7)

where Γ is the factorial function, Γ(x) =
∫

∞

0
tx−1e−tdt. For

χ = 1 (i.e., at the pulse tip), equation (A6) reduces to (A4).
Thus, for an infinitesimally thin self-healing pulse, the tem-
perature at the rupture front exceeds that at the healing
front by almost a factor of two (Figure 7).
Unlike in the case of a self-similar crack, the instanta-

neous temperature behind the rupture front of a self-healing
pulse may either increase or decrease, depending on the non-
dimensional pulse thickness w̄,

∂T

∂t
=
∂χ

∂t

∂θ

∂χ
T̂ = −Vr

a

∂θ

∂χ
T̂ . (A8)

Equations (A8) and (18) indicate that the temperature evo-
lution on the surface of a steady state pulse is controlled by
the slope of the θ(χ) curve, implying heating for ∂θ/∂χ < 0
(w̄≫ 1), and cooling for ∂θ/∂χ > 0 (w̄ < 1, see Figure 7).

Appendix B: Analytic expressions for particle
velocities due to a 2-D crack with a slip-
weakening process zone

Because the equilibrium equations are identical for Mode
I (tensile) and Mode II (in-plane shear) loading, solutions
for Mode II cracks can be readily obtained from the Mode
I solutions by replacing normal stresses and displacements
with shear stresses and displacements.
Let σ(x) be a distribution of shear stresses acting on a

crack surface, and σ0 be a far-field shear stress prior to fault-
ing. The crack slip that satisfies equations of elastic equi-
librium is given by [e.g., Khazan and Fialko, 1995, equation
(11)],

D(x) =
2a(1− ν)
πµ

a
∫

x

√

a2 − τ2dτ
a
∫

−a

σ(ξ)dξ

(τ − ξ)
√

a2 − ξ2
.(B1)

The finiteness of stresses at the crack tip is ensured by re-
quiring that the stress intensity factors at the crack tips are
zero,

a
∫

−a

σ(x)− σ0√
a2 − x2

dx = 0. (B2)

(see Khazan and Fialko [1995] for details). In general, solu-
tions to equation (B1) may be obtained numerically for an
arbitrary slip-weakening law and a driving stress distribu-
tion (σ0 − σ(x)) that satisfies constraint (B2).
For a piece-wise constant symmetric distribution of fric-

tional stresses on the crack surface, as shown in Figure 4 in
the main text,

σ(x) =

{

σd, |x| < a−∆T
σs, a−∆T ≤ |x| ≤ a, (B3)

evaluation of (B2) provides an expression for the length of
the equilibrium process zone ∆T ,

∆T
a
= 1− sin

[

π

2

σs − σ0
σs − σd

]

. (B4)

Equation (B1) can be as well integrated analytically yielding
expressions for both the displacement and the displacement
gradient as functions of the non-dimensional along-crack co-
ordinate χ = x/a,

∂D(χ)

∂χ
= −2a(1− ν)

πµ
(σs − σd) [F (χ,L)− F (χ,−L)] , (B5)

D(χ) =
2a(1− ν)
πµ

(σs − σd) [(χ+ L)F (χ,L)

− (χ− L)F (χ,−L)] , (B6)

where L = 1 − ∆T /a is the non-dimensional length of the
crack behind the process zone, and function F is given by

F (U, V ) = log

∣

∣

∣

∣

∣

√

(1− U2)(1− V 2) + UV + 1
U + V

∣

∣

∣

∣

∣

. (B7)

Particle velocities on the crack surface can then be calcu-
lated using equation (9) in the main text.
Although equilibrium solutions presented above describe

quasi-static cracks, they can be also used to analyze the dy-
namic crack propagation provided certain conditions, such
as the constant subsonic rupture velocity, and small-scale
yielding (i.e., 1−L≪ 1) are met [Broberg , 1978; Rice, 1980].
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In a coordinate frame of a moving crack tip, the near-tip
displacement profile experiences a relativistic shrinking by
a factor β that is a function of the ratio of the rupture veloc-
ity Vr to a limiting velocity Vl (Vl being the Rayleigh wave
velocity for Mode I and II cracks, and shear wave velocity
for mode III cracks). The function β(Vl/Vr) assumes values
from unity to infinity as the ratio Vl/Vr varies from zero to
unity [e.g., Andrews, 1976; Freund , 1998, p. 234]. The size
of the dynamic process zone is given by ∆dT = ∆T/β, where
∆T is the equilibrium process zone length for a quasi-static
crack (equation B4). The process zone becomes shorter as
the rupture speed increases, up to vanishing when the lim-
iting rupture velocity is approached (Vr = Vl) [Ida, 1972].
This is the LEFM limit, and the solution in Section 2.1.1 is
retrieved.
Introducing an effective fracture energy as a work re-

quired to evolve the stress on a crack surface from σs to σd,
Gc = Dc(σs − σd), where Dc is the critical slip-weakening
displacement at the base of the process zone (χ = L), from
equation (B6) one obtains

Gc =
4a(1− ν)
πµ

(σs − σd)2L log
1

L
(B8)

For a constant rupture velocity Vr < Vl, the assumption of a
self-similar crack growth implies L = const. It follows that
the fracture energy Gc, the slip-weakening displacement Dc,
and the process zone length ∆T are all assumed to linearly
increase with the crack length.
Since the temperature increases due to faulting consid-

ered in Section 3 are non-dimensionalized using a charac-
teristic strain drop ǫ, it is necessary to express ǫ in terms
of the imposed boundary conditions and material proper-
ties for comparisons between different crack geometries and
loading conditions. Making use of equations (B6)-(B7), one
obtains

ǫ =
D(0)

a
=
4(1− ν)
πµ

(σs − σd)L log
1 +
√
1− L2
L

. (B9)

For the LEFM crack (L → 1), equations (B9) and (B4)
reduce to

ǫ =
2(1− ν)
µ

(σ0 − σd). (B10)
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Table 1. Slip pulse characteristics of some earthquakes [Heaton, 1990], and the inferred lower bound on dynamic friction

Event, year Magnitude Rise time, s Dmax, m σd, MPa

Michoacan, 1988 8.1 5.0 6.5 3.2
Borah Peak, 1983 7.3 0.6 1.47 5.0
San Fernando, 1971 6.5 0.8 2.5 3.4
Imperial Valley, 1979 6.5 1.0 1.8 5.3
Morgan Hill, 1984 6.2 0.3 1.0 5.2
Palm Springs, 1986 6.0 0.4 0.45 13.4
Coyote Lake, 1979 5.9 0.5 1.2 5.6

Assumed thermophysical parameters: ∆T=500 K; thermal diffusivity κ=10−6 m2/s; heat capacity c=103 J/kg; rock density
ρ=2.7×103 kg/m3


