№ 3

Вестник Уральского отделения

2004

УДК 549.02

КРИСТАЛЛОМОРФОЛОГИЯ ГРАНАТА С КРАСНОАРМЕЙСКОГО МЕСТОРОЖДЕНИЯ (УРАЛЬСКИЕ ИЗУМРУДНЫЕ КОПИ)

М.П. Попов, Т.Н. Базина

Уральская государственная горно-геологическая академия

Красноармейское месторождение расположено в южной части центрального рудного поля Изумрудных копей, на сочленении двух цепочек рудовмещающих ультраосновных пород: ССЗ направления – в сторону Черемшанского месторождения, и СЗ направления – в сторону Красноболотного рудопроявления. Оно приурочено к изгибу полосы рассланцованных метаморфизованных ультраосновных пород, залегающих среди поля пироксеновых амфиболитов на удалении до 1,8 км от контакта с гранитами Адуйского массива. Месторождение разведано горными выработками до глубины 30-50 м и скважинами до глубины 100-180 м. Рудные тела на месторождении представлены пегматитами и слюдитовыми жилами.

Пегматиты широко распространены в восточной части месторождения, где представлены мощными, хорошо дифференцированными жилами (до 100 м по простиранию и мощностью до 20 м) с богатой берилловой, молибденитовой и колумбиттанталитовой минерализацией. Они занимают, как согласное, так и секущее положение по отношению к вмещающим породам. Слюдитовые жилы шире всего распространнены в центральной части месторождения. Они характеризуются значительной разобщенностью, небольшой мощностью (от 0,25 до 3 м), невыдержанностью по простиранию и сложным ветвлением. В центральной и восточной части месторождения жилы прослежены до глубины 180 м.

На контактах пегматитов и слюдитовых зон в центральной части месторождения часто наблюдались линейно-полосчатые зоны, представленные альбит-мусковитовыми метасоматитами. В этих зонах хаотически встречаются одиночные изометричные кристаллы и сростки кристаллов граната. Вмещающая порода имеет мелкозернистую структуру и полосчатую текстуру. Зоны, обогащённые мусковитом, имеют светлозелёную окраску.

Гранат образует изометричные индивиды тетрагонтриоктаэдрического габитуса, размер которых достигает 5-6 см. Окраска медово-красная. По результатам гониометрического изучения (10 кристаллов) для граната с Красноармейского

2004

Вестник Уральского отделения

месторождения установлены следующие простые формы: n{211} - тетрагонтриоктаэдр, d{110} - ромбододекаэдр, s'{413} - гексаоктаэдр, r{332} - тригонтриоктаэдр, e{210} - тетрагексаэдр, o{111} - октаэдр. Наиболее развиты грани n, что определяет тетрагонтриоктаэдрический габитус кристаллов. На гранях тетрагонтриоктаэдра видна комбинационная штриховка (результат одновременного роста двух простых форм ромбододекаэдра и тетрагонтриоктаэдра), параллельная ребрам робододекаэдра. Кроме того, на данных кристаллах обнаружена форма s'{413} - гексаоктаэдр, ранее не описываемая на гранатах. На рис. 1 приведены идеализированные формы кристаллов граната.

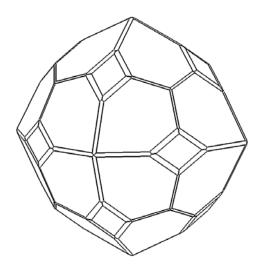
Кристалл № 1 представлен $n\{211\}$ - тетрагонтриоктаэдр, $d\{110\}$ - ромбододекаэдр, $r\{332\}$ - тригонтриоктаэдр, $e\{210\}$ - тетрагексаэдр, $s\{413\}$ - гексаоктаэдр.

Кристалл № 2 представлен $n\{211\}$ - тетрагонтриоктаэдр, $d\{110\}$ - ромбододекаэдр, $r\{332\}$ - тригонтриоктаэдр, $s\{413\}$ - гексаоктаэдр, $o\{111\}$ - октаэдр.

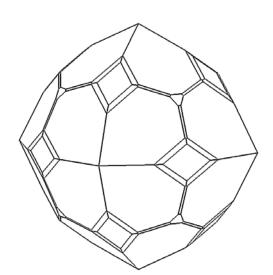
Кристалл № 3 представлен $n\{211\}$ - тетрагонтриоктаэдр, $d\{110\}$ - ромбододекаэдр, $r\{332\}$ - тригонтриоктаэдр, $e\{210\}$ - тетрагексаэдр, $s\{413\}$ - гексаоктаэдр, $o\{111\}$ - октаэдр.

Кристалл № 4 представлен $n\{211\}$ - тетрагонтриоктаэдр, $d\{110\}$ - ромбододекаэдр, $e\{210\}$ - тетрагексаэдр, $s\{413\}$ - гексаоктаэдр.

Кристалл № 5 представлен $n\{211\}$ - тетрагонтриоктаэдр, $d\{110\}$ - ромбододекаэдр, $r\{332\}$ - тригонтриоктаэдр, $o\{111\}$ - октаэдр.


В таблице 1 приведены данные дифрактограммы граната с Красноармейского месторождения. По результатам ренгеноструктурного анализа были рассчитаны параметры элементарной ячейки минерала, которые составили $a_0 = 11,608$. Крайние члены в ряду спессартин-альмандин имеют значения параметров ячеек соответственно: $a_{\rm cn} = 11,621$ и $a_{\rm an} = 11,526$. Учитывая прямую зависимость, можно вычислить количество спессартиновой молекулы в данных гранатах: 86,5%.

Внутри кристаллы граната содержат большое количество включений альбита и мусковита. Скорее всего, его образование происходило метасоматическим путём, за счёт вмещающей породы. Штуфы с гранатом с Красноармейского месторождения являются прекрасным коллекционным материалом и могут украсить любую коллекцию.


№ 3

ОБРАЗЕЦ		ЭТАЛОН (ASTM 10- 354)		
d, Å	I*	d, Å	Ι	hkl
4,74	1,5	4,76	6	211
3,10	1,5	3,10	8	321
1,90	9	2,91	25	400
2,60	10	2,60	100	420
2,47	1,5	2,48	10	332
2,37	4	2,37	16	422
2,28	3	2,28	10	431
2,12	4	2,13	16	521
2,04	1,5	2,06	6	440
1,886	7	1,886	20	611, 532
1,840	1	1,836	2	620
1,806	1	1,797	2	541
-	-	1,710	2	631
1,680	4	1,681	20	444
-	-	1,650	6	543
1,610	5	1,614	30	640
1,582	1.5	1,586	6	721, 633, 332
1,551	7	1,557	40	642
1,453	4	1,482	2	731, 651

Примечание: аналитик Н.Г. Сапожникова, УГГГА, ДРОН-2.0.

Кристалл № 1

Кристалл № 2

№ 3 Вестник Уральского отделения

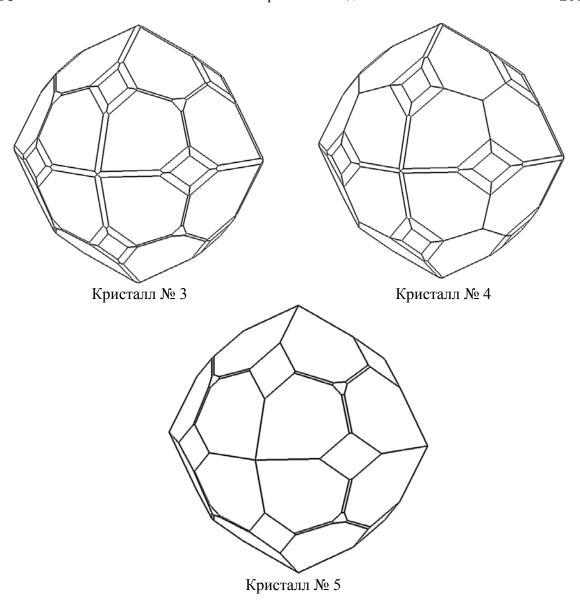


Рис. 1. Кристаллы граната с Красноармейского месторождения.