№ 3

Вестник Уральского отделения

2004

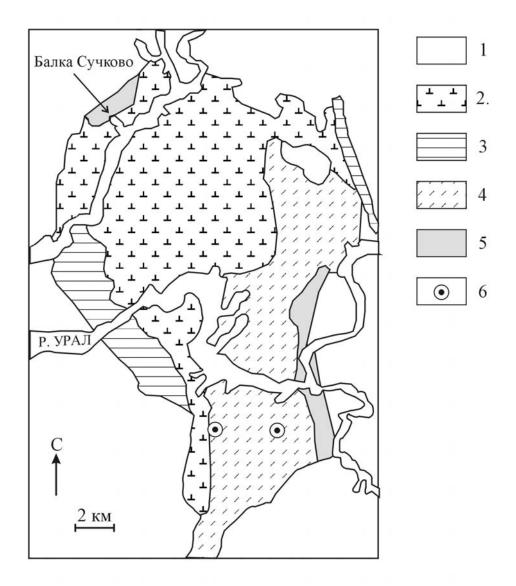
УДК 549.642.24 (470.5)

ФАССАИТ ИЗ МЕТАМОРФИЧЕСКИХ ПОРОД ХАБАРНИНСКОГО ГАББРО-УЛЬТРАМАФИТОВОГО МАССИВА НА ЮЖНОМ УРАЛЕ

Е.В. Пушкарев, А.П. Бирюзова, Т.Я. Гуляева

Институт геологии и геохимии УрО РАН

Термин «фассаит», который до недавнего времени использовался минералогами для обозначения низкокремнистого, высокоглиноземистого клинопироксена с высокой долей четверного алюминия и преобладанием трехвалентного железа над двухвалентным был дискредитирован в последней номенклатуре пироксенов, утвержденной ММА [12]. Однако специалисты продолжают пользоваться названием «фассаит», вместо громоздкого «железо-алюминиевый диопсид или авгит», предлагаемого новой классификацией, поскольку оно является давно устоявшимся, узнаваемым и обозначает клинопироксен вполне определенного химического и генетического типа, характерного для высокотемпературных метасоматических, контактово-метаморфизованных и регионально метаморфизованных пород [2, 4, 5, 8 и др.].


Несмотря на бурное развитие микрозондовой техники, фассаиты все еще продолжают относиться к малораспространенным и, даже, к сравнительно редким клинопироксенам. Это, в частности, было отмечено В.Г. Кориневским и Е.В. Кориневским в одной из своих публикаций, посвященной первой находке фассаитов в ильменогорском комплексе и другими исследователями [4, 11, 13]. Нами с Г.Б. Ферштатером, более 15 лет тому назад были описаны фассаиты, встречающиеся в силикатно-карбонатных породах, образующих крупное согласное жильное тело или вытянутую линзу в вебстеритах восточно-хабарнинского габбро-ультрамафитового комплекса в районе балки Карасай [9]. Изучение метаморфических пород, ассоциированных с Хабарнинским массивом на Южном Урале, позволило выявить новые места развития фассаитов (рис. 1) и вернуться к рассмотрению особенностей их состава и проблемы генезиса вмещающих пород.

Хабарнинский массив расположен примерно в 30-40 км западнее Орска (Оренбургская область) и относится к одному из наиболее крупных и сложнопостроенных габбро-гипербазитовых тел на Урале. Площадь выходов на поверхность, слагающих его пород, составляет около 400 кв. км. В составе массива, разными авторами, выделяется несколько магматических комплексов, преимущественно основного и ультраосновного состава [1, 6], а также комплекс метаморфических пород, окаймляющих массив по

Вестник Уральского отделения

2004

периферии и, включенный вместе с магматитами в структуру Хабарнинского аллохтона [7]. Фрагменты этих метаморфических пород были обнаружены нами, в виде маломощных тектонических блоков и линз на южном выклинивании дунит-гарцбургитового комплекса в зоне его контакта с пироксенитами восточно-хабарнинской ассоциации (рис. 1) на правобережье балки Танатар в районе высоты 312,1 м в 2 км к югу от реки Урал. Эта зона характеризуется широким развитием даек амфиболовых вебстеритов и пироксеновых горнблендитов различной протяженности и мощности, секущих как гарцбургиты, так и метаморфические породы.

Рис. 1. Схема геологического строения Хабарнинского массива [6] и положение фассаитсодержащих пород. 1 — вмещающие вулканогенно-осадочные и метаморфические породы палеозоя; 2 — ультрамафиты дунит-гарцбургитового комплекса; 3 — породы аккермановского верлит-габбро-плагиогранитного комплекса; 4 — восточно-хабарнинский дунит-клинопироксенит-вебстерит-габбро-норитовый комплекс; 5 — экзоконтактовые метаморфические породы (амфиболиты, гнейсы, кварциты); 6 — положение фассаитсодержащих метаморфических пород.

2004

№ 3

Вестник Уральского отделения

Таблица 1 Состав магнезиально-известковистых скарнов и фассантов из скарнов, кальцифиров и силикатных включений в кальцифирах

Проба Компоненты	-	2	X6-1607	4	S	9		7	X6-1608	X6-1608 7 8 9	6	6	9 10 11	X 11 01 6	X6-902 9 10 11 12
+	40,48	40,26	40,74	40,48	40,44	40,18	41	41,04	,04 41,69	1	41,69	41,69 41,16	41,69 41,16 41,35	41,69 41,16 41,35 41,44	41,69 41,16 41,35 41,44 44,04
	0,10	80,0	60'0	0,07	90,0	0,75	06'0	-		1,05	1,05 1,02	1,05 1,02	1,05 1,02 0,96	1,05 1,02 0,96 1,22 1,06	1,05 1,02 0,96 1,22 1,06
Al ₂ O ₃	15,56	21,37	21,17	20,87	21,51	16,28	15,26		15,06		15,06	15,06 16,13	15,06 16,13 15,77	15,06 16,13 15,77 15,49	15,06 16,13 15,77 15,49 12,97
Cr2O ₃	1	0,01	90'0	0,10			0,04		00,00	0,00 0,08		80,0	0,08 0,07	0,08 0,07 0,04	0,08 0,07 0,04 0,01
Fe ₂ O ₃	2,20	1	t		1	6,85	ı	-	1	1	1	-	1	1	
FeO*	1,04	2,99	2,73	3,26	2,76	1,39	7,95	-	7,85	7,85 7,95		7,95	7,95 7,73	7,95 7,73 7,07	7,95 7,73 7,07 5,37
MnO	90,0	0,04	0,12	80,0	0,05	60'0	0,13		0,12	0,12 0,09		60,0	0,09 0,18	0,09 0,18	0,09 0,18 0,04 -
MgO	14,65	8,70	8,92	8,58	8,19	6,3	8,83	00	8,83	83 8,48		8,48	8,48 9,69	8,48 9,69 8,42	8,48 9,69 8,42 10,75
	21,46	24,91	25,04	25,23	25,66	22,47	23,92	23,65	9	65 23,45		23,45	23,45 23,03	23,45 23,03 24,24	23,45 23,03 24,24 24,02
Na ₂ O	0,58	1	0,04	0,03	0,03	0,54	0,03	0,02	2	2 0,02		0,02	0,02 0,01	0,02 0,01 0,36	0,02 0,01 0,36 0,24
Сумма	98,94	98,35	06'86	69,86	04,70	78,86	98,10	98,29	6	98,38		98,38	08,38 98,80	98,38 98,80 98,31	98,38 98,80 98,31 98,46
Fe/(Fe+Mg)	0,10	0,16	0,14	0,17	0,16	0,31	0,33	0,33	3	3 0,34		0,34	0,34 0,31	0,34 0,31 0,32	0,34 0,31 0,32 0,22
			Коэфс	ициенть	і криста	лохимич	еских фо	рмул	ВП	в пересчете	в пересчете на 6 атог	в пересчете на 6 атомов кисл	е на 6 атомов кисло	в пересчете на 6 атомов кислорода	в пересчете на 6 атомов кислорода
Ca	1	0,660	0,989	1,001	1,017	1	0,965	0,951	_	1 0,941		0,941	0,941 0,920	0,941 0,920 0,975	0,941 0,920 0,975 0,957
Na		ů.	0,003	0,002	0,002		0,002	0,002)2	0,001		0,001	0,001 0,001	0,001 0,001 0,026	0,001 0,001 0,026 0,017
Mg		0,480	0,490	0,474	0,452	,	0,496	0,494	94	94 0,473		0,473	0,473 0,538	0,473 0,538 0,471	0,473 0,538 0,471 0,596
Mn		0,001	0,004	0,003	0,001		0,004	0,004	94	04 0,003		0,003	0,003 0,006	0,003 0,006	0,003 0,006 0,001 -
Fe ³⁺		0,092	0,083	0,100	0,085		0,248	0,244	44	44 0,246		0,246	0,246 0,239	0,246 0,239 0,220	0,246 0,239 0,220 0,165
Ċ	,	•	0,002	0,003			0,001			0,002	0,002 0,002		0,002 0,001	0,002 0,001	0,002 0,001 -
Ti		0,002	0,002	0,002	0,002		0,025	0,030	0	0 0,029		0,029	0,029 0,027	0,029 0,027 0,034	0,029 0,027 0,034 0,030
Al(6)	1	0,427	0,422	0,410	0,434	.1	0,224	0,230	0	0,254		0,254	0,254 0,234	0,254 0,234 0,241	0,254 0,234 0,241 0,207
Al(4)		0,507	0,498	0,501	0,504	1	0,454	0,436	98	36 0,458		0,458	0,458 0,459	0,458 0,459 0,444	0,458 0,459 0,444 0,362
Si	,	1,493	1,502	1,499	1,496	1	1,546	1,564	64	64 1,542		1,542	1,542 1,541	1,542 1,541 1,556	1,542 1,541 1,556 1,638
The second secon			0000				-	-		r	0.1	0000	7070 0070 0120	0720	CCL 0 1000 0000 1000 CITO 0000

саиты из силикатно-карбонатной породы (кальцифира); 14, 15 – фассаиты из силикатных включений в кальцифирах X6-902. Анализы пироксенов выполнены на рентгеновском микроанализаторе Сатерах в ГЕОХИ РАН (Москва) по стандартной методике, аналитик Н.Н.Кононкова. FeO* - в Примечание: 1 - валовой состав гроссуляр-фассантового магнезиально-известковистого скарна Х6-1607, в сумму анализа входят также потери при прокаливании, в количестве 2,76 мас. %. 2-5 – фассаиты из скарна X6-1607; 6 – валовой состав шпинель фассаитового магнезиально-известковистого скарна X6-1608, в сумму анализа входят также потери при прокаливании, в количестве 0,98 мас.%; 7-10 - фассаиты из скарна X6-1608; 11-13 - фасминералах все железо в виде FeO. В формульных коэффициентах все железо рассчитано как трехвалентное. № 3

Вестник Уральского отделения

2004

Метаморфические породы представлены преимущественно тонкополосчатыми амфиболитами И пироксеновыми амфибол-пироксеновыми роговиками, плагиоклазовыми породами, регенирированными ортопироксен-оливиновыми породами, родингитами и скарноподобными образованиями, в том числе, фассаит-шпинелевыми пироксенитами (магнезиальным скарнами). Структура последних (проба Хб-1608, Хб-1607) аллотриаморфнозернистая или гранобластовая (роговиковая). Фассаит образует субизометричные зерна, размером 1-2 мм, плотно прижатые друг к другу, с характерными тройными точками сочленения, типичными для полностью перекристаллизованных пород мономинерального состава. Под микроскопом пироксен плеохроирует, от почти бесцветного до светло-зеленого. В качестве акцессорной фазы отмечается прозрачная темно-зеленая глиноземистая шпинель, образующая мелкие зерна или сегрегации между кристаллами пироксена, реже образуя включения в нем. Состав шпинели отвечает низкохромистому пикотиту: Al₂O₃ 57,19; Cr₂O₃ 2,75; FeO 27,33; MnO 0,46; MgO 12,12. Поскольку порода почти на 98-99% состоит из фассаита, то ее валовой состав практически соответствует составу минерала (табл. 1, ан. 6).

К другому типу метаморфических пород, обнаруженных в этой зоне относятся низкожелезистые гроссуляр-фассаитовые магнезиальные скарны, образующие небольшие блоки, размером в первые метры среди регенерированных ортопироксен-оливиновых пород (табл. 1, ан. 1). Гроссуляром (SiO₂ 40,11; TiO₂ 0,03; Al₂O₃ 21,80; FeO 0,58; MnO 0,05; MgO 0,29; CaO 36,61) сложены сплошные мелкозернистые гранобластовые агрегаты или редкие зерна среди фассаита, замещенные буроватой слюдистой массой. В протолочках гроссуляр выглядит практически бесцветным или светло-желтоватым. Фассаит образует субизометричные зерна голубовато-серого округлые цвета характеризуется экстремально высоким содержанием глинозема около 21% (табл. 1. ан. 2-5). Содержание Са-чермакитового компонента в этом пироксене превышает 40 мол.%. Мы не нашли в литературе ссылок на находки фассаита с таким же высоким содержанием алюминия, за исключением высококалиевого клинопироксена из включений в гранате из гранат-Кумды-Кольского клинопироксеновых алмазоносных пород месторождения кокчетавском метаморфическом комплексе в Казахстане [10], в котором концентрации глинозема достигают 23%. Однако, в последних, значительно выше содержание SiO₂, что автоматически уменьшает долю Al (IV) и увеличивает Al (VI).

Известно, что составы магнезиальных скарнов или скарнов магматического этапа, обычно очень близки составу субстрата, по которому они образуются [8]. Это позволяет нам предположить, что шпинель-фассаитовые и гроссуляр-фассаитовые породы

<u>№</u> 3

Вестник Уральского отделения

2004

образовались за счет доломитовых мергелей, поскольку ни на одну из магматических пород они не похожи.

Второе проявление фассаита связано с жилами (линзами) силикатно-карбонатных пород (Хб-902), субсогласно залегающих в вебстеритах восточно-хабарнинского комплекса. Одна из таких наиболее крупных жил, мощностью до 2 м и длинной свыше 100 м была описана нами ранее [9]. Порода, более чем на 95% состоит из мелкозернистого кальцита с мелкими включениями зерен клинопироксена, хлорита, флогопита, апатита и других минералов. В карбонатной породе отмечаются ксенолиты сильно измененных вмещающих вебстеритов и необычных силикатных включений плагиоклаз(?)-гранатапатит-фассаитового состава, размером до нескольких десятков сантиметров. Фассаит из карбонатного матрикса представлен серыми субидиоморфными кристаллами, размером 0,1-1 мм, с закругленными вершинами, ребрами и гранями, и матовой поверхностью. Морфология зерен и характер поверхности указывает на совместную кристаллизацию с карбонатным матриксом. Содержание глинозема в сером пироксене варьирует от 10 до 17% (табл. 1).

Фассаит из силикатных включений имеет темно-зеленый, почти черный цвет. Под микроскопом в проходящем свете пироксен ярко окрашен, с отчетливым плеохроизмом от желтого до зеленого цвета. Пироксен часто содержит включения идиоморфного апатита и ксеноморфного хромистого меланита [9]. По составу фассаиты из включений являются наименее глиноземистыми (табл. 1, ан. 14, 15).

Данные рентгеноструктурного анализа показывают сходство изученных клинопироксенов со стандартным фассаитом, а у максимально глиноземистых разновидностей дифрактограммы сближаются с кальциевым чермакитом (CaAl₂SiO₆) (табл. 2). Фассаиты, как известно, являются типоформными пироксенами магнезиальных скарнов и контактовых роговиков, то есть пород высокотемпературного происхождения [2]. В последнее время, в связи с изучением контактовых ореолов базит-ультрабазитовых интрузий Норильской группы, были описаны разнообразные фассаитсодержащие минеральные ассоциации [8]. Сравнение хабарнинских фассаитов с норильскими [8] показывает существенные отличия в их составах. Так, среди пироксенов норильских скарнов очень много высокотитанистых фассаитов (рис. 2), что косвенно может отражать высокую температуру их образования, согласно экспериментально установленной зависимости роста растворимости титана в фассаите от температуры. Это согласуется с тем, что в контактовых ореолах норильских интрузий установлены парагенезисы спурритмервинитовой фации контактовых роговиков. Предельно высокотитанистые фассаиты в

<u>№</u> 3

Вестник Уральского отделения

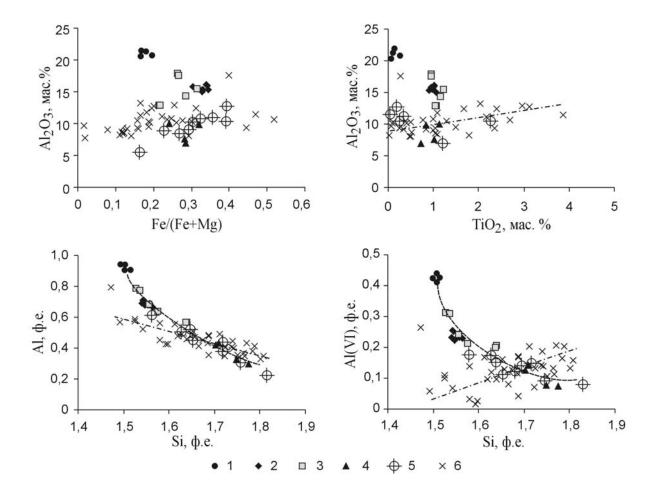
Таблица 2

2004

Дифрактограммы фассаитов из силикатных и карбонатных метаморфических пород Хабарнинского массива в сравнении с эталонными значениями

Хб-1	1607	Хб-1608		Хб-828		Фассаит,		Чермакит,		Диог	тсид,
						ASTM 25-		CaAl ₂ SiO ₆		ASTI	M 19-
						1216		ASTM 19-		239	
								20)7		
d, Å	I, %	d, Å	I, %	d, Å	I, %	d, Å	I, %	d, Å	I, %	d, Å	I, %
4.40	10	4.40	15	4.44	10	4.40	20	4.33	6	4.46	6
3.19	60	3.20	50	3.22	40	3.21	30	3.16	ı	3.23	30
2.972	100	2.978	100	2.986	100	2.984	100	2.94	100	2.992	100
2.921	80	2.931	70	2.948	60	2.931	40	2.904	35	2.951	30
2.876	45	2.883	30	2.890	30	2.882	50	2.863	45	2.894	40
2.536	60	2.543	60	2.559	30	2.546	100	2.535	40	2.566	25
2.495	55	2.505	50	2.534	30	2.504	70	2.509	30	2.524	65
2.286	35	2.223	10	2.305	15	2.226	30	2.274	20	2.301	16
2.216	10	2.203	10	2.224	10	2.206	30	2.212	12	2.215	14
2.199	15	2.137	30	2.202	10	2.133	30	2.188	16	2.198	14
2.128	35	2.119	30	2.152	20	2.120	30	2.106	18	2.154	12
2.114	30	2.098	20	2.13	25	2.098	30	2.090	20	2.133	18
2.090	15	2.020	30	2.105	20	2.019	60	2.075	12	2.108	10

Примечание: Рентгеноструктурный анализ выполнен в Институте геологии и геохимии УрО РАН на приборе ДРОН-3.0, U=35 kV, I=25 mA, CuK_{α} излучение, 1° /мин. Аналитик Т.Я. Гуляева.


парагенезисе с перовскитом были обнаружены 20 лет назад в известковистых скарнах Йоко-Довыренского габбро-ультрамафитового массива в Северном Прибайкалье [3], что также было расценено авторами публикации как явный признак их высокотемпературного образования. Однако, вне зависимости от железистости пироксенов и содержаний в них титана, практически нигде не отмечены фассаиты с содержаниями глинозема свыше 15 мас.%, какие преобладают в Хабарнинском массиве.

Особый интерес представляет установленное различие в распределении содержаний кремния и алюминия в шестерной координации в хабарнинских и норильских пироксенах. Как видно на рис. 2 эти зависимости имеют взаимно противоположный знак. Это свидетельствует о том, что в норильских пироксенах увеличение глиноземистости пироксенов происходит преимущественно за счет Al(IV), компенсирующего недостаток кремния, а в хабарнинских – и за счет тетраэдрического и за счет октаэдрического алюминия одновременно. Последнее, свидетельствует о существенном влиянии давления при формировании хабарнинских пироксенов. На тренд хабарнинских пироксенов также ложатся составы фассаитов, описанных сравнительно недавно в ильменогорском

Вестник Уральского отделения

2004

комплексе [4], для которых, по-видимому, также следует предполагать существенное влияние давления. Наши расчеты показывают, что метаморфические породы в восточном обрамлении Хабарнинского массива образовались при давлении не ниже 5-6 кбар и

Рис. 2. Диаграммы состава фассаитов. 1-4 - Хабарнинский массив: 1 — гроссуляр-фассаитовые породы (Хб-1607); 2 — шпинель-фассаитовые породы (Хб1608); 3 - силикатно-карбонатные породы (Хб-902); 4 — силикатные включения в силикатно-карбонатных породах (Хб-897); 5 — зеленый и коричневый фассаиты из метаморфических пород Ильменского заповедника [4]; 6 — фассаиты из контактовых роговиков и магнезиальных скарнов в обрамлении норильских мафитультрамафитовых интрузий [8].

температуре, отвечающей верхам амфиболитовой или даже гранулитовой фации метаморфизма ($600-750^{\circ}$ C). Экспериментально установлено, что поле устойчивости чистого кальциевого чермакита ($CaAl_2SiO_6$) начинается с температуры 1150° C и давлении около 11 кбар [2]. Вероятно, что P-T параметры равновесия экстремально богатого глиноземом фассаита с 40-45% Са-чермакитового минала соответствуют условиями образования этих метаморфических пород.

2004

Вестник Уральского отделения

Близость состава клинопироксенов из магнезиальных скарнов и силикатно-карбонатных пород, скорее всего, свидетельствует о сходстве их генезиса. Весьма вероятно, если использовать аналогию с норильскими интрузиями [8], что шпинель-фассаитовые и гроссуляр-фассаитовые скарны с одной стороны, и фассаит-кальцитовые породы – с другой, являются соответственно перекристаллизованными доломитовыми мергелями и карбонатными осадками с небольшой долей глинистого материала. Следовательно, тела карбонатных пород, субсогласно залегающие среди вебстеритов восточно-хабарнинского комплекса в районе балки Карасай, можно рассматривать как линзы метаморфических пород первично осадочного происхождения, TO есть кальцифиры. Об ЭТОМ свидетельствуют и «коровые» изотопные характеристики углерода и кислорода, полученные нами ранее, и присутствие ставролита в тяжелой фракции карбонатных пород [9].

Работа выполнена при финансовой поддержке РФФИ (грант № НШ-85.2003.5) и гранта Президиума УрО РАН 2003 по поддержке исследований молодых ученых и аспирантов.

Литература

- 1. *Варлаков А.С.* Петрография, петрохимия и геохимия гипербазитов Оренбургского Урала. М.: Наука, 1978. 238 с.
- 2. *Добрецов Н.Л., Кочкин Ю.Н., Кривенко А.П., Кутолин В.А.* Породообразующие пироксены. М.: Наука, 1971. 454 с.
- 3. *Ефимов А.А., Колясников А.А., Маегов В.И. и др.* О находке редкой минеральной ассоциации титанфассаит+перовскит в магнезиальных эндоскарнах Довыренского габбро-гипербазитового массива (Северное Прибайкалье) // Ежегодник-1985. Институт геологии и геохимии УрО АН СССР. 1996. С. 92-94.
- 4. *Кориневский В.Г., Кориневский Е.В.* Первая находка фассаита в ильменогорском комплексе // Уральский минералогический сборник. Миасс: Институт минералогии УрО РАН, 2002. № 12. С. 7-17.
- 5. Минералы. Под ред. Ф.В. Чухрова. М.: Наука, 1981. Том. 3. Вып. 2. 614 с.
- 6. *Балыкин П.А., Конников Э.Г., Кривенко А.П. и др.* Петрология постгарцбургитовых интрузивов Кемпирсайско-Хабарнинской офиолитовой ассоциации (Южный Урал). Свердловск: УрО АН СССР, 1991. 160 с.
- 7. *Руженцев С.В.* Краевые офиолитовые аллохтоны (Тектоническая природа и структурное положение) // Труды ГИН АН СССР. 1976. Вып. 283. 173 с.

№ 3

Вестник Уральского отделения

- 2004
- 8. *Туровцев Д.М.* Контактовый метаморфизм Норильских интрузий. М.: Научный мир, 2002.
- 9. *Ферштатер Г.Б., Пушкарев Е.В.* Карбонатные породы в офиолитовом кемпирсайско-хабарнинском комплексе (Южный Урал) // Известия АН СССР. Сер. геологическая. 1988. № 12. С. 27-37.
- Bindi L. Safonov O.G., Yapaskurt V.O., Perchuk L.L., Menchetti S. Ultrapotassic clinopyroxene from the Kumdy-Kol microdiamond mine, Kokchetav complex, Kazakhstan: occurrence, composition and crystal-chemical characterization // Amer. Miner. 2003. Vol. 88. P. 464-468.
- 11. *Laverne C*. Unusual occurrences of aegirine-augite, fassaite and melanite in oceanic basalts (DSDP Hole 504B) // Lithos. 1987. Vol. 20. № 2. P. 135-151.
- 12. *Morimoto N.* Nomenclature of pyroxenes // Canad. Miner. 1989. Vol. 27. P. 143-156.
- 13. *Sawaki T*. Melanite and fassaite from the contact aureole around the Nogo-Hakusan granodiorite body, central Japan // Journal of mineralogy, petrology and economic geology. 1988. Vol. 83. № 9. P. 357-373.