<u>№</u> 3

Вестник Уральского отделения

ОБЩИЕ И СПЕЦИАЛЬНЫЕ ВОПРОСЫ МИНЕРАЛОГИИ

УДК 549.753

МОНАЦИТ-(Се) ИЗ ГРАНИТНЫХ ПЕГМАТИТОВ ЖИЛЫ ЮЖНАЯ (АДУЙСКОЕ ПЕГМАТИТОВОЕ ПОЛЕ)

Н.В. Вахрушева¹, Е.С. Шагалов², Ю.В. Ерохин², С.Г. Суставов¹

¹Уральская государственная горно-геологическая академия ²Институт геологии и геохимии УрО РАН

Монацит обнаружен в блоковой зоне гранитного пегматита жилы Южная [2]. Блоковая зона представлена агрегатом крупных кристаллов ортоклаза, альбита, мусковита с обильной акцессорной минерализацией, включающей гранат, хризоберилл, колумбит, ганит и др. Монацит обнаружен в виде включений в гранате, который представлен интенсивно трещиноватыми индивидами. При разрушении граната проявился длиннопризматический кристалл монацита. Цвет индивида от светло-коричневого до красноватого. Из-за этого монацит на фоне граната трудно различим визуально. Видимая часть кристалла составляет 4 мм в длину и около 1,5 мм в ширину. По результатам замеров в огранке индивида участвуют пинакоиды – $a\{100\}$, $w\{101\}$ и ромбические призмы – $m\{110\}$, $E\{211\}$, $o\{111\}$, $u\{021\}$ (рис. 1). Практически все грани имеют матовый отблеск, большая часть ребер завальцована. Облик кристаллов слабо уплощенный по [100].

Химический состав монацита изучался непосредственно с измеренного кристалла. Для определения основных минералообразующих компонентов (церий и фосфор)

	Российская Академия наук	Минералогическое общество		
<u>№</u> 3	Вестник Уральского отделения			

2004

использовался микроанализатор JXA-5, ИГГ УрО РАН, редкие и редкоземельные элементы определялись с помощью метода LA-ICP-MS (лазерный пробоотборник LSX-200 (фирмы Cetac), масс-спектрометр ELAN-6100 (фирма Perkin Elmer), ВСЕГЕИ). Химический состав монацита из жилы Южная (в мас.%): Ce₂O₃ 22,18; P₂O₅ 22,09; La₂O₃ 5,47; Nd₂O₃ 13,06; Pr₂O₃ 4,00; Sm₂O₃ 4,19; Y₂O₃ 12,67; Gd₂O₃ 2,83; Tb₂O₃ 0,38; Dy₂O₃ 1,81; Er₂O₃ 0,33; Ho₂O₃ 0,18; Yb₂O₃ 0,21; Tm₂O₃ 0,04; ThO₂ 8,91; ZrO₂ 0,38; UO₂ 0,36; HfO₂ 0,03; PbO 0,29 Сумма 99,43. Остальные компоненты в сумме имеют концентрации ниже 0,01 мас.%. По данным химического анализа монацит представлен цериевой разновидностью. Высокое содержание тория и урана говорит о сильной радиоактивности минерала, что косвенно отразилось на разрушении кристаллической решетки вмещающего граната.

При нормировании состава РЗЭ на хондрит [8] установлена резкая отрицательная европиевая аномалия (рис. 2), аналогичная для монацита из гранитов Германии [6] и гранитных пегматитов Бразилии [7]. В монацитах из среднеградиентных метаморфитов Восточных Альп [5] европиевая аномалия проявлена значительно слабее, а из серицитолитов, окружающих кварцевые жилы (м-е Желанное, Приполярный Урал) аномалия отсутствует [3].

Рис. 2. Нормированные по хондриту [8] графики распределения лантаноидов в монацитах из различных пород.

Распределение легких РЗЭ в исследованном фосфате соответствует монацитам из гранитных пегматитов [7], серицитолитов [3] и метаморфитов [5]. В акцессорном

<u>No</u> 3

монаците гранитов Германии [6] концентрация легких лантаноидов значительно выше (рис. 2).

Вестник Уральского отделения

Характер распределения тяжелых РЗЭ в минерале близок как для гранитов, метаморфитов, так и для гранитных пегматитов. Абсолютные содержания тяжелых лантаноидов в монаците из гранитных пегматитов жилы Южная составляют промежуточные значения между их концентрацией в монаците гранитов [6] и гранитных пегматитов Бразилии [7].

ИК-спектр монацита (ИГГ УрО РАН, фурье-спектрометр РЕ FTIR Spectrum One) полностью соответствует эталонным кривым минерала (рис. 3) [1]. На графике четко наблюдаются полосы поглощения ассиметричных валентных колебаний связи P-O – 1072, 1188 см⁻¹ и деформационных колебаний P-O – 550-599 см⁻¹ [4]. Остальные пики относятся к колебаниям металл-кислород. Исключением является полоса поглощения в области 1743 см⁻¹, видимо связанная с присутствием карбонатного материала замещающего монацит по трещинам или на поверхности.

Рис. 3. ИК-спектр монацита из жилы Южная.

Рентгенометрическое изучение монацита показывает его близость (табл.) в значениях межплоскостных расстояний и в параметрах элементарной ячейки от эталонного монацита из карбонатитов Магнет-Ков в штате Арканзас.

<u>№</u> 3

Вестник Уральского отделения

2004

Таблица

Образец		Монацит, ASTM – 11-556		
Ι	$d_{\alpha/n}$	$d_{\alpha/n}$	I/Io	hkl
1	5.27	5.20	13	-101
-	-	4.82	7	110
1	4.72	4.66	18	001
3	4.21	4.17	25	-111
-	-	4.08	9	101
2	3.52	3.51	25	111
5	3.31	3.30	50	200
10	3.09	3.09	100	120
2	2.98	2.99	18	210
10	2.89	2.87	70	-112,012
2	2.63	2.61	18	-202
2	2.46	2.44	18	-212, -112
2	2 35	2 40	5	022 122
-	-	2 25	3	301
_	_	2.19	18	031
4	2.16	2.15	25	-103
	-	2.13	25	-131, 221
_	_	2.02	3	131,013
2	1 970	1 961	25	212 - 312
	-	1.933	7	
_	_	1.895	13	_
6	1.875	1.870	18	-
-	-	1.859	18	-
2	1.813	1.797	9	-
3	1.759	1.762	18	-
2	1.727	1.737	25	-
2	1.691	1.689	13	-
-	-	1.645	7	-
2	1.611	1.623	7	-
1	1.576	1.600	7	-
2	1.539	1.535	13	-
1	1.474	1.463	5	-
-	-	1.423	3	-
-	-	1.386	3	-
1	1.370	1.368	5	-
1	1.330	1.339	9	-
$a_0 = 6.80 \pm 0.02$			$a_0 = 6.77$	1
$b_0 = 7.00 \pm 0.01$			$b_0 = 6.99$	
$c_0 = 6.55 \pm 0.03$			$c_0 = 6.45$	
$\beta = 103^{\circ}46' \pm 0^{\circ}24'$			$\beta = 103^{\circ}31'$	

Рентгенограмма монацита из пегматитов копи Южная

Примечание: УГГГА, лаборатория методов исследования, УРС-2.0, аналитик С.Г. Суставов.

<u>No</u> 3

Вестник Уральского отделения

2004

Наблюдается завышение параметров элементарной ячейки, видимо связанное с вхождением в структуру минерала значительного количества тория (до 9 мас.%).

Разнообразие монацитов в гранитных пегматитах не ограничивается описанным выше кристаллом. В той же блоковой зоне жилы Южная встречаются длиннопризматические кристаллы медово-желтого цвета, отличающиеся параметром элементарной ячейки и, по-видимому, химическим составом. Минерал, кроме того, установлен в альбитовых пегматитах жил Телефонка и Семенинская. В ассоциации с монацитом также встречаются кристаллы ксенотима, требующие своего исследования.

Литература

- 1. Болдырев А.И. Инфракрасные спектры минералов. М.: Недра, 1976. 199 с.
- Вахрушева Н.В., Ерохин Ю.В., Шагалов Е.С., Тверяков В.Б. Андалузит в гранитных пегматитах жилы Южная (Адуйское пегматитовое поле) // Материалы IV-го Всероссийского совещания «Минералогия Урала – 2003». Минералогия месторождений и руд Урала. Физика минералов. Миасс: ИМин УрО РАН, 2003. Т. 2. С. 125-130.
- Репина С.А. Свойства монацита и особенности его распределения на кварцевом месторождении Желанное (Приполярный Урал) // Материалы IV-го Всероссийского совещания «Минералогия Урала – 2003». Т. 2. Минералогия месторождений и руд Урала. Физика минералов. Миасс: ИМин УрО РАН, 2003. С. 151-158.
- 4. Современные методы исследования минералов, горных пород и руд. Санкт-Петербургский горный институт, 1997. 137 с.
- Nage G., Draganits E., Demeny A., Panto G., Arkai P. Genesis and transformation of monazite and rhabdophanite during medium grade metamorphism: examples from the Sopron Hills, Eastern Alps // Chemical Geology. 2002. N 191. P. 25-46.
- Forster H-J. The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany, Part I: The monazite-(Ce)-brabantite solid solution series // Amer. Miner. 1998. V. 83. P. 259-272.
- Seydox-Guillaume A-M., Paquette J-L., Wiedenbeck M., Montel J-M., Heinrich W. Experimental resetting of the U–Th–Pb systems in monazite // Chemical Geology. 2002. N 191. P. 165-181.
- Sun S.S. Chemical composition and origin of the Earth's primitive mantle // Geochim. Cosmochim. Acta. Vol. 46. 1982. P. 179-192.