2004

УДК 553.22+553.43(470.5)

ТИЛЛЕИТ И ВАЛЛЕРИИТ ИЗ ГУМЕШЕВСКОГО МЕСТОРОЖДЕНИЯ (СРЕДНИЙ УРАЛ)

А.И. Грабежев, В.В. Мурзин, С.В. Прибавкин, Н.С. Бородина, В.Г. Гмыра, Г.В. Пальгуева

Институт геологии и геохимии УрО РАН

В данной статье рассматриваются минералы нижней части (инт. 533,2-534,5 м) зоны гидроксилэллестадитового метасоматита, встреченного в интервале 530,4-534,5 м скв. 3871 на Гумешевском месторождении (см. предыдущую статью авторов в настоящем Метасоматит отличается от выше охарактеризованного значительного количества неравномерно распределенных зерен андрадита и везувиана, содержание которых в отдельных участках достигает 30-60 об.%. В шлифах андрадит имеет бледно-желтую окраску, а везувиан - обычное аномальное двупреломление. Содержание гидроксилэллестадита редко превышает 30 об.%, обычно он образует неправильные зерна и не обнаруживает генетических взаимоотношений с андрадитом и везувианом. Вместе с тем, в гидроксилэллестадите часто наблюдаются очень мелкие, как правило, округлые, выделения андрадита, которые при желании можно рассматривать как реликтовые зерна. Микрозондовые анализы андрадита и везувиана соответственно отвечают (в мас.%.): $SiO_2 - 36,02$ и 36,13; $TiO_2 - 0,03$ и 0,02; $Al_2O_3 - 3,64$ и 15,33; $Fe_2O_3 -$ 26,81 и 5,24; MgO – 0,11 и 2,95; CaO – 33,17 и 36,33; сумма – 99,78 и 96,01.

Все вышеуказанные минералы интенсивно замещаются карбонатом (преимущественно кальцитом). Очень широко распространена неравномерная вкрапленность сульфидов (до 7 об.%). В данном интервале совершенно отсутствуют гипсовые прожилки, характерные для верхней части зоны метасоматитов.

Тиллеит слагает секущие белые параллельные быстро выклинивающиеся метасоматические прожилки мощностью 0,02-1,5 мм. Под микроскопом эти прожилки выглядят как зоны рассланцевания, представленные ориентированным по простиранию агрегатом тонкопластинчатых зерен минерала с высоким двупреломлением (0,035) и показателем преломления (на уровне 1,600-1,650). Минерал имеет прямое погасание и отрицательное удлинение. В слабом растворе соляной кислоты минерал быстро разлагается с выделением СО₂ и сохранением кремнистого каркаса. По вышеприведенным

Таблица 1

2004

Микрозондовые анализы тиллеита, мас.%

No	Тиллеит						
145	1	2	3	4			
SiO ₂	24.89	24.33	24.61	24.09			
TiO ₂	0.01	0.01	0.01	-			
Al_2O_3	0.00	0.02	0.00	0.61			
FeO	0.13	0.13	0.13	0.11			
MgO	0.00	0.00	0.00	0.43			
CaO	54.98	56.57	55.78	57.75			
Na ₂ O	0.00	0.00	0.00	-			
K ₂ O	0.01	0.03	0.02	-			
SO_3	0.00	0.00	0.00	-			
CO_2	-	-	-	15.82			
H ₂ O	-	-	-	1.09			
Сумма	80.02	81.09	80.55	99.90			
Si	2.08	2.00	2.04	1.92			
Ca	4.91	5.00	4.96	4.96			
Fe	0.01	0.01	0.01	0.01			

Примечание: 1-3 — тиллеит из микропрожилков в гидроксилэллестадитовом метасоматите (образец 3871-534), соответственно два частных анализа и среднее по ним; 4 — тиллеит из Крестморе, США. Пустая клетка — элемент не определялся. Кристаллохимическая формула рассчитана на на 7 катионов. В кристаллохимической формуле анализа 4 присутствуют: A1 — 0,06, Mg — 0,05.

данным и микрозондовым анализам минерал диагностируется как тиллеит (табл. 1), имеющий теоретическую формулу $Ca_5[Si_2O_7](CO_3)_2$. Суммы анализов составляют примерно 80 мас.%, недостающая часть должна быть представлена углекислотой. Некоторые вариации содержаний кальция и кремния в анализах могут быть связаны с аналитическими погрешностями в связи с тонкозернистой структурой агрегата минерала. На дифрактограммах присутствуют слабые рефлексы 3,10 и 1,90 Å, свойственные тиллеиту. Данный минерал заслуживает дальнейшего изучения.

В рассматриваемом метасоматите халькопирит является преобладающим сульфидом, выполняющим межзерновые пространства среди агрегатов нерудных минералов. Минерал имеет стехиометрический состав по основным компонентам. Концентрации в нем наиболее обычных примесей Ni и Co находится на уровне ниже чувствительности микроанализа (0,02-0,03 мас.%). В сростках с халькопиритом встречены мелкие единичные выделения (менее 0,15 мм) борнита, который характеризуется несколько пониженным содержанием меди и повышенным – железа и серы по отношению

2004

к стехиометрии минерала (табл. 2). Состав борнита отвечает метастабильному борнитхалькопиритовому твердому раствору. Так как пирит и пирротин в метасоматите не встречены, то можно полагать, что сульфиды образуются в поле борнит-халькопиритовой фации, отражающей условия низких значений фугитивности серы.

Таблица 2 Химический состав минералов меди, никеля и кобальта из гидроксилэллестадитового метасоматита Гумешевского месторождения (обр. ГУ-3871-534)

№	Cu	Fe	Ni	Co	Al	Mg	Cr	S	Сумма
Борнит	58.44	12.14	0.00	0.0	-	-	-	27.58	98.16
Борнит	58.66	11.96	0.00	0.0	1	ı	-	26.81	97.44
Зигенит	0.04	0.22	32.45	26.83	ı	ı	1	41.90	101.44
Зигенит	0.04	0.34	32.49	26.98	ı	ı	ı	41.71	101.56
Зигенит	0.02	0.13	32.43	26.15	ı	ı	ı	41.73	100.46
Валлериит	24.90	16.95	0.00	0.00	4.04	12.18	0.10	23.18	81.35
Валлериит	25.28	16.93	0.00	0.00	3.77	12.42	0.03	23.43	81.86
Валлериит	25.56	17.74	0.00	0.00	3.92	12.61	0.00	23.16	82.99

Примечание. Рентгеноспектральный микроанализ минералов выполнен в ИГиГ УрО РАН на микроанализаторе JXA-5; анализы даны в мас.%. Прочерк — элемент не измерялся, 0,00 — содержание элемента ниже чувствительности микроанализа (0,02-0,03%). Кислород и водород в валлериите не измерялись. Пересчет концентраций в этом минерале проведен путем введения О и Н в количествах и пропорциях, дополняющих сумму измеренных компонентов до 100%.

В одном парагенезисе с халькопиритом присутствуют редкие кристаллы Ni-Co сульфида и ксеноморфные выделения сфалерита, заключенные в халькопирите или находящиеся на контакте последнего с нерудной массой. Размер выделений этих минералов достигает 0,2 мм, однако чаще менее 0,1 мм. Оптические свойства (розоватый, изотропный) и соотношение металлов и серы в Ni-Co сульфиде (табл. 2) отвечают зигениту, имеющему структуру обращенной шпинели $Ni^{3+}(Ni^{2+}Co^{3+})S_4$. Особенностью химического состава исследованного зигенита является избыточное, по отношению к стехиометрическому составу, содержание кобальта (до 7,5 мас.%). По-видимому, имеет место замещение части Ni^{2+} или Ni^{3+} на кобальт, как это наблюдается у чисто никелевого сульфида со сходной структурой — полидимита — $NiNi_2S_4$ [6]. Химический состав сфалерита характеризуется значительным набором примесных компонентов, что

2004

позволяет отнести его к марганцовисто-кадмистой разновидности (табл. 3). Выделения его при разрешении оптического микроскопа свободны от вкрапленности халькопирита, однако факт согласованных вариаций концентраций Си и Fe в зернах сфалерита не позволяет однозначно трактовать эти примеси как изоморфные. В качестве, несомненно, изоморфных примесей в сфалерите выступают марганец и кадмий. Отметим, что совместное присутствие этих элементов в значительных количествах наблюдается в сфалерите редко.

Таблица 3 Химический состав сфалерита из гидроксилэллестадитового метасоматита Гумешевского месторождения (обр. ГУ-3871-534), мас.%

No	Zn	Cu	Fe	Cd	Mn	Hg	S	Сумма
1	57.70	0.60	0.85	3.76	3.56	0.00	32.58	99.05
2	57.37	1.16	1.49	3.64	2.94	0.00	32.22	98.82
3	59.20	0.13	0.19	3.50	3.79	0.00	32.18	99.00

Примечание. Рентгеноспектральный микроанализ минералов выполнен в ИГиГ УрО РАН на микроанализаторе JXA-5.

Наиболее поздними минералами изученного метасоматита являются карбонат (магнезиальный кальцит?) и валлериит (см. табл. 2), которые секут в виде микропрожилков более ранние минералы. Выделения валлериита размером до 0,2 мм имеют таблитчатую, клиновидную форму и заключены в карбонате, очень часто на контактах карбоната с халькопиритом или изредка в виде включений в последнем. Минерал обладает очень сильным двуотражением и анизотропией в синевато-коричневых тонах. Такие аномальные оптические свойства валлериита обязаны его гибридной структуре, в которой в пределах одного кристалла существуют пронизывающие друг друга гексагональные сульфидная и бруситовая подрешетки. Из-за несоразмерности ионов серы и гидроксила в кристаллохимической формуле минерала при бруситовом компоненте появляется дробный коэффициент, который можно уточнить при помощи электронной микродифракции [6]. Судя по измеренному химическому составу минерала, в составе бруситового компонента присутствует значительное количество гидроксида алюминия Al(OH)₃. Наличие валлериита подтверждается присущими ему рефлексами на дифрактограмме (11,3; 5,68; 3,78; 3,23 Å). При насыщении ориентированного образца метасоматита этиленгликолем и отжиге до 550°C данные рефлексы, соответствующие бруситовым слоям в минерале, исчезают. Ранее валлериит по оптическим данным

2004

неоднократно отмечался в рудах колчеданных месторождений Урала. Химический анализ нам известен только для валлериита из родингитов Баженовского месторождения [5]. По сравнению с последним, рассматриваемый валлериит характеризуется гораздо меньшим значением Fe/Mg отношения и содержанием алюминия.

Изложенные данные свидетельствуют, скорее всего, о метасоматическом развитии гидроксилэллестадита по везувиан-гранатовому скарну. О температурном режиме этого процесса судить трудно, можно только отметить, что скарны на Гумешевском месторождении формируются преимущественно при температуре 350-500°С [1, 2]. Соответственно можно предположить, что гидроксилэллестадит и секущие метасоматит тиллеитовые прожилки сформировались при меньших температурах, чем это наблюдается в известных высокотемпературных известковых и магнезиальных скарнах [3, 4 и др.]. Сульфидное оруденение и карбонатизация безусловно являются наиболее поздними процессами, завершающимися замещением халькопирита валлериитом.

Исследования выполнены при финансовой поддержке РФФИ (проект 03-05-64206).

Литература

- 1. *Грабежев А.И.* Скарны Гумешевского скарново-медно-порфирового месторождения // Петрология. 2004. № 2. (в печати).
- 2. *Грабежев А.И., Сотников В.И., Боровиков А.А., Азовскова О.Б.* Генетическая типизация Гумешевского медно-скарнового месторождения (Средний Урал) // Доклады РАН. 2001. Т. 380. № 2. С. 242-244.
- 3. *Перцев Н. Н., Конников Э.Г., Кислов Е.В. и др.* Магнезиальные скарны мервинитовой фации из ксенолитов в дунитах Довыренского расслоенного массива // Петрология. 2003. № 5. С. 512-523.
- 4. Ревердатто В.В. Фации контактового метаморфизма. М.: Недра. 1970. 271 с.
- 5. *Спиридонов Э.М., Барсукова Н.С.* Рудные минералы халькогениды метаморфитов Баженовского месторождения // Минералогия родингитов Баженовского месторождения хризотил-асбеста. Екатеринбург: Изд-во УГГГА. 1996. С. 62-81.
- 6. Чвилева Т.Н., Безсмертная М.С., Спиридонов Э.М. и др. Справочник-определитель рудных минералов в отраженном свете. М.: Недра, 1988. 504 с.