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Summary

The key to three-dimensional discontinuous deformation analysis (3D DDA) is a rigorous contact
theory that governs the interaction of many three-dimensional blocks. This theory must provide
algorithms to judge contact types and locations and the appropriate state of each contact, which
can be open, sliding or locked. This paper presents a point-to-face contact model, which forms a
part of the contact theory, to be used in 3D DDA. Normal spring, shear spring and frictional force
submatrices are derived by vector analysis and the penalty method. Also given are the ‘‘open-
close’’ iteration criteria and operations performed for different changes in contact state. Sliding at
a contact can occur in any direction parallel to the contact face, as opposed to one of two
directions in two-dimensional DDA. This point-to-face contact model has been implemented into
a 3D DDA computer program, and numerical results from several test cases demonstrate the
validity of the model and the capability of the program.

Keywords: 3D DDA, point-to-face contact, open-close iteration.

1. Introduction

The discontinuous deformation analysis (DDA) is a numerical model for block sys-

tems that can be used to analyse jointed rock mass behaviour (Shi, 1988; Shi and

Goodman, 1989). Using DDA, one can perform static and dynamic analysis of a block

system to obtain solutions of large deformation and large displacement. The DDA

model introduces a unified format for the consideration of not only the displacement,

rotation and deformation of an individual rock block but also such movement forms as

sliding and opening along block boundaries, having the advantages of both the distinct



element method (DEM) and the finite element method (FEM). DDA has received

considerable attention from researchers and practising engineers and has become a

useful tool for the analysis of jointed rock mass behaviour.

The original DDA is a two-dimensional (2D) numerical model, and significant

recent development of DDA has been focused on extending the capabilities of the 2D

model (Yeung, 1993; Lin et al., 1996; Chern et al., 1990; Thomas and Bray, 1999; Koo

and Chern, 1998; Chen et al., 1997; Kim et al., 1999; Ke, 1996; Hatzor and Feintuch,

2001; Jing et al., 2001; Sitar and MacLaughlin, 1997). There is an obvious need for a

3D model because of the highly directional nature of jointed rock mass behaviour,

making the application of 2D DDA to many practical problems inappropriate. While

various researchers are working on three-dimensional discontinuous deformation

analysis (3D DDA), only preliminary work on this subject has been published

without a complete contact theory that governs the interaction of many 3D blocks

(Shi, 2001).

In the contact theory for 3D DDA, the first step is to determine the type of contact

between any two arbitrarily shaped polyhedral blocks. The type of contact is important

because it determines the mechanical response of the contact. There are many more

types of contacts for 3D blocks than for 2D ones. In two dimensions, the contact types

include corner-to-corner, corner-to-edge and edge-to-edge; whereas 3D contact types

include vertex-to-vertex, vertex-to-edge, vertex-to-face, edge-to-edge, edge-to-face

and face-to-face. In the contact theory of which the point-to-face contact model

presented in this paper is a part, the common-plane method of Cundall (1988) is used

to determine the contact type. Using this method, contacts may be classified into

different types by determining how many vertices of each block touch the common-

plane. Once the contact types and contact faces are determined, all contacts can be

converted to one or more point-to-face contacts, as shown for example in Fig. 1,

similar to what is done in 2D DDA in which all contacts can be converted to cor-

ner-to-edge contacts. The generic contact type in 3D is called point-to-face and not

vertex-to-face because, as can be seen in Fig. 1, a converted contact can be between a

point on an edge and a face.

The contact problem is highly non-linear in nature. Although studies have been

carried out on the frictional contact problem for several decades, it is still one of the

Fig. 1. Point-to-face contacts
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most difficult problems to handle. Especially in the 3D case, the relative sliding of the

contact point may occur in any direction parallel to the contact face, as opposed to one

of two directions in the 2D case; hence, more complicated block interaction problems

will be encountered. Moreover, non-convergence is more likely to occur in the 3D

case than in the 2D case. Numerical analysis techniques for solving frictional contact

problems are established using the trial-and-error iterative method (Francavilla and

Zienkiewicz, 1975; Rahman et al., 1984; Hong et al., 1998), the penalty method (Oden

and Kikuchi, 1982; Kanto and Yagawa, 1990; Yamazaki et al., 1994; Munjiza and

Andrews, 2000), the Lagrangian multiplier method (Chen and Tsai, 1986; Chaudhary

and Bathe, 1986; Bathe and Chaudhary, 1985), the mathematical programming

method (Klarbring, 1986; Fischer and Melosh, 1987), and other methods (Leung

et al., 1998; Li et al., 2000). Among these methods, the penalty method is one of

the most efficient because this method does not require an increase in the number of

degrees of freedom in the final equation to be solved.

This paper presents a model of point-to-face contact to be used in 3D DDA.

Contact submatrices, including those for the normal spring, shear spring and the

frictional forces, are derived by vector analysis and the penalty method. This point-

to-face contact model has been implemented into a 3D DDA computer program, and

numerical results from several test cases demonstrate the validity of the model and the

capability of the program.

2. Basic Principles of DDA

2.1 Displacement and Deformation of a 3D Block

DDA uses time steps for both statics and dynamics. The large deformation in a block

and the large relative movements between blocks are accumulated over many

time steps. Given that for each time step, the condition of small displacement and

deformation is satisfied and assuming that a 3D arbitrarily shaped polyhedral

block has uniform stress and strain, the movement and the deformation of the

block are defined by 12 independent kinematic variables in the displacement matrix

½Di�:

½Di� ¼ ½d1; d2; d3; d4; d5; d6; d7; d8; d9; d10; d11; d12�T

¼ ½u0; v0;w0; �0; �0; �0; "x; "y; "z; �xy; �yz; �zx�T ; ð1Þ

where ðu0; v0;w0Þ are the x-, y- and z-translations, respectively, of the block’s centre of

mass ðx0; y0; z0Þ; ð�0; �0; �0Þ are the rotations of the block about the x-, y- and z-axes,

respectively; and ð"x; "y; "z; �xy; �yz; �zxÞ are the three normal strains and three shear

strains of the block.

The x-, y- and z-displacements ðu; v;wÞ of an arbitrary point ðx; y; zÞ in the block

can be expressed in terms of the kinematic variables of ½Di�:

u

v

w

2
4

3
5 ¼ ½Ti� ½Di� ¼

P12
j¼1 t1jdjP12
j¼1 t2jdjP12
j¼1 t3jdj

2
64

3
75; ð2Þ
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where

Ti½ � ¼
1 0 0 0 ðz� z0Þ �ðy� y0Þ ðx� x0Þ 0 0 ðy� y0Þ=2 0 ðz� z0Þ=2

0 1 0 �ðz� z0Þ 0 ðx� x0Þ 0 ðy� y0Þ 0 ðx� x0Þ=2 ðz� z0Þ=2 0

0 0 1 ðy� y0Þ �ðx� x0Þ 0 0 0 ðz� z0Þ 0 ðy� y0Þ=2 ðx� x0Þ=2

2
4

3
5:
ð3Þ

[Ti] is called the displacement transformation matrix of the block.

Error due to approximation using a linear displacement function causes block

expansion, especially in problems involving large rigid body rotations (Koo and

Chern, 1998; Ke, 1996). To correct the error, post-correction is used and the x-, y-

and z-displacements (u, v, w) of all relevant points including block vertices are recal-

culated using Eq. (4) after each time step:

u

v

w

2
4

3
5 ¼

P12
j¼1 t1jdjP12
j¼1 t2jdjP12
j¼1 t3jdj

2
64

3
75
j 6¼ 4;5;6

þ
cos �0 þ cos �0 � 2 � sin �0 sin �0

sin �0 cos�0 þ cos �0 � 2 � sin�0

� sin �0 sin�0 cos�0 þ cos �0 � 2

2
4

3
5 x� x0

y� y0

z� z0

2
4

3
5: ð4Þ

2.2 General Equilibrium Equations

A number of individual blocks can be connected to form a block system satisfying the

constraints between blocks. For a system of n blocks, its behaviour is governed by the

following system of simultaneous equations:

K11 K12 K13 � � � K1n

K21 K22 K23 � � � K2n

K31 K32 K33 � � � K3n

..

. ..
. ..

. . .
. ..

.

Kn1 Kn2 Kn3 � � � Knn

2
666664

3
777775

D1

D2

D3

..

.

Dn

2
666664

3
777775 ¼

F1

F2

F3

..

.

Fn

2
666664

3
777775: ð5Þ

Each 3D block has 12 degrees of freedom, so in the coefficient matrix of Eq. (5), each

element [Kij] is a 12 � 12 submatrix. [Di] and [Fi] are 12 � 1 submatrices, with [Di]

containing the kinematic variables of block i and [Fi] containing the loads on

block i distributed to the 12 kinematic variables. The submatrix [Kii] depends on

the material properties of block i, and [Kij] ði 6¼ jÞ is determined by the contact con-

dition between block i and block j. Eq. (5) can also be expressed in a more compact

form of [K][D]¼ [F], where [K] is a 12n � 12n stiffness matrix, and [D] and [F]

are 12n � 1 displacement and force matrices, respectively. In total, the

number of displacement unknowns is the sum of the degrees of freedom of all the

blocks.

Equation (5) was derived by Shi (2001) by minimizing the total potential

energy � of the block system. The i-th row of Eq. (5) consists of 12 linear

equations

@�

@dri
¼ 0; r ¼ 1�12; ð6Þ

where driðr ¼ 1�12Þ are the kinematic variables of block i. The total potential

energy is the sum from all potential energy sources, i.e. individual stresses and

forces. The potential energy of each force or stress and its derivative are considered

98 Q. H. Jiang and M. R. Yeung



separately. The derivative
@2�

@dri@dsj
; r; s ¼ 1�12 ð7Þ

is the coefficient of unknown dsj in Eq. (6) for variable dri. All terms of Eq. (7) form a

12 � 12 submatrix, which is added to the submatrix [Kij] in Eq. (5). Eq. (7) implies

that the global stiffness matrix [K] is symmetric. The derivative

� @�ð0Þ
@dri

; r ¼ 1�12 ð8Þ

is the free term of Eq. (6) which is shifted to the right hand side of Eq. (5). All terms of

Eq. (8) form a 12 � 1 submatrix, which is added to the submatrix [Fi] in Eq. (5).

3. Point-to-Face Contact Model

3.1 Normal Spring Submatrices

For the point-to-face contact between two arbitrarily shaped polyhedral blocks shown

in Fig. 2, the point in question is P1ðx1; y1; z1Þ, which is a vertex of block i, and the

polygon P2P3 � � �P6 is the contact face, which is a face of block j. P0ðx0; y0; z0Þ is the

projection of point P1ðx1; y1; z1Þ on the face P2P3 � � �P6. Let ðxi; yi; ziÞ and ðui; vi;wiÞ
be the coordinates and displacement increments, respectively, of the vertices

Piði ¼ 0�6Þ, and let Pi
0ði ¼ 0�6Þ be the respective vertices after the displacement

Fig. 2. Point-to-face contact
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increments are applied. After the displacement increments are applied, the vector

pointing out of the block that is normal to the contact face P2
0P3

0 � � �P6
0 is given by

n!¼ P2
0P3

0���!
�P2

0P4
0���!

¼
~ii ~jj ~kk

x3 þ u3 � x2 � u2 y3 þ v3 � y2 � v2 z3 þ w3 � z2 � w2

x4 þ u4 � x2 � u2 y4 þ v4 � y2 � v2 z4 þ w4 � z2 � w2

�������

�������: ð9Þ

Therefore,

n
* ¼ ½ðe11 þ e12 þ e13 þ e14Þðe21 þ e22 þ e23 þ e24Þðe31 þ e32 þ e33 þ e34Þ�; ð10Þ

where

e11 ¼
y3 � y2 z3 � z2

y4 � y2 z4 � z2

����
���� e12 ¼

y3 � y2 w3 � w2

y4 � y2 w4 � w2

����
���� e13 ¼

v3 � v2 z3 � z2

v4 � v2 z4 � z2

����
����

e14 ¼
v3 � v2 w3 � w2

v4 � v2 w4 � w2

����
���� e21 ¼

z3 � z2 x3 � x2

z4 � z2 x4 � x2

����
���� e22 ¼

z3 � z2 u3 � u2

z4 � z2 u4 � u2

����
����

e23 ¼
w3 � w2 x3 � x2

w4 � w2 x4 � x2

����
���� e24 ¼

w3 � w2 u3 � u2

w4 � w2 u4 � u2

����
���� e31 ¼

x3 � x2 y3 � y2

x4 � x2 y4 � y2

����
����

e32 ¼
x3 � x2 v3 � v2

x4 � x2 v4 � v2

����
���� e33 ¼

u3 � u2 y3 � y2

u4 � u2 y4 � y2

����
���� e34 ¼

u3 � u2 v3 � v2

u4 � u2 v4 � v2

����
����:

The normal distance between the point P1
0 and the contact face P2

0P3
0 . . .P6

0, dn, is

given by

dn ¼
�

l
¼ 1

l
n!� P0

0P1
0���!
; ð11Þ

where l is the length of the normal vector ~nn and � is given by

� ¼ e11 e21 e31½ �
ðx1 � x0Þ þ ðu1 � u0Þ
ðy1 � y0Þ þ ðv1 � v0Þ
ðz1 � z0Þ þ ðw1 � w0Þ

2
64

3
75

þ e12 e22 e32½ �
ðx1 � x0Þ þ ðu1 � u0Þ
ðy1 � y0Þ þ ðv1 � v0Þ
ðz1 � z0Þ þ ðw1 � w0Þ

2
64

3
75

þ e13 e23 e33½ �
ðx1 � x0Þ þ ðu1 � u0Þ
ðy1 � y0Þ þ ðv1 � v0Þ
ðz1 � z0Þ þ ðw1 � w0Þ

2
64

3
75

þ e14 e24 e34½ �
ðx1 � x0Þ þ ðu1 � u0Þ
ðy1 � y0Þ þ ðv1 � v0Þ
ðz1 � z0Þ þ ðw1 � w0Þ

2
64

3
75: ð12Þ
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The step displacement increments ðui; vi;wiÞ, i¼ 0–6, are small for small time

steps. The contact distance P0P1 is small from the definition of a contact. Therefore,

expanding the right side of Eq. (12), the first term gives first order infinitesimal terms;

the second and third terms give second order infinitesimal terms; and the last term

gives third order infinitesimal terms.

Let

S0 ¼ e11 e21 e31½ �
x1 � x0

y1 � y0

z1 � z0

2
4

3
5 ð13Þ

Neglecting the second and third order infinitesimal terms, Eq. (12) can then be

approximated as

� � S0 þ e11 e21 e31½ �
u1

v1

w1

2
4

3
5þ �e11 � e21 � e31½ �

u0

v0

w0

2
4

3
5: ð14Þ

Also, the expression for l can then be simplified as

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

11 þ e2
21 þ e2

31

q
: ð15Þ

From Eqs. (2), (11) and (14),

dn ¼
S0

l
þ ½Ei�½Di� þ ½Gj�½Dj�; ð16Þ

where [Ei] and [Gj] are 1 � 12 matrices with components er and gr (r¼ 1–12) given

by

er ¼
1

l
e11t

i
1rðx1; y1; z1Þ þ e21t

i
2rðx1; y1; z1Þ þ e31t

i
3rðx1; y1; z1Þ

� �
;

gr ¼
�1

l
e11t

j
1rðx0; y0; z0Þ þ e21t

j
2rðx0; y0; z0Þ þ e31t

j
3rðx0; y0; z0Þ

� �
; ð17Þ

where t1r, t2r and t3r are the components of matrix [Ti] in Eq. (3).

Using the penalty method, a mathematical spring is placed between point P1

and the contact face P2P3 � � �P6 in the direction normal to the contact face. De-

noting the stiffness of the spring as pn, the potential energy of the normal spring is

given by

�n ¼
pn

2
dn

2 ¼ pn

2

�
S0

l
þ ½Ei�½Di� þ ½Gj�½Dj�

�2

: ð18Þ

In general, pn should be a large positive penalty number. This is to ensure the

deformation of the spring is much smaller than that of the block. If the value of

pn is large enough, the computational results practically will not depend on the value

of pn.
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Expanding the right side of Eq. (18) and minimising �n by taking derivatives, four

12 � 12 submatrices and two 12 � 1 submatrices are obtained and added to the

submatrices ½Kii�, ½Kij�, ½Kji�, ½Kjj�, ½Fi� and ½Fj�, respectively, in the global equilibrium

equation (Eq. (5)).

The derivatives of �n

krs ¼
@2�n

@dri@dsi
r; s ¼ 1�12

¼ pn

2

@2

@dri@dsi
½Di�T ½Ei�T ½Ei�½Di� ð19Þ

form a 12 � 12 submatrix which is added to the submatrix ½Kii� in Eq. (5):

pn½Ei�T ½Ei� ! ½Kii�: ð20Þ

The derivatives of �n

krs ¼
@2�n

@dri@dsj
r; s ¼ 1�12

¼ pn
@2

@dri@dsj
½Di�T ½Ei�T ½Gj�½Dj� ð21Þ

form a 12� 12 submatrix which is added to the submatrix ½Kij� in Eq. (5):

pn½Ei�T ½Gj� ! ½Kij�: ð22Þ

The derivatives of �n

krs ¼
@2�n

@drj@dsi
r; s ¼ 1�12

¼ pn
@2

@drj@dsi
½Dj�T ½Gj�T ½Ei�½Di� ð23Þ

form a 12� 12 submatrix which is added to the submatrix ½Kji� in Eq. (5):

pn½Gj�T ½Ei� ! ½Kji�: ð24Þ

The derivatives of �n

krs ¼
@2�n

@drj@dsj
r; s ¼ 1�12

¼ pn

2

@2

@drj@dsj
½Dj�T ½Gj�T ½Gj�½Dj� ð25Þ

form a 12� 12 submatrix which is added to the submatrix ½Kjj� in Eq. (5):

pn½Gj�T ½Gj� ! ½Kjj�: ð26Þ
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The derivatives of �n at 0

fri ¼ � @�nð0Þ
@dri

r ¼ 1�12 ð27Þ

form a 12� 1 submatrix which is added to the submatrix ½Fi� in Eq. (5):

� pnS0

l
½Ei�T ! ½Fi�: ð28Þ

The derivatives of �n at 0

frj ¼ � @�nð0Þ
@drj

r ¼ 1�12 ð29Þ

form a 12� 1 submatrix which is added to the submatrix ½Fj� in Eq. (5):

� pnS0

l
½Gj�T ! ½Fj�: ð30Þ

3.2 Shear Spring Submatrices

As shown in Fig. 2, points P1 and P0 move to P1
0 and P0

0, respectively, after the

displacement increments are applied. Let ~LL be the projection of the vector P0
0P1

0���!
on

the contact face P2
0P3

0 � � �P6
0. The magnitude of ~LL is given by

j~LLj ¼ ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jP0

0P1
0���!
j2 � dn

2

q
: ð31Þ

Assuming there is a shear spring between points P1 and P0 in a direction parallel

to~LL and letting ps be the stiffness of the shear spring, the potential energy of the shear

spring is given by

�s ¼
ps

2
ds

2 ¼ ps

2
ðjP1

0P0
0���!
j2 � dn

2Þ

¼ ps

2
x1 þ u1 � x0 � u0 y1 þ v1 � y0 � v0 z1 þ w1 � z0 � w0½ �

�
x1 þ u1 � x0 � u0

y1 þ v1 � y0 � v0

z1 þ w1 � z0 � w0

2
64

3
75� ps

2
d2
n: ð32Þ

From Eqs. (2), (18) and (32),

�s ¼
ps

2
ð½ x1 � x0 y1 � y0 z1 � z0 � þ ½Di�T ½Ti�T � ½Dj�T ½Tj�TÞ

�
x1 � x0

y1 � y0

z1 � z0

2
64

3
75þ ½Ti�½Di� � ½Tj�½Dj�

0
B@

1
CA� ps

2

S0

l
þ ½Ei�½Di� þ ½Gj�½Dj�

� �2

: ð33Þ

In general, ps should be a large positive penalty number. If the value of ps is large

enough, the computational results practically will not depend on the value of ps.

Expanding the right side of Eq. (33) and minimising �s by taking derivatives,

four 12� 12 submatrices and two 12� 1 submatrices are obtained and added to the
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submatrices ½Kii�, ½Kij�, ½Kji�, ½Kjj�, ½Fi� and ½Fj�, respectively, in the global equilibrium

equation (Eq. (5)).

The derivatives of �s

krs ¼
@2�s

@dri@dsi
r; s ¼ 1�12

¼ ps

2

@2

@dri@dsi
ð½Di�T ½Ti�T ½Ti�½Di� � ½Di�T ½Ei�T ½Ei�½Di�Þ ð34Þ

form a 12� 12 submatrix which is added to the submatrix ½Kii� in Eq. (5):

ps½Ti�T ½Ti� � ps½Ei�T ½Ei� ! ½Kii�: ð35Þ

The derivatives of �s

krs ¼
@2�s

@dri@dsj
r; s ¼ 1�12

¼ ps
@2

@dri@dsj
ð�½Di�T ½Ti�T ½Tj�½Dj� � ½Di�T ½Ei�T ½Gj�½Dj�Þ ð36Þ

form a 12� 12 submatrix which is added to the submatrix ½Kij� in Eq. (5):

�ps½Ti�T ½Tj� � ps½Ei�T ½Gj� ! ½Kij�: ð37Þ

The derivatives of �s

krs ¼
@2�s

@drj@dsi
r; s ¼ 1�12

¼ ps
@2

@drj@dsi
ð�½Dj�T ½Tj�T ½Ti�½Di� � ½Dj�T ½Gj�T ½Ei�½Di�Þ ð38Þ

form a 12� 12 submatrix which is added to the submatrix ½Kji� in Eq. (5):

�ps½Tj�T ½Ti� � ps½Gj�T ½Ei� ! ½Kji�: ð39Þ

The derivatives of �s

krs ¼
@2�s

@drj@dsj
r; s ¼ 1�12

¼ ps

2

@2

@drj@dsj
ð½Dj�T ½Tj�T ½Tj�½Dj� � ½Dj�T ½Gj�T ½Gj�½Dj�Þ ð40Þ

form a 12� 12 submatrix which is added to the submatrix ½Kjj� in Eq. (5):

ps½Tj�T ½Tj� � ps½Gj�T ½Gj� ! ½Kjj�: ð41Þ
The derivatives of �s at 0

fri ¼ � @�sð0Þ
@dri

r ¼ 1�12 ð42Þ
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form a 12� 1 submatrix which is added to the submatrix ½Fi� in Eq. (5):

�ps½Ti�T
x1 � x0

y1 � y0

z1 � z0

2
4

3
5þ psS0

l
½Ei�T ! ½Fi�: ð43Þ

The derivatives of �s at 0

frj ¼ � @�sð0Þ
@drj

r ¼ 1�12 ð44Þ

form a 12� 1 submatrix which is added to the submatrix ½Fj� in Eq. (5):

ps½Tj�T
x1 � x0

y1 � y0

z1 � z0

2
4

3
5þ psS0

l
½Gj�T ! ½Fj�: ð45Þ

3.3 Frictional Force Submatrices

For the 3D contact problem, sliding at the contact point may occur in any direction

parallel to the contact face. We propose an iterative procedure for determining the

frictional force and the sliding direction. For the point-to-face contact shown in Fig. 2,

the point, or vertex, P1 is on block i and its projection P0 is on block j. When the state

of the point-to-face contact is sliding, a pair of equal and opposite frictional forces

parallel to the sliding direction is applied, one at the point P1 and one at the point P0

on the face. The magnitude and directions of the frictional forces are obtained from

the previous iteration. The frictional force magnitude F is calculated from the normal

contact compressive force from the previous iteration:

F ¼ pnjdn0j tan� ð46Þ

where pn is the normal spring stiffness; dn
0 is the normal penetration distance after the

previous iteration; and � is the friction angle.

Let P0
� and P1

� be the vertices P0 and P1, respectively, after the previous iteration.

The direction of the frictional force acting at P0 is assumed to be in the direction of

~LL1, which is the projection of the vector P0
�P1

�����!
on the undeformed contact face

P2P3 � � �P6, and the direction of the frictional force acting at P1 is assumed to be

opposite to that of ~LL1. Now, let n0
!

be the unit vector pointing out of the block that is

normal to the undeformed contact face P2P3 � � �P6 and ðui0; vi0;wi
0Þ, i ¼ 0�1, be the

displacement increments of points Piði ¼ 0�1Þ, respectively, from the previous itera-

tion. Then

P0
�P1

�����!
¼ ½ðx1 þ u1

0 � x0 � u0
0Þ ðy1 þ v1

0 � y0 � v0
0Þ ðz1 þw1

0 � z0 �w0
0Þ� ð47Þ

and

n0
!

¼ 1

l
½ e11 e21 e31 �: ð48Þ

Therefore,

~LL1 ¼ ½ d e f � ¼ P0
�P1

�����!
� ðP0

�P1
�����!
� n0
!
Þn0
!

ð49Þ
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Then, the potential energy of the pair of frictional forces is given by

�f ¼
F

j~LL1j
½ u1 � u0 v1 � v0 w1 � w0 �½ d e f �T

¼ Fð½Di�T ½M� � ½Dj�T ½N�Þ; ð50Þ

where

½M� ¼ 1

j~LL1j
½Tiðx1; y1; z1Þ�T ½ d e f �T ;

and

½N� ¼ 1

j~LL1j
½Tjðx0; y0; z0Þ�T ½ d e f �T :

The relevant derivatives of �f with respect to dri and drj at 0

fri ¼ � @�f ð0Þ
@dri

¼ �F
@

@dri
½Di�T ½M� r ¼ 1�12 ð51Þ

and

frj ¼ � @�f ð0Þ
@drj

¼ F
@

@drj
½Dj�T ½N� r ¼ 1�12 ð52Þ

form two 12� 1 submatrices which are added to the submatrices ½Fi� and ½Fj�, respec-

tively, in the global equilibrium equation (Eq. (5)):

�F½M� ! ½Fi� and F½N� ! ½Fj�: ð53Þ
After an iteration, the frictional force magnitude and directions are updated

according to the results of the iteration.

3.4 ‘‘Open-Close’’ Iteration

Within each time step, the global system of equilibrium equations (Eq. (5)) are solved

repeatedly while selecting the types, locations and states of contacts. The procedure of

adding and removing stiff springs depending on the changes in contact states is known

as ‘‘open-close’’ iteration (Shi, 1988).

For each point-to-face contact, there are three possible states: open, sliding and

locked. At an open contact, no springs or frictional forces are applied. At a sliding

contact, a normal spring and a pair of frictional forces are applied. At a locked contact,

a normal spring and a shear spring are applied. Within a time step, iterations are

required to obtain a set of converged contact conditions for the block system, and

the state of a contact may change from iteration to iteration. For the open-close

iteration algorithm developed for 3D DDA, the criteria for changing from one contact

state before an iteration to another state after an iteration are given in Table 1. Once

the contact state is determined after an iteration, operations given in Table 2 are

performed for different changes in the contact state. Through these operations the

open-close iteration should eventually give a set of converged contact conditions for a

given block system, with no large penetrations at closed contacts and no tensions in
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normal springs. Convergence is reached when each of the contact states and sliding

directions remains the same after an iteration, within set tolerances.

As an illustrative test of the open-close iteration algorithm developed for 3D DDA,

a three-block system as shown in Fig. 3a is considered. All three blocks are cubes,

with the fixed bottom block having dimensions of 5 m� 5 m� 5 m and the top two

blocks having dimensions of 2 m� 2 m� 2 m. The middle block is subjected to two

horizontal forces F1 and F2. F1 acts in the positive x-direction at the centre of a face

parallel to the y� z plane, and F2 acts in the positive y-direction at the centre of a face

parallel to the x� z plane. The material constants for the three blocks are: Young’s

modulus E ¼ 10 MPa, Poisson’s ratio � ¼ 0:3, and unit weight � ¼ 14 kN=m3.

The interface properties are: friction angle � ¼ 30�, cohesion c ¼ 0, normal spring

stiffness pn ¼ 500 kN=mm, and shear spring stiffness ps ¼ 200 kN=mm. Two different

analyses are carried out with different magnitudes of the two horizontal forces F1 and

F2. For each analysis, the 2 face-to-face contacts between the blocks are converted to

8 point-to-face contacts as shown in Fig. 3a, and the initial contact states of all point-

to-face contacts are assumed to be locked. When F1 ¼ F2 ¼ 20 kN, the top two blocks

Table 1. Criteria for contact state changes

After
iteration

Open Sliding Locked

Before
iteration

Open dn > 0 dn < 0 and psjdsj> pnjdnj tan� dn < 0 and psjdsj � pnjdnj tan�
Sliding dn > 0 dn < 0 and ~FF �~LL< 0 dn < 0 and ~FF �~LL 	 0
Locked dn > 0 dn < 0 and psjdsj> pnjdnj tan� dn < 0 and psjdsj � pnjdnj tan�

Notes:
1. dn is the normal penetration distance calculated after the iteration; dn > 0 indicates an open contact.
2. ds is the displacement of the contact point parallel to the contact face calculated after the iteration.
3. pn is the normal spring stiffness, and ps is the shear spring stiffness.
4. � is the friction angle.
5. ~LL is the projection of P0

0P1
0���!

on the contact face determined after the iteration (see Fig. 2).
6. ~FF is the frictional force vector acting at the contact point P1 (see Fig. 2), determined after the
previous iteration.

Table 2. Operations for different contact state changes

After
iteration

Open Sliding Locked

Before
iteration

Open none add normal spring
and frictional forces

add normal and
shear springs

Sliding remove normal
spring and
frictional forces

none add shear spring
and remove
frictional forces

Locked remove normal and
shear springs

remove shear spring
and add frictional forces

none
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are stationary. After one iteration within the first time step, the states of all 8 point-to-

face contacts remain locked and therefore convergence is reached. When F1 ¼
F2 ¼ 200 kN, although the same initial contact states are assumed, all the contact

states converge to sliding after 5 iterations within the first time step. Table 3 gives

details of the iterations within the first time step for the point-to-face contact A shown

in Fig. 3a. It shows how the criteria in Table 1 and operations in Table 2 are used to

Fig. 3. a Initial configuration of three-block system. b Configuration of three-block system after 400 time
steps. Point-to-face contact

Table 3. Open-close iterations for point-to-face contact A within the first time step

Iteration dn
(mm)

ds
(mm)

F
(kN)

~LL Contact state
before iteration

Contact state
after iteration

1 � 0.00286 0.441 0 ½ 0:311 0:312 0 � locked sliding
2 � 0.03004 12.845 0.83 ½ 9:068 9:096 0 � sliding sliding
3 0.02003 7.432 8.67 ½ 5:277 5:233 0 � sliding open
4 � 0.07000 11.387 0 ½ 8:046 8:058 0 � open sliding
5 � 0.00667 9.767 20.2 ½ 6:916 6:896 0 � sliding sliding

Notes:
1. dn is the normal penetration distance calculated after the iteration; dn > 0 indicates an open contact.
2. ds is the displacement of the contact point parallel to the contact face calculated after the iteration.
3. The normal spring stiffness, pn, is 500 kN=mm; and the shear spring stiffness, ps, is 200 kN=mm.

4. ~LL is the projection of P0
0P1

0���!
on the contact face determined after the iteration (see Fig. 2).

5. F is the frictional force magnitude calculated from the normal penetration distance obtained after
the previous iteration.
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arrive at the converged contact state and sliding direction for this particular point-to-

face contact. Figure 3b shows the configuration of the three-block system after some

relative sliding of the blocks at the end of time step 400.

The efficiency of the open-close iteration algorithm is demonstrated by some

test cases given in the next section. In each of these cases, usually fewer than

several iterations are required to obtain convergence of the solution within a time

step. As the solution is obtained by simply adding contact submatrices to the global

stiffness and force matrices or subtracting contact submatrices from them, the number

of equations is not increased, leading to high efficiency in solving the equilibrium

equations.

4. Test Cases

The point-to-face contact model is implemented into a 3D DDA program. To validate

the model, five test cases are solved using the program and the solutions in two cases

compared with analytical solutions.

4.1 Case 1: Block Sliding on Inclined Plane

As shown in Fig. 4a, this case involves a single block sliding down an inclined

plane. When the friction angle � is less than the slope angle �, the block accel-

erates down the slope. For a block initially at rest under the acceleration due to

gravity g, the analytical solution for its displacement S as a function of time t is given

by:

S ¼ 1

2
at2 ¼ 1

2
ðg sin�� g cos� tan�Þt2: ð54Þ

Figure 4b shows the results computed by 3D DDA at the end of 100 time steps.

Figure 4c shows the plots of the analytical solutions compared to the 3D DDA results

for a plane inclined at 33�, for three different values of the friction angle � of 0, 10�

and 20�. This figure shows that the analytical solutions agree well with the results

computed by 3D DDA.

4.2 Case 2: Wedge Failure

As shown in Fig. 5a, this case involves a symmetrical wedge sliding on two inter-

secting frictionless planes. Let � be the dip of the line of intersection of the two

planes. The sliding distance S along the intersection line as a function of time t is

given by:

S ¼ 1

2
g sin� t2: ð55Þ

Figure 5b shows the results computed by 3D DDA at the end of time step 50 for

� ¼ 60�. Figure 5c shows the plots of the analytical solutions and 3D DDA results for

three different values of the dip angle � of 30�, 45� and 60�. This figure shows that the

3D DDA results agree well with the analytical solutions.
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Consider another symmetrical wedge resting on two intersecting planes, each

having a friction angle of 20� and with the intersection line dipping at 30�, as shown

in Fig. 6a. Fig. 6b shows the results computed by 3D DDA at the end of time steps 50

and 120. As shown in this figure, after the wedge has slid for a certain distance,

Fig. 4a–c. Case 1: a Block sliding on inclined plane; b 3D DDA results; c comparison between 3D DDA
results and analytical solutions
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toppling of the block occurs. This case shows that the implemented point-to-face

contact model for 3D DDA can handle general modes of wedge failure including

simultaneous sliding and rotation.

4.3 Case 3: Rock Fall

As shown in Fig. 7a, this case involves a rock fall in which both angular acceleration

and rigid block rotation are considered. The slope angle and friction angle are 45� and

35� respectively. The block falls freely initially and then bounces down the slope.

Figure 7b shows the trajectory of the block computed by 3D DDA. It can also be seen

Fig. 5a–c. Case 2: a Wedge failure (on frictionless planes); b 3D DDA results; c comparison between 3D
DDA results and analytical solutions
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Fig. 6a, b. Case 2: a Wedge failure (friction angle¼ 20�); b 3D DDA results showing simultaneous sliding
and rotation

Fig. 7a, b. Case 3: a Rock fall; b trajectory of block computed by 3D DDA
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from this figure that the use of the linear displacement function with post-correction

effectively eliminates the block expansion due to rigid body rotation.

4.4 Case 4: Underground Opening

As shown in Fig. 8a, a model of an underground opening consisting of rock blocks is

subjected only to the self-weights of the blocks. The boundary conditions are that the

boundaries perpendicular to the y- and z-axes (y ¼ 0, 5 m and z ¼ 0, 5 m) are fixed,

and the boundaries perpendicular to the x-axis (x ¼ 0, 6 mÞ are free. The material

constants for all the blocks are: Young’s modulus E ¼ 2 MPa, Poisson’s ratio

� ¼ 0:25, friction angle � ¼ 30� and cohesion c ¼ 0. Fig. 8b shows the large move-

ments computed by 3D DDA of unstable blocks above the roof and in the sidewalls of

the opening.

Fig. 8a, b. Case 4: a Underground opening; b 3D DDA results
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4.5 Case 5: Jointed Rock Slope

As shown in Fig. 9a, this case involves a jointed rock slope consisting of 100 blocks.

The bottom boundary and the boundary behind the slope are fixed in their respective

normal directions, and the other boundaries are free. The material constants for all the

blocks are: Young’s modulus E ¼ 170 MPa, Poisson’s ratio � ¼ 0:25, friction angle

� ¼ 15� and cohesion c ¼ 0. The blocks are acted on by their self-weights only.

Figure 9b shows the results computed by 3D DDA at the end of time step 100. The

progressive failure and discontinuous deformations of the slope, such as the opening

of block interfaces and the sliding of blocks, can be clearly seen from the output

graphics. It would be difficult to simulate this deformation mode by conventional FEM

or other continuum-based numerical methods. This test case demonstrates the effec-

tiveness and capability of the proposed model for complicated problems involving

jointed rocks.

5. Conclusions

Discontinuous rock mass behaviour is highly directional in nature and is therefore

controlled mainly by the orientations of the discontinuities in the rock mass. As a

result, 2D analysis of most practical engineering problems involving discontinuous

rocks can only be approximate. For these problems, 3D, instead of 2D, DDA would be

more appropriate. This paper describes the basic principles of 3D DDA. As in 2D

DDA, a linear displacement function is used implying constant stresses and strains

throughout a block, and the equilibrium equations are established by minimizing the

total potential energy.

A contact theory governing the discontinuous contacts between arbitrarily shaped

polyhedral blocks is an important part of 3D DDA. In this paper, a point-to-face

contact model, which forms a part of the contact theory, is presented, and the related

contact formulas, including those for the normal spring, shear spring and the frictional

Fig. 9a, b. Case 5: a Jointed rock slope; b 3D DDA results
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force submatrices are derived in detail, using vector analysis and the penalty method.

It can be seen that the contact submatrices are relatively simple and can readily be

implemented into a computer code. The number of governing equations is not

increased because of the contacts, and the solution can be obtained simply by adding

contact submatrices to the stiffness and force matrices or by subtracting contact

submatrices from them. Also given is the open-close iteration algorithm developed

for 3D DDA, including the open-close iteration criteria and operations performed for

different changes in contact state. This algorithm is shown to be efficient.

Five test cases are given to show the validity of the point-to-face contact model. In

all 5 cases, the 3D DDA results obtained are reasonable. In 2 cases, the 3D DDA

results agree well with analytical solutions.
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