УДК 550.40

ВОЗРАСТ И ГЕОДИНАМИЧЕСКАЯ ПОЗИЦИЯ ПЕРИДОТИТ-ПИРОКСЕНИТ-АНОРТОЗИТ-ГАББРОВОГО МАЖАЛЫКСКОГО КОМПЛЕКСА, ВОСТОЧНАЯ ТУВА

© 2004 г. Е. Б. Сальникова*, В. П. Ковач*, И. К. Козаков*, Ч. К. Ойдуп**, А. А. Монгуш**, С. З. Яковлева*, А. М. Федосеенко*

*Институт геологии и геохронологии докембрия РАН 199034 Санкт-Петербург, наб. Макарова, 2, Россия; e-mail: ivan@ik4843.spb.edu **Тувинский институт комплексного освоения природных ресурсов СО РАН 667007 Кызыл, ул. Интернациональная, 117а, Россия

Поступила в редакцию 30.04.2004 г.

В раннекаледонской области мозаичного строения Центральной Азии широко распространены породы перидотит-пироксенит-анортозит-габбровой интрузивной ассоциации мажалыкского комплекса. Ранее породы этой ассоциации рассматривались в составе актовракского комплекса раннего кембрия или относились к ранней фазе габбро-диорит-плагиогранитного таннуольского комплекса. В Восточной Туве типовые образования представлены в Мажалыкском массиве. Среди пород массива преобладают верлиты, оливиновое габбро, габбро, клинопироксениты, габбро-нориты, габбро-анортозиты. U-Pb геохронологические исследования были проведены для цирконов габбро-анортозитов. Установленное конкордантное значение возраста кристаллизации расплавов мажалыкского комплекса 478 ± 1.4 млн. лет. Для пород Мажалыкского массива характерно фракционированное распределение редких элементов с обогащением LIL-элементами, отчетливо выраженные отрицательные аномалии Nb-Ta, Zr-Hf и Ti, обогащение легкими и обеднение тяжелыми РЗЭ, что типично для островодужных базит-ультрабазитовых комплексов. Породы массива имеют положительные, но более низкие, чем в деплетированной мантии, величины $\varepsilon_{Nd}(T)$ от +4.8 до +5.7, что также характерно для пород островодужных комплексов. В то же время, судя по геологическому и возрастному положению пород Мажалыкского массива и комплекса в целом, их образование не могло быть связано со становлением офиолитовых и островодужных комплексов венда. Геохимическое сходство с островодужными образованиями может быть обусловлено вовлечением в процессы плавления метасоматизированного надсубдукционного мантийного клина. Выполненные геохронологические, геохимические и изотопные исследования свидетельствуют о том, что образования мажалыкского комплекса по своей геодинамической позиции могут рассматриваться как постколлизионные, внутриплитные, и их формирование было связано с существованием мантийного плюмового источника.

В раннекаледонской области мозаичного строения Центральной Азии широко распространены породы перидотит-пироксенит-анортозит-габбровой интрузивной ассоциации. В Восточной Туве такие образования представлены в Мажалыкском массиве, а их аналоги рассматриваются в составе одноименного комплекса (рис. 1). До сих пор проблема возраста и геодинамической позиции этого комплекса не имеет однозначного решения. Так, породы ультрабазит-базитовой ассоциации рассматривались в составе актовракского комплекса раннего кембрия или относились к ранней фазе габбро-диорит-плагиогранитного таннуольского комплекса (Геология СССР..., 1966). Позднее массив был включен в состав самостоятельной дотаннуольской перидотит-пироксенит-габбро-норитовой формации (Поляков и др., 1984). Исходя из существовавших представлений о позднекембрийском возрасте таннуольского комплекса, породы мажалыкского комплекса были отнесены к раннему кембрию (Геологическая карта..., 1983). Однако полученные данные о средне-позднеордовикском возрасте тоналитов таннуольского комплекса 451 ± 6 и $457 \pm$ ±3 млн. лет (Козаков и др., 2001) значительно расширили возможный временной интервал становления мажалыкского комплекса, что, в свою очередь, не позволяет определить его геодинамическую позицию. Следует подчеркнуть, что массивы мажалыкского комплекса локализованы как среди островодужных и офиолитовых комплексов каледонид, так и в пределах континентальных массивов (Поляков и др., 1984) (рис. 1). При этом становление аккреционной структуры региона в целом завершилось в позднем кембрии

94°59′ в.д.

Рис. 1. Схема расположения раннепалеозойских ультрамафит-мафитовых массивов в Восточной Туве с использованием (Геологическая карта..., 1983; Поляков и др., 1984).

1 – мезозойские наложенные впадины; 2 – герциниды Тувинской межгорной впадины; 3 – каледониды Хемчикско-Сыстыгхемского краевого прогиба; 4–5 – структурно-формационные зоны (подзоны) салаирид: 4 – островодужная Таннуольско-Хамсаринская (I – Хамсаринская; II – Улугойская, III – Восточно-Таннуольская IV – Бурен-Ондумская, V – Балгазикская); офиолитовые (VI – Каахемская; VII – Агардагская; VIII – Шишхидская), 5 – Тувино-Монгольский массив; 6 – положение массивов мажалыкского комплекса (вне масштаба): *I* – Мажалыкский, *2* – Калбакдагский, *3* – Караосский, *4* – Тапсинский, *5* – Брунганский, *6* – Элигхольский, *7* – Пограничный, *8* – Ханчарский, *9* – Одинокий; 7 – границы структурных зон (а), разломы (б); 8 – положение точки опробования.

На врезке - схема геологического строения Мажалыкского массива с использованием (Егорова, 2002).

1 – рыхлые отложения; 2 – ороговикованные вулканогенно-осадочные породы нижнего кембрия; 3 – среднепалеозойские граниты; 4 – габброиды зоны эндоконтакта (а), оливиновые габбро, троктолиты, клинопироксениты расслоеного комплекса (б); 5 – верлиты, плагиоверлиты; 6 – разрывные нарушения; 7 – точка опробования; 8 – высотные отметки.

в интервале около 500-520 млн. лет (Козаков и др., 2001, 2002).

Таким образом, получение надежных геохронологических и изотопных данных является одним из основных условий выявления геодинамической позиции мажалыкского комплекса в раннекаледонской аккреционной области Центральной Азии.

Собственно Мажалыкский массив расположен в 80 км к югу от г. Кызыла. Общие размеры вскрытой части массива составляют около 1 км². Массив интрудирован гранитами таннуольского

№ п/п	Размер фракции, µm, ее характеристика	Навеска, мг	Содержание, мкг/г		Изотопные отношения		
			Pb	U	²⁰⁶ Pb/ ²⁰⁴ Pb ^a	²⁰⁷ Pb/ ²⁰⁶ Pb ^a	²⁰⁸ Pb/ ²⁰⁶ Pb ^a
1	>85	0.80	12.9	131	239	0.0566 ± 1	0.1279 ± 1
2	>85, A = 30%*	1.48	4.03	48.4	927	0.0566 ± 1	0.1436 ± 1
№ п/п	Размер фракции, µm, ее характеристика	Изотопные отношения		Pho	Возраст, млн. лет по отношениям		
		²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	KIIO	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²⁰⁶ Pb
1	>85	0.5989 ± 13	0.0767 ± 2	0.59	477 ± 1	476 ± 1	478 ± 4
2	>85, A = 30%*	0.6030 ± 18	0.0773 ± 2	0.51	479 ± 1	480 ± 1	477 ± 5

Таблица 1. Результаты U-Pb изотопных исследований цирконов (проба 5895-22)

Примечание. Химическое разложение цирконов и выделение U и Pb выполнялось по модифицированной методике T.E. Кроу (Krogh, 1973). Изотопный анализ выполнен на многоколлекторном масс-спектрометре Finnigan MAT-261. Точность определения U/Pb отношений составила 0.5%. Холостое загрязнение не превышало 0.1 нг Pb и 0.005 нг U. Аэроабразивная обработка циркона проводилась по методике T.E. Кроу (Krogh, 1982). Обработка экспериментальных данных проводилась по программам PbDAT (Ludwig, 1991) и ISOPLOT (Ludwig, 1999). При расчете возрастов использованы общепринятые значения констант распада урана (Stacey, Kramers, 1975). Поправки на обычный свинец введены в соответствии с модельными величинами (Steiger, 1976). Все оцибки привелены на уровне 26

(Steiger, Jager, 1976). Все ошибки приведены на уровне 2σ. ^а Изотопные отношения, скорректированные на бланк и обычный свинец; величины ошибок соответствуют последним значащим цифрам после запятой.

*А = 30% – количество вещества, удаленного в процессе аэроабразивной обработки циркона.

комплекса (рис. 1, врезка). В восточной части массива установлен интрузивный контакт с вмещающими нижнекембрийскими вулканогенноосадочными образованиями, где развиты высокотемпературные роговики и зоны приконтактового плавления (Егорова, 2002). Среди пород масси-

Рис. 2. Диаграмма с конкордией для пробы 5895-22.

ВОЗРАСТ И ГЕОДИНАМИЧЕСКАЯ ПОЗИЦИЯ

Элементы и их отношения	5895-6	5895-10	5895-13	5895-16	5895-20	5895-22
Cs	0.07	0.08	0.08	0.04	0.04	0.22
Rb	0.77	0.94	0.85	0.25	0.25	8.33
Sr	204	496	181	100	181	738
Ba	21	36	22	13	17	115
Y	5.2	4.1	5.8	2.2	4.6	3.6
Zr	9.5	5.4	10.2	3.6	6.4	13.0
Hf	0.37	0.16	0.43	0.12	0.16	0.43
Nb	0.21	0.06	0.26	0.07	0.04	0.37
Та	0.02	0.01	0.01	0.01	0.01	0.04
U	0.07	0.04	0.13	0.03	0.02	0.06
Th	0.07	0.05	0.13	0.04	0.04	0.39
Pb	0.63	1.88	1.21	0.96	1.33	1.00
La	3.37	1.45	1.56	1.31	1.29	2.71
Ce	8.43	3.51	4.31	3.01	3.44	5.89
Pr	1.00	0.52	0.62	0.36	0.53	0.69
Nd	3.49	2.08	3.42	1.54	2.61	3.33
Sm	1.04	0.89	1.09	0.37	0.89	0.69
Eu	0.38	0.37	0.35	0.14	0.29	0.30
Gd	1.09	0.94	1.17	0.49	0.89	0.82
Tb	0.16	0.17	0.19	0.07	0.17	0.13
Dy	1.13	0.83	1.17	0.46	0.86	0.71
Но	0.25	0.19	0.23	0.10	0.18	0.14
Er	0.65	0.52	0.67	0.25	0.49	0.37
Tm	0.09	0.08	0.09	0.05	0.07	0.06
Yb	0.44	0.41	0.54	0.31	0.47	0.36
Lu	0.07	0.06	0.07	0.05	0.06	0.05
Sc	42	25	42	14	26	12
Ti	1216	1092	1295	475	943	743
V	70	107	91	7.3	37	13
Cr	677	110	514	529	581	354
Co	63	44	59	83	96	11
Ni	322	104	298	693	399	51
Cu	104	148	99	1.9	6.3	12
Zn	39	41	43	51	75	3.6
Ga	5.7	11	5.7	3.0	4.4	10
La/Yb	5.15	2.39	1.96	2.82	1.84	5.11
La/Sm	2.04	1.02	0.90	2.24	0.91	2.47
Gd/Yb	1.99	1.86	1.75	1.25	1.52	1.85
Eu/Eu*	1.09	1.23	0.94	1.02	0.98	1.20
La/Nb	16.2	22.7	5.9	18.4	34.0	7.3

Таблица 2. Содержания редких элементов (мкг/г) в породах Мажалыкского массива, Восточный Танну-Ола, Тува

Примечание. Образцы: 5895-6 – оливиновое габбро; 5895-10, 5895-13 – оливиновый пироксенит; 5895-16 – перидотит; 5895-20 – верлит; 5895-22 – габбро-анортозит.

ПЕТРОЛОГИЯ том 12 № 6 2004

Рис. 3. Нормализованное к примитивной мантии распределение редких элементов в породах Мажалыкского массива.

ва преобладают верлиты, оливиновое габбро, габбро, троктолиты, в подчиненном количестве находятся дуниты, гарцбургиты, плагиоверлиты, оливиновые клинопироксениты, клинопироксениты, габбро-нориты, габбро-анортозиты. Последние, послужившие объектом U-Pb геохронологических исследований, слагают маломощные жилы неправильной формы, пересекающие расслоенный комплекс.

Циркон в пробе габбро-анортозитов¹ представлен субидиоморфными прозрачными, реже полупрозрачными бесцветными кристаллами овальной и короткопризматической формы цирконового габитуса. Поверхность граней ровная, блестящая. Для внутреннего строения зерен характерно присутствие "тонкой" магматической зональности, пылевидных твердофазных и газово-жидких включений. В отдельных полупрозрачных кристаллах наблюдаются частично метамиктизированные ядра с растворенными поверхностями. Размер кристаллов не превышает 100 µm, $K_{yдл} = 1.5-2.0$.

Для проведения U-Pb изотопных исследований из размерной фракций >85 μ m были отобраны две навески наиболее прозрачных зерен циркона, причем циркон одной из навесок был подвергнут предварительной аэроабразивной обработке. Точки изотопного состава исследованного циркона располагаются на конкордии (табл. 1, рис. 2), а конкордантное значение его возраста составляет 478 ± 1.4 млн. лет (СКВО конкордантности – 0.04, вероятность конкордантности – 0.84) и может быть использовано в качестве наиболее точной оценки времени кристаллизации расплавов мажалыкского комплекса.

Для пород Мажалыкского массива характерно фракционированное распределение редких элементов (табл. 2, рис. 3) с обогащением LIL-элементами, отчетливо выраженные отрицательные аномалии Nb-Ta, Zr-Hf и Ti, обогащение легкими и обеднение тяжелыми РЗЭ (La_N/Yb_N = 1.9–5.9, Gd_N/Yb_N = 1.3–2.0, Eu/Eu* = 0.94–1.2), отношения La/Nb = 5.9–22.7, что типично для островодужных базит-ультрабазитовых комплексов.

Породы массива имеют положительные, но более низкие, чем в деплетированной мантии $(\epsilon_{Nd}(0.48) = +9.0)$, величины $\epsilon_{Nd}(T)$ от +4.8 до +5.7 (табл. 3), что также характерно для пород островодужных комплексов. Сходными геохимическими и изотопными характеристиками обладают габброиды Карашатской ($\epsilon_{Nd}(T) =$ от +5.6 до +7.1) и Тес-Хемской ($\varepsilon_{Nd}(T)$ = от +4.8 до +6.2) вендских (~570 млн. лет) офиолитовых островодужных зон Тувы (Pfander et al., 2002). В то же время, судя по геологическому и возрастному положению пород Мажалыкского массива и комплекса в целом, их образование не могло быть связано со становлением офиолитовых и островодужных комплексов. С другой стороны, становление мажалыкского комплекса оторвано от собственно коллизионной стадии не менее чем на 25-30 млн. лет (Козаков и др., 2001) и не может быть связано с механизмом slab-window. Таким образом, его геохимическое сходство с островодужными образованиями может быть обусловлено вовлечением в плавления метасоматизированного процессы надсубдукционного мантийного клина под влиянием плюмового источника.

ПЕТРОЛОГИЯ том 12 № 6 2004

 $^{^1}$ (Химический состав пробы 5895-22 в мас. %: SiO_2 - 48.15; TiO_2 - 0.18; Al_2O_3 - 24.54; Fe_2O_3 - 3.08; MgO - 4.17; CaO - 16.86; Na_2O - 1.64; K_2O - 0.58; P_2O_5 - 0.02.

ВОЗРАСТ И ГЕОДИНАМИЧЕСКАЯ ПОЗИЦИЯ

Номер образца	Sm, мкг/г	Nd, мкг/г	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd (±2σ _{изм})	$\epsilon_{\rm Nd}(0)$	$\epsilon_{Nd}(T)$	T _{Nd} (DM)
5895-6	1.06	3.34	0.1900	0.512911 ± 11	5.3	5.7	
5895-10	0.79	2.52	0.1892	0.512862 ± 8	4.4	4.8	
5895-20	0.85	2.71	0.1884	0.512887 ± 8	4.9	5.4	
5895-22	0.92	3.96	0.1390	0.512726 ± 8	1.7	5.2	867

Таблица 3. Sm-Nd изотопные данные для пород Мажалыкского массива, Восточный Танну-Ола, Тува

Примечание. Sm–Nd изотопные исследования выполнены в ИГГД РАН на масс-спектрометре Finnigan MAT-261 в статическом режиме. Уровень холостого опыта за время измерений составил 0.03–0.2 нг для Sm и 0.1–0.5 нг для Nd. Измеренные отношения ¹⁴³Nd/¹⁴⁴Nd нормализованы к отношению ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219 и приведены к отношению ¹⁴³Nd/¹⁴⁴Nd = 0.511860 в стандарте La Jolla. Точность определения концентраций Sm и Nd составила $\pm 0.5\%$ (2 σ), изотопных отношений ¹⁴⁷Sm/¹⁴⁴Nd = 0.511860 в стандарте La Jolla. Точность определения концентраций Sm и Nd составила $\pm 0.5\%$ (2 σ), изотопных отношений ¹⁴⁷Sm/¹⁴⁴Nd = $\pm 0.5\%$, ¹⁴³Nd/¹⁴⁴Nd – $\pm 0.005\%$. Средневзвешенное значение ¹⁴³Nd/¹⁴⁴Nd в стандарте La Jolla по результатам 13 измерений отвечает 0.511839 ± 7 (2 σ). При расчете величин ϵ_{Nd} и модельных возрастов T_{Nd} (DM) использованы современные значения CHUR по (Jacobsen, Wasserburg, 1984) (¹⁴³Nd/¹⁴⁴Nd = 0.512638, ¹⁴⁷Sm/¹⁴⁴Nd = 0.1967) и DM по (Goldstein, Jacobsen, 1988) (¹⁴³Nd/¹⁴⁴Nd = 0.513151, ¹⁴⁷Sm/¹⁴⁴Nd = 0.2136). Величины ϵ_{Nd} (T) рассчитаны на возраст 476 млн. лет.

Установленный возраст формирования Мажалыкского массива практически совпадает с возрастом постколлизионных гранитоидных комплексов Тувино-Монгольского массива и раннекаледонской аккреционной области в целом (около 480-465 млн. лет) (Козаков и др., 2001, 2003). В ходе ее становления фрагменты позднерифейского шельфа, микроконтинентов, а также разделявшие их островные дуги и задуговые бассейны дрейфовали в направлении сегмента поверхности земли, развивавшегося под воздействием Северо-Азиатского горячего поля мантии (Ярмолюк, Коваленко, 2003). Их столкновение с системой океанических островов произошло в интервале 520-500 млн. лет назад и привело к окончательному оформлению структуры каледонского композитного континента (Козаков и др., 2001, 2003). В ходе этой коллизии край континента перекрыл Алтае-Саянскую горячую точку мантии, положив начало продолжительной внутриплитной активности в своих пределах (Ярмолюк и др., 2003).

Таким образом, выполненные геохронологические и изотопные исследования свидетельствуют о том, что образования мажалыкского комплекса по своей геодинамической позиции могут рассматриваться как постколлизионные, внутриплитные, и их формирование связано с существованием мантийного плюмового источника.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проекты №№: 02-05-64208, 02-05-65093, 02-05-39019, 00-05-7211), НШ-615.2003.05, Программы фундаментальных исследований ОНЗ РАН № 7, 8 и Фонда содействия отечественной науке.

СПИСОК ЛИТЕРАТУРЫ

Геология СССР. Т. XXIX. Тувинская АССР. М.: Недра, 1966. Ч. 1. 459 с.

Геологическая карта Тувы масштаба 1 : 1500000. Л.: ВСЕГЕИ, 1983.

ПЕТРОЛОГИЯ том 12 № 6 2004

Егорова В.В. Минералогия и особенности кристаллизации пород мажалыкского перидотит-пироксенитанортозит-габбрового комплекса (юго-восточная Тува) // Петрология магматических и метаморфических комплексов. Материалы Всероссийской научной конференции. Томск. 2002. Вып. 3. Т. 1. С. 80–86.

Козаков И.К., Котов А.Б., Сальникова Е.Б. и др. Возрастные рубежи структурного развития метаморфических комплексов Тувино-Монгольского массива // Геотектоника. 2001. № 3. С. 22–43.

Козаков И.К., Сальникова Е.Б., Хаин Е.В. и др. Этапы и тектоническая обстановка формирования кристаллических комплексов ранних каледонид Озерной зоны Монголии: результаты U-Pb и Sm-Nd изотопных исследований // Геотектоника. 2002. № 2. С. 80–92.

Козаков И.К., Ковач В.П., Ярмолюк В.В. и др. Корообразующие процессы в геологическом развитии Тувино-Монгольского массива: Sm-Nd изотопные и геохимические данные по гранитоидам // Петрология. 2003. Т. 11. № 5. С. 491–512.

Поляков Г.В., Богнибов В.И., Изох А.Э. и др. Перидотит-пироксенит-габброноритовая формация Восточной Тувы и Северо-Западной Монголии / Плутонические формации Тувы и их рудоносность. Новосибирск: Наука, 1984. С. 4–57.

Ярмолюк В.В., Коваленко В.И., Ковач В.П. и др. Геодинамика формирования каледонид Центрально-Азиатского складчатого пояса // Докл. РАН. 2003. Т. 389. № 3. С. 354–359.

Ярмолюк В.В., Коваленко В.И. Глубинная геодинамика, мантийные плюмы и их роль в формировании Центрально-Азиатского складчатого пояса // Петрология. 2003. Т. 11. № 6. С. 556–586.

Goldstein S.J., Jacobsen S.B. Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution // Earth Planet. Sci. Lett. 1988. V. 87. P. 249–265.

Jacobsen S.B., Wasserburg G.J. Sm-Nd evolution of chondrites and achondrites // Earth Planet. Sci. Lett. 1984. V. 67. P. 137–150.

Krogh T.E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination // Geochim. Cosmochim. Acta. 1973. V. 37. P. 485–494.

Krogh T.E. Improved accuracy of U-Pb zircon by the creation of more concordant systems using an air abrasion technique // Geochim. Cosmochim. Acta. 1982. V. 46. P. 637–649.

Ludwig K.R. PbDat for MS-DOS, version 1.21 // U.S. Geol. Survey Open-File Rept. 88–542. 1991. 35 p.

Ludwig K.R. ISOPLOT. Ex.Version 2.06. A geochronological toolkit for Microsoft Excel // Berkley Geochronology Center Sp. Publ. 1999. № 1a. 49 p.

Pfander J.A., Jochum K.P., Kozakov I.K. et al. Coupled evolution of back-arc and island arc-like mafic crust in the late-

Neoproterozoic Agardag Tes-Chem ophiolite, Central Asia: evidence from trace element and Sr-Nd-Pb isotope data // Contrib. Mineral. Petrol. 2002. V. 143. P. 154–174.

Stacey J.S., Kramers I.D. Approximation of terrestrial lead isotope evolution by a two-stage model // Earth Planet. Sci. Lett. 1975. V. 26. № 2. P. 207–221.

Steiger R.H., Jager E. Subcomission of Geochronology: convention of the use of decay constants in geo- and cosmochronology // Earth Planet. Sci. Lett. 1976. V. 36. \mathbb{N} 2. P. 359–362.