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Abstract

Numerical studies of ductile deformations induced by salt movements have, until now, been restricted to two-dimensional

(2D) modelling of diapirism. This paper suggests a numerical approach to model the evolution of three-dimensional (3D) salt

structures toward increasing maturity. This approach is also used here to restore the evolution of salt structures through

successive earlier stages. The numerical methodology is applied to study several model examples. We analyse a model of salt

diapirs that develop from an initial random perturbation of the interface between salt and its overburden and restore the evolved

salt diapirs to their initial stages. We show that the average restoration errors are less than 1%. An evolutionary model of a 2D

salt wall loaded by a 2D pile of sediments predicts a decomposition of the salt wall into 3D diapiric structures when the

overburden of salt is supplied by 3D synkinematic wedge of sediments. We model salt extrusion feeding a gravity current over

the depositional surface and estimate an average rate of extrusion and horizontal velocity of salt spreading. Faulting of the

overburden to salt overhangs initiates new secondary diapirs, and we analyse the growth of these secondary diapirs. We also

study how lateral flow effects the evolution of salt diapirs. The shape of a salt diapir can be very different if the rate of

horizontal flow is much greater than the initial rate of diapiric growth solely due to gravity. We discuss the applicability of the

results of the models to the evolution of Late Permian salt structures in the Pricaspian basin (Russia and Kazakhstan). These

structures are distinguishable into a variety of styles representing different stages of growth: salt pillows, diapirs, giant salt

massifs, 2D diapiric walls and 3D stocks complicated by large overhangs. The different sizes, shapes and maturities of salt

structures in different parts of the Pricaspian basin reflect areal differences in salt thickness and loading history. Our results
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suggest that the numerical methodology can be employed to analyse the evolution of all salt structures that have upbuilt through

younger ductile overburdens.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Salt is so buoyant and weak compared to most

other rocks with which it is found that it develops

distinctive structures with a wide variety of shapes

and relationships with other rocks by various combi-

nations of gravity and lateral (tectonic) forces. The

crests of passive salt bodies can stay near the

sedimentation surface while their surroundings are

buried (downbuilt) by other sedimentary rocks (Jack-

son et al., 1994). The profiles of downbuilt passive

diapirs can simulate those of fir trees because they

reflect the ratio of increase in diapir height relative to

the rate of accumulation of the downbuilding sedi-

ments (Talbot, 1995) and lateral forces (Koyi, 1996).

Salt movements can be triggered by faulting and

driven by erosion and redeposition, differential load-

ing, buoyancy and other geological processes. Many

salt sequences are buried by overburdens sufficiently

stiff to resist the buoyancy of the salt. Such salt will

only be driven by differential loading into sharp-

crested reactive-diapiric walls after the stiff over-

burden is weakened and thinned by faults (Vendeville

and Jackson, 1992). Such reactive diapirs often rise up

and out of the fault zone and thereafter can continue

increasing in relief as by passive downbuilding of

more sediment. Active diapirs are those that lift or

displace their overburdens. Although any erosion of

the crests of salt structures and deposition of

surrounding overburden rocks influence their growth,

diapirs with significant relief have sufficient buoyancy

to rise (upbuild) through stiff overburdens (Jackson et

al., 1994). The rapid deposition of denser and more

viscous sediments over less dense and viscous salt

results in the Rayleigh–Taylor (RT) instability. This

leads to a gravity-driven single overturn of the salt

layer with its denser but ductile overburden. It has

been suggested that such actively upbuilt salt diapirs

are comparatively rare (Jackson, 1995) but they exist

(e.g., in the Great Kavir and the Pricaspian basin) and

it is these that we take as our subject here.
RT overturns (Ramberg, 1968) are characterised by

the rise of rocksalt through overlying and younger

compacting clastic sediments that are deformed as a

result. The consequent salt structures evolve through a

great variety of shapes. Perturbations of the interface

between salt and its denser overburden result in the

overburden subsiding as salt rises owing to the density

inversion.

Three principal approaches are used to treat salt

diapirism: (1) analytical modelling suitable for study-

ing the growth of small disturbances of a salt/

overburden interface; (2) physical (analogue) experi-

ments dynamically scaled to simulate deformation of

overburden due to salt movements; and (3) numerical

modelling of large deformations of sedimentary layers

containing salt structures.

The theory of gravitational (RT) instability of

layered media is well developed by Chandrasekhar

(1961), Biot and Odé (1965), and Ramberg (1968).

They studied the growth of small disturbances on

the interfaces between layers under various assump-

tions, such as variable viscosity and thickness of

layers, compaction of sediments, applied lateral

forces and others. Talbot and Jarvis (1984) used

analytical methods to study the shapes of salt diapirs

extruding onto the surface. Several analytical studies

have investigated the differences in growth rates

between the RT instability of a viscous layered

system and that of a system containing layers of

different rheology (Naimark and Ismail-Zadeh, 1989;

Conrad and Molnar, 1997; Ismail-Zadeh et al.,

2001a, 2002).

Analytical methods are suitable for studying initial

phases of growth of salt diapirs. However, such

methods are inappropriate for analysing later phases

of nonlinear diapiric growth. Physical experiments

provide tools for modelling the complicated shapes of

salt diapirs (e.g., Talbot, 1977, 1992; Talbot and

Jackson, 1987; Jackson et al., 1988; Koyi, 1997).

These experiments show qualitative features of

diapiric growth, because quantification is often
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limited by the practical difficulties in dynamic scaling

of the physical parameters of the models to nature.

Two-dimensional (2D) numerical models of salt

diapirism were first developed by Woidt (1978) who

examined how the viscosity ratio between the salt and

its overburden affects the shapes and growth rate of

diapirs. Schmeling (1987) demonstrated how the

dominant wavelength and the geometry of gravity

overturns are influenced by the initial shape of the

interface between the salt and its overburden. Römer

and Neugebauer (1991) presented numerical results of

modelling diapiric structures in amultilayeredmedium.

Later, Poliakov et al. (1993a) and Naimark et al. (1998)

developed numerical models of diapiric growth con-

sidering the effects of sedimentation and redistribution

of sediments. van Keken et al. (1993), Poliakov et al.

(1993b, 1996) and Daudré and Cloetingh (1994)

introduced nonlinear rheological properties of salt and

overburden into their numerical models.

Although the importance of three-dimensionality

in studies of salt diapirism is widely recognised

(e.g., Talbot et al., 1991), previous numerical

investigations of large-amplitude diapirs have been

limited to 2D studies. Two-dimensional analyses of

the evolution of salt structures are not suitable for

examining the complicated shapes of mature diapiric

patterns. Resolving the geometry of gravity over-

turns requires three-dimensional (3D) modelling.

Given the detail of natural examples revealed by

modern 3D seismic exploration, salt tectonics now

requires 3D modelling.

So far, only a few 3D numerical models of diapirs

have been developed (Ismail-Zadeh et al., 2000; Kaus

and Podladchikov, 2001). Ismail-Zadeh et al. (2000)

analysed such typical 3D structures as deep polygonal

buoyant ridges, shallow salt-stock canopies, and salt

walls. Kaus and Podladchikov (2001) showed how

complicated 3D diapirs developed from initial 2D

perturbations of the interface between salt and its

overburden.

The increasing application of 3D seismic explora-

tion in oil and gas prospecting points to the need for

vigorous efforts toward numerical modelling of the

evolution of salt structures in three dimensions both

forwards and backwards in time. Until now, most 2D

and 3D numerical models of salt diapirism involved

the forward evolution of salt structures toward

increasing maturity. To understand the history of
deformation in sedimentary basins due to sedimenta-

tion and salt diapirism, numerical tools are needed to

restore salt structure and hence basin evolution.

Recently, Ismail-Zadeh et al. (2001b) developed a

numerical approach to 2D dynamic restoration of

cross-section across salt structures. The approach was

based on solving the inverse problem of gravitational

advection. The same approach was used to model 3D

RT instability backwards in time (Kaus and Podlad-

chikov, 2001; Korotkii et al., 2002).

This paper studies the evolution of salt structures

both forward and backwards in time by means of 3D

numerical finite-element models. We consider the

following evolutionary models: (i) salt diapirs evolved

from an initially random perturbation of the interface

between salt and its overburden and a restoration of

the salt diapirs to their initial stages; (ii) a salt wall;

(iii) a salt extrusion with a gravity current over the

depositional surface; (iv) secondary diapirism; and (v)

a salt diapir subject to horizontal forces.

Section 2 presents the evolution of salt structures in

the Pricaspian basin. In Section 3, we formulate salt

diapirism as a mathematical problem, consider various

boundary conditions, and describe a numerical tech-

nique for forward and backward modeling of 3D slow

viscous flow of salt and its overburden. Section 4

presents results of 3D numerical models for the

evolution of salt structures. Section 5 discusses our

results and their applicability to study the evolution of

salt structures in the Pricaspian basin.
2. Salt structures of the Pricaspian Basin

The Pricaspian basin (Kazakhstan and Russia) is

situated on the southeastern portion of the East-

European platform at the northern end of the Caspian

Sea (see Fig. 1). The basin is approximately 600 km

across from west to east and is underlain by Late

Permian salt. The thickness of the sedimentary cover is

more than 20 km in the basin centre, and the volume of

sediments is up to 6�106 km3 or about 40% of the total

sediment volume on the East-European platform

(Volozh, 1991).

The basin infill is divided into three major

sedimentary sequences: subsalt strata, salt, and over-

burden of the salt. The subsalt sequence contains

Riphean through Lower Permian strata punctuated by



Fig. 1. Map of the Pricaspian basin showing (1) zones where the current salt structures have different shapes and (2) locations of the seismic

sections illustrated. Zones: pillows of Kungurian salt (R1), walls and domes where halokinesis involved both Kungurian and Kazanian salt (R2),

rollers, anticlines and turtlebacks of Kungurian salt (R3), walls and domes where halokinesis involved only Kungurian salt (R4), (A) the area of

salt diapirs by the end of the Permian and (B) the area complicated by salt overhangs (modified after Ismail-Zadeh et al., 2001b).
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unconformities. The subsalt sequence has a complex

depositional history dominated by carbonate reefs and

clastic fans. The salt sequence consists of Kungurian

(~260–258 Ma) salt overlain by Kazanian (~258–252

Ma) salt which reaches a thickness of 4.5 km in the

center of the basin (Fig. 1). The overburden of salt

consists predominantly of terrigenous Upper Permian

through Neogene strata. The overburden is divided

into three structural levels by gentle unconformities at

Upper Permian–Triassic, Jurassic–Miocene, and Plio-

cene–Quaternary (Volozh et al., 2003).

About 1800 structures in the Pricaspian basin are

attributed to movements of Permian salt. These

structures are distinguishable into a variety of
styles— distributed geographically (zones R1–R4 in

Fig. 1 and Table 1) representing different stages of

growth: salt pillows and immature salt structures (see

zone R1 in Fig. 1 and relevant seismic image in Fig.

2a), giant salt massifs (zone R2 in Figs. 1 and 2b), salt

rollers, anticlines, and turtlebacks (zone R3 in Figs. 1

and 2c), and 2D diapiric walls and 3D stocks (zone

R4A in Figs. 1 and 2d) complicated by extensive

overhangs (zone R4B in Figs. 1 and 2e).

Kungurian salt remains flat-lying on shelves

starved of clastic sediments along the northern and

western margins of the basin and were tilted shoreward

between down-to-basin faults along the narrow slopes

(zone R1, Fig. 1). The Kungurian salt was overlain by



Table 1

Summary of salt structures in the Pricaspian basin derived from Volozh et al. (2003)

Zones 11–R4 are identified in Fig. 1.
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Kazanian salt in the basin centre, where slow and

almost continuous deposition downbuilt an unusually

thick salt layer into huge massifs (zone R2, Fig. 1). In

marked contrast, salt walls and stocks were downbuilt

in Permian salt by clastic sediments derived from the

eastern and southeastern margins in Permian to

Triassic times (zone R3, Fig. 1). They were later

influenced by the development of the Ural orogen to

the east. Later, these early salt structures were starved,

as their deep source layer closed to a weld. (We

distinguish starved salt structures surrounded by welds

from those that still have the potential for growth

because their source layer has not been welded.)

Gravity (not lateral forces) was the dominant influence

on structures developing in the salt and its overburden

almost everywhere in the basin except, perhaps, the
eastern margin of the basin where lateral shortening

due to the Ural orogeny interacted with salt buoyancy.

Primary salt-withdrawal basins visible in the

Upper Permian–Triassic sediments (Fig. 2) indicate

early salt movements. Thereafter, zones of down-

building salt stocks migrated basinward from the

east, southeast and south margins of the basin in

front of a widening zone of starved salt walls. From

Triassic to Jurassic and, probably, Cretaceous times,

these zones were separated by another zone of salt

structures extruding Permian salt as domes with or

without overhanging allochthonous sheets. Some

extruded Permian salt may have been dissolved

and redeposited as autochthonous salt beds (zone

R4B in Fig. 2e). Salt extrusion continued during a 35

My long hiatus in deposition from near end-Triassic
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to Middle Jurassic. This extrusion starved a large

number of basin-marginal salt structures by with-

drawing salt from their deep source layer.
Fig. 2. (a–e) Seismic sections illustrating typical structures in salt across zo

is a depth-converted section with salt related structures. The oil field in zon

in these sections: Lower Permian (P1), Kungurian (P1kg), Upper Permian (P

(P2–T1), Triassic (T), Lower to Middle Triassic (T1–2), Upper Triassic (T3),

Upper Cretaceous (K2), Paleogene (Pl), Neogene to Quaternary (N–Q) (m
Subsequent deposition of shallow water Jurassic

sediments was sufficiently rapid to unconformably

bury the Upper Permian–Triassic sequence deformed
nes R1–R4 (see Fig. 1 for locations). Panel below seismic profile (c)

e R4B is trapped by a sheet of allochthonous salt extruded. Notations

2), Kazanian (P2kz), Tatarian (P2t), Upper Permian to Lower Triassic

Jurassic (J), Middle to Upper Jurassic (J2–3), Lower Cretaceous (K1),

odified after Volozh et al., 2003).



Fig. 2 (continued).
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by salt structures, many of which had already reached

the surface. But not all the deep salt supplying more

basinward Permian–Triassic salt structures had been

squeezed to the surface and many still-potent salt

structures were reactivated by resumption of burial in

the Middle Jurassic.
A pattern of polygonal graben, pointing to 5%

isotropic lateral extension, connects preexisting salt

structures throughout most of the basin. Volozh et

al. (2003) attributed the initiation of this graben

system to Early Jurassic (Cimmerian) uplift due to

closure of the Palaeo–Tethys. There is no inde-



A. Ismail-Zadeh et al. / Tectonophysics 387 (2004) 81–10388
pendent evidence for either lateral extension of the

Pricaspian region or uplift of the magnitude that

could account for this isotropic extension (Volozh

et al., 2003). Even an uplift of 2 km would result

in less than 0.1% lateral extension (Price, 1966).

Hence, Volozh et al. (2003) assumed that about

5% isotropic lateral shortening occurred across the

polygonal normal faults and attributed this defor-

mation to gravity having reactivated large salt

structures that still had the potential for growth in

smaller structures when they were buried further.

Although many salt structures continued to rise,

particularly near the centre of the Pricaspian basin,

the story of the basin changed drastically when its

drainage level dropped nearly 1 km in response to the

rapid Neogene opening of the South Caspian basin.

Rapid fluvial erosion incised deep canyons into

Pricaspian sediments and exposed some of the salt

diapirs.
3. Mathematical statement of the model problem

and numerical approach

3.1. Model assumptions

In modelling salt diapirism we make the follow-

ing simplifying assumptions. Newtonian rheologies

are assumed both for the salt and its overburden. We

recognise that most salt overburdens display more

complex rheology (e.g., Weijermars et al., 1993).

Meanwhile, natural overburdens in a few salt basins

exhibit ductile behaviour, for example, the shale

and/or impure salt in Central Iran (Jackson et al.,

1990, 1995) and the impure Kazanian salt overlying

pure Kungurian salt in the Pricaspian basin (Volozh

et al., 2003).

We do not consider thermal effects in the

modelling, although they may play a significant role

in halokinesis (Jackson and Talbot, 1994). No faults

can be taken into consideration in the modelling,

because our approach is based on the mechanics of

continua rather than fracture mechanics. Some of

these assumptions are unlikely to be generally valid

for salt tectonics, but nevertheless they enable the

modelling of deformation in sedimentary basins due

to salt movement consistent with geological and

geophysical observations.
3.2. Governing equations

We study the problem of advection due to gravity

(the slow flow of an incompressible viscous fluid of

variable density and viscosity) in the rectangular

region X=(0,x1=l1)�(0,x2=l2)�(0,x3=l3)oR3, where

x1, x2, and x3 are the Cartesian coordinates of a

spatial point x, and x3-axis is pointing upward. The

following governing equations describe the flow

(Ismail-Zadeh et al., 1998, 2001c): momentum

conservation

qp ¼ div lEð Þ þ F; ð1Þ

continuity for incompressible fluid

divu ¼ Bu1=Bx1 þ Bu2=Bx2 þ Bu3=Bx3 ¼ 0; ð2Þ

advection of density and viscosity with the flow

Bq=Bt þ u!qq ¼ 0; Bl=Bt þ u!ql ¼ 0: ð3Þ

Eqs. (1)–(3) contain the following variables and

parameters: time t; velocity u=(u1(t,x), u2(t,x),

u3(t,x)); pressure p=p(t,x); viscosity l=l(t,x); and

the body force per unit volume F=(0,0,�gq), where g
is the acceleration due to gravity, and q=q(t,x) is

density. Here, q, div, and E denote the gradient

operator, divergence operator, and strain rate tensor

E={eij(u)}={Bui/Bxj+Buj/Bxi}, respectively, and

div lEð Þ ¼
 X3

m¼1

B lem1ð Þ
Bxm

;
X3
m¼1

B lem2ð Þ
Bxm

;

X3
m¼1

B lem3ð Þ
Bxm

!
:

Eqs. (1)–(3) make up a closed set of equations that

determine the unknown u, p, q, and l as functions of

independent variables t and x.

The number of unknowns is reduced by introduc-

ing the two-component representation of the velocity
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potential 8=(w1, w2, w3=0) (Ismail-Zadeh et al.,

2001c), from which the velocity is obtained as

u ¼ curl 8; u1 ¼ � Bw2

Bx3
; u2 ¼

Bw1

Bx3
;

u3 ¼
Bw2

Bx1
� Bw1

Bx2
: ð4Þ

Applying the curl operator to Eq. (1) and using the

identities curl(qp)=0, we derive the following

equations from Eqs. (1) and (2):

D2i lei3Þ � D3i lei2Þ ¼ gD2q;ðð

D3i lei1Þ � D1i lei3Þ ¼ � gD1q;ðð

D1i lei2Þ � D2i lei1Þ ¼ 0; i ¼ 1; 2; 3:ðð ð5Þ

Hereinafter, we assume a summation over repeated

subscripts; Dj=B/Bxj, and Djk=B
2/BxjBxk, j, k=1, 2, 3.

The strain rate components eij are defined in terms of

the vector velocity potential as

e11 ¼ � 2D13w2; e22 ¼ 2D23w1;

e33 ¼ 2 D31w2 � D32w1Þ;ð

e12 ¼ D13w1 � D23w2;

e13 ¼ D11w2 � D33w2 � D12w1;

e23 ¼ D33w1 � D22w1 þ D21w2: ð6Þ

3.3. Boundary and initial conditions

We set the initial time at zero: t0=0. On the

boundary C of X, which consists of the faces xi=0 and

xi=li (i=1, 2, 3), we consider three types of boundary

conditions: impenetrability with (i) perfect slip or (ii)

no-slip conditions, and (iii) lateral penetrability. If a

perfect-slip boundary is impenetrable, the velocity

vector satisfies the following conditions:

Bus=Bn ¼ 0; u!n ¼ 0 at C: ð7Þ
Here, n is the outward unit normal vector at a point

on the boundary C, and us is the projection of the

velocity vector onto the tangent plane at the same

point on C. In the case of a no-slip boundary, the

velocity vector satisfies the following condition:

u ¼ 0 at C: ð8Þ

And in the case of lateral penetrability, velocity u

satisfies the condition:

u ¼ G; xaC4; tzt0; ð9Þ

where G=(G1(t,x),G2(t,x),G3(t,x)) is the prescribed

function defined at C* (a portion of C). The function

describes the rate of flow into or out of the model

region through C*. At the rest of the boundary C\C*

we consider condition (7).

In terms of the vector velocity potential the

boundary conditions (7) and (8) take the following

forms, respectively:

w2 ¼ D1w1 ¼ D11w2

¼ 0 at C1 x1 ¼ 0Þ and C1 x1 ¼ l1Þ;ðð

w1 ¼ D2w2 ¼ D22w1

¼ 0 at C2 x2 ¼ 0ð Þ and C2 x2 ¼ l2ð Þ;

w1 ¼ w2 ¼ D33w1

¼ 0 at C3 x3 ¼ 0ð Þ and C3 x3 ¼ l3ð Þ; ð10Þ

and

w1 ¼ w2 ¼ D1w2

¼ 0 at C1 x1 ¼ 0ð Þ and C1 x1 ¼ l1ð Þ;

w1 ¼ w2 ¼ D2w1

¼ 0 at C2 x2 ¼ 0ð Þ and C2 x2 ¼ l2ð Þ;

w1 ¼ w2 ¼ D3w1 � D3w2

¼ 0 at C3 x3 ¼ 0ð Þ and C3 x3 ¼ l3ð Þ: ð11Þ

To solve the direct (forward in time) and inverse

(backward in time) problems of gravitational advec-
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tion, we assume the density and viscosity to be known

at the initial time t=0 and at the final (in terms of the

direct problem) time t=#, respectively.
Thus, the direct or inverse problem of gravitational

advection is to determine functions w1=w1(t,x),

w2=w2(t,x), q=q(t,x), and l=l(t,x) satisfying Eqs.

(3) and (5) in X at tzt0 (or tVt0), prescribed boundary

conditions [either Eq. (9), (10) or (11)] and the initial

conditions for the direct problem or the final

conditions for the inverse problem.

3.4. Numerical approach and its validation

This subsection outlines the numerical method we

use in the study. Details of the numerical approach are

presented in Appendices A–E.

To solve numerically Eq. (5), we use an Eulerian

finite element method (Galerkin method) and replace

the equations with an equivalent variational equation

(see Appendix A). We represent the components of

the vector velocity potential as a sum of tricubic

splines xijk
s (see Appendix B)

ws t; xð Þcws
ijk tð Þxs

ijk xð Þ; s ¼ 1; 2 ð12Þ

with unknown functions wijk
s (t). Hereinafter we take i,

l, p=1, 2,. . .,N1; j, m, q=1, 2,. . .,N2; and k, n, r=1,

2,. . .,N3, s=1, 2. Density and viscosity are approxi-

mated by linear combinations of appropriate trilinear

basis functions:

q t; xð Þcqijk tð Þs̃s1i x1ð Þs̃s2j x2ð Þs̃s3k x3ð Þ; ð13Þ

l t; xð Þclijk tð Þs̃s1i x1ð Þs̃s2j x2ð Þs̃s3k x3ð Þ; ð14Þ

where s̃i
1(x1), s̃j

2(x2), and s̃k
3(x3) are linear basis

functions. The trilinear basis functions provide good

approximations for step functions (such as density or

viscosity that change abruptly from one sedimentary

layer to another).

Substituting approximations (12)–(14) into the

variational equation we arrive at a system of linear

algebraic equations (SLAE) with a positive definite

band matrix for the unknown wijk
s (t):

ws
ijkC

lmn
sijk lijk

� �
¼ gqijkF

lmn
ijk ; ð15Þ

the coefficients Csijk and Fijk in Eq. (15) are the

integrals of various products of cubic splines and their

derivatives (see Appendix C). The SLAE is solved by
the conjugate gradient or Seidel iteration methods

designed specially for multiprocessor computers

(Golub and Van Loan, 1989).

We compute approximations of the density and

viscosity for a prescribed velocity by the method of

characteristics, i.e., by advecting the initial density

and viscosity along the characteristics of Eq. (3) (see

Appendix D). A finer grid is used to approximate both

density and viscosity as compared to the grid used for

computing the vector potential. Therefore, if the

values of qijk(t), lijk(t), and wijk
s (t) are known at time

t, we calculate these values at time t+Dt (see

Appendix E).

When we restore salt structures, we replace simply

a positive time by a negative time. Such a replacement

is possible, because the characteristics of the advec-

tion equations (Appendix D) have the same form for

both forward and inverse velocity fields (Ismail-Zadeh

et al., 2001b).

To check the accuracy of the method we test

for: (i) the conservation of mass at each time step

and (ii) the accuracy of the vector velocity potential

8. We obtain the relative change of mass about

0.1% per 100 time steps (a total number of time

steps does not exceed 500 per one run) and

consider this error as small enough. Furthermore,

we prescribe the right-hand sides in the variational

equation as combinations of trigonometric func-

tions, find respective solutions explicitly, and

compare them with respective numerical solutions.

The relative error for the grid 30�30�30 remains

within 0.3%.
4. Model results

In this section we present several models of the

evolution of salt structures: (i) salt diapirs evolved

from random initial perturbations of the interface

between the salt and its overburden (forward and

backward models); (ii) an inclined salt layer super-

imposed on an inclined subsalt layer and partially

overlain by two layers of sediments; (iii) salt extrusion

and spreading; (iv) a salt diapir complicated by a

secondary diapir in the top of its overhang; and (v) a

diapir subject to a horizontal flow.

The models were computed on two computational

platforms (parallel computers IBM SP2 and MVS-
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1000) using 10–16 processors. Although dimension-

less values and functions have been used in compu-

tations, we represent numerical results in dimensional

form. The time step Dt is chosen from the condition

that the maximum displacement does not exceed a

given small value h, Dt=h/umax, where umax is the

maximum value of the flow velocity.

The rectangular region of all models is divided

into 38�38�38 rectangular elements in order to

approximate the vector velocity potential 8 and

viscosity l [see Eqs. (12) and (14)]. Density U [see

Eq. (13)] is represented on a grid three times finer,

112�112�112, and velocity is computed on grid

200�200�200. Computations of the model problems

on 10 processors for one time step take about 100 s on

MVS-1000 and about 30 s on IBM SP2.

The model density values are based on estimates of

densities of salt and sedimentary rocks in the

Pricaspian basin (Nevolin et al., 1977). We treated

the viscosity ratio between salt and overburden as the

least-known parameter. Because the reference time t0
is proportional to viscosity l (that is t0=l/qgl3), the
viscosity of the overburden was used as a tuning

parameter of our model in order to keep time of model

evolution close to observed geological times. The

overburden was taken as 102 to 103 more viscous than

salt.

4.1. Model 1. Evolution of salt diapirs and their

dynamic restoration

We model a rise of salt diapirs through an

overburden deposited prior to the interface perturba-

tion. The model dimensions are l1=l2=30 km, l3=10

km; the viscosities and densities are assumed to be

1020 Pa s and 2.65�103 kg m-3 for the overburden

layer and 1018 Pa s and 2.24�103 kg m-3 for salt,

respectively.

A salt layer of 3 km thick at the bottom of the

model box is overlain by a sedimentary overburden

of 7 km thick at time t=0. We choose the thicknesses

of both salt (see Fig. 1) and its overburden to be

consistent with the average thicknesses of equivalent

layers in the Pricaspian basin. The interface between

the salt and its overburden was disturbed randomly

with the amplitude F100 m. Fig. 3 (a–d, a front

view) and Fig. 4 (a–d, a top view) show the

positions of the interface between salt and over-
burden in the model at successive times over a

period of about 21 My. The evolution clearly shows

two major phases: an initial phase resulting in the

development of salt pillows lasting about 18 My (a

and b) and a mature phase resulting in salt dome

evolution lasting about 3 My (c and d). These

results are in agreement with the predictions of a

linear analysis and of 2D models of the RT

instability (Naimark et al., 1998).

We restore the evolution of salt diapirs predicted by

the forward model through successive earlier stages.

The final position of the interface between salt and its

overburden in the forward model (Figs. 3d and 4d) is

used as an initial position of the interfaces for the

restoration model. Fig. 3 (d–g) and Fig. 4 (d–g)

illustrate successive steps in the restoration of the

upbuilt diapirs. We compute least-square errors d of

this restoration using the formula:

d x1; x2ð Þ ¼
Z l3

0

q x1; x2; x3ð Þ � q̃q x1; x2; x3ð Þð Þ
�

2
dx3

#1=2
;

where q(x1,x2,x3) is the density at initial time, and

q̃(x1,x2,x3) is the restored density (Fig. 4h). The

maximum value d does not exceed 120 kg m�3, and

the error is associated with small areas of the initial

interface’s perturbation.

To demonstrate the stability of the restoration

results with respect to changes in the density of the

overburden, the restoration procedure was tested by

synthetic examples. As in the case of 2D restorations

(Ismail-Zadeh et al., 2001b), first we run the forward

model for 200 computational time steps (about 30

My). Then we changed the density contrast (dq)
between salt and its overburden by a few percents:

namely, dq was chosen to be 400, 405, 410 (the

actual contrast), 415, and 420 kg m�3. The evolution

of the system was restored for these density

contrasts. We found small discrepancies (less than

0.5%) between least square errors for all these test

cases. The tests show the solution be stable to small

changes in the initial conditions, and this is in

agreement with the mathematical theory of well-

posed problems (Tikhonov and Samarskii, 1990).

Meanwhile, it should be mentioned that if the model

is computed for a very long time and the less dense

salt layer spreads uniformly into a horizontal layer

near the surface, practical restoration of the layered



Fig. 3. Evolution (front view) of salt diapirs toward increasing maturity (a–d) and restoration of the evolution (d–g) in model 1. Interfaces

between salt and its overburden are presented at successive times. Arrows indicate the flowchart of the figures.

A. Ismail-Zadeh et al. / Tectonophysics 387 (2004) 81–10392
structure becomes impossible (Ismail-Zadeh et al.,

2001b).

4.2. Model 2. Evolution of a salt wall

Model 2 represents the evolution of 2D salt walls

complicated at a late stage by asymmetric sedimentary

loading. The initial geometry of the model is chosen

to be 2D (it does not depend on x2-coordinate). In a

model region (l1=l2=20 km, l3=10 km) we introduce
an inclined salt layer 0.1 x1+0.4bx3b0.05 x1+0.6 of

maximum thickness 2 km resting on a subsalt layer.

Part of the salt layer was overlain by a pile of

sediments on one side of the model (see Fig. 5a):

0.095(x1�1.0)+0.605bx3b0.2(x1�1.0)+0.7 (0Vx1Vl1).
This sedimentary pile has a wedge-like geometry and

maximum thickness 2 km. The viscosity and density

are l=1021 Pa s and q=2.7�103 kg m-3 for the subsalt

layer and have the same values for salt and the

sedimentary pile as for salt and its overburden in



Fig. 4. Evolution (top view) of salt diapirs toward increasing maturity (a–d) and restoration of the evolution (d–g) in model 1 at the same times

as in Fig. 3. (h) Restoration errors.
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model 1, respectively. The thicknesses of the layers

were chosen to be consistent with observations in the

Pricaspian basin (Volozh et al., 2003). The config-

uration of the model is unstable due to lateral

asymmetry of the layered structure with respect to

gravity. We assumed no sediment erosion or redepo-

sition in the model.

Fig. 5 (b–d) illustrates the growth of a salt wall

from the inclined source salt layer over a period of

about 8�105 y. We then add a new sedimentary

load in the corner of the model (see Fig. 5e) and

continue our computations for about 1.7 My more.

The density and viscosity of the new sediments are

the same as for the early pile of sediments. The salt

wall increases in relief, as the salt-withdrawal basin

fills with the sedimentary overburden (Fig. 5, f–h).

The crest of the wall remains at the depositional

surface although a thin temporary roof may be

thickened by sedimentation or thinned by erosion.

Due to the asymmetric loading by sediments at the

corner of the model, initially 2D structure is

transformed into 3D structures (Fig. 5h). Small salt

pillows are evolved from the mature salt wall. The

front faces of Fig. 5 (e–h) resemble profiles of

centrifuged analogue models simulating the evolu-
tions of salt structures in response to sediment

progradation into the Gulf of Mexico (see Figs. 2

and 5–9 in Talbot, 1992).

4.3. Model 3. Salt extrusion and gravity current

Realistic rates of salt extrusion are of major

importance to salt tectonics. Late Permian to Jurassic

salt extrusions in the southeastern Pricaspian basin

and present-day extrusions of salt in the Zagros

Mountains of Iran supply natural evidence which

allow constraint of numerical models. To analyse the

rates at which salt extruded onto the surface and the

horizontal velocities at which the gravity current

(salt glacier, or namalier) spreads, we model an

extrusion of salt and its gravity current spreading

over the surface. We consider a salt layer 2 km thick

on the bottom of the model region (l1=l2=20 km,

l3=10 km; Fig. 6a) overlain by a sedimentary

overburden 6 km thick. The viscosities and densities

are 1018 Pa s and 2.24�103 kg m�3 for salt and

1021 Pa s and 4.0�103 kg m�3 for the overburden,

respectively. (The density of the overburden is

elevated to squeeze the salt from beneath the

overburden more rapidly).



Fig. 5. Evolution (front view) of a salt wall in model 2. At time t=0, an inclined salt layer is overlain by sediments at the eastern part of the

model region. Later (t=0.81 My) a new portion of sediment is added to the structure at the southeastern corner of the model region. Interfaces

between salt and subsalt (blue), salt and initial depositional surface (green), the upper surfaces of the first sedimentary pile (brown) and of the

second portion of sediments (violet) are presented at successive times.
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This model simplifies nature by neglecting dis-

solution of salt and flow of the salt over a smooth

horizontal surface. The salt is extruded on the surface

through a pipe-like channel in the overburden with a

diameter of 2 km. The channel is filled by salt, and a

thin layer of salt (300 m thick) is introduced along the

top of the overburden so that the emerging salt
spreads over the top surface. Fig. 6 represents front

(left panels) and top views (right panels) of the salt

extrusion over about 105 years. Salt extrudes from the

channel as a circular dome. However, the rising salt

cannot support its own weight and soon overflows the

edges of its orifice and spreads gravitationally away

from the centre of the orifice. The dome is soon



Fig. 6. Extrusion and gravity spreading of salt in model 3. The left panel presents a front view of the model region. A horizontal salt layer at the

bottom of the region is overlain by a sedimentary layer (dark blue interface between the layers). Salt escapes from the bottom via the channel

(light blue) and extrudes on the depositional surface (red). A thin layer below the depositional surface is salt. The right panel presents a top view

of the model region.
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surrounded by a plateau or apron of salt (Fig. 6, a–c).

The initial vertical rate of salt extrusion predicted by

the model is about 10 cm a�1 decreasing to about 3

cm a�1 in 105 years. Meanwhile the rate of gravity

spreading, (u1
2+u2

2)1/2, is about 30 cm a�1 near the

centre of the dome and about 10 cm a�1 at 6 km

distance from its centre. The height of the salt dome

above the centre of its orifice reaches about 650 m

after 105 years (Fig. 6d).

4.4. Model 4. Secondary diapirism

The buoyancies of many salt diapirs are suffi-

ciently low that their stiff overburdens have to be

faulted and thinned before gravity can drive the rise of

reactivate diapir (Vendeville and Jackson, 1992).

Faulting of overburdens to salt overhangs can lead

to secondary diapirs developing in the top of the salt

overhangs.

To simulate this situation, initially we model the

growth of a primary salt diapir for 15 My from a

small perturbation of the interface between the

source salt layer (4 km thick) and its overburden

deposited prior to the salt movement. The model

region has the following dimensions: l1=l2=30 km,
Fig. 7. Evolution of a secondary diapir (model 4) on t
l3=10 km. Values of the model parameters are the

same as in model 1.

After the source layer has been welded and an

overhang has begun to develop, a new horizontal

layer of sediments is added above the salt. The

interface between the salt overhang and the younger,

overlying sediments is then perturbed. This small

perturbation gives rise to a secondary diapir (Fig. 7).

The density and viscosity of the new sedimentary

layer are the same as that of the initial overburden of

salt, except for a small cylindrical domain (immedi-

ately above the perturbation) inclined at angle 45 to

the surface. This domain has a viscosity two orders of

magnitude less than that of the surrounding over-

burden. The perturbation simulates the effect of

normal faulting of the overburden by thin-skin

extension, and the low viscosity area simulates a fault

zone.

Fig. 7 presents four stages of the evolution of the

secondary diapir on the top of the primary diapir. The

primary diapir develops a mushroom-shaped as its

stem thins. Meanwhile the secondary beak-shaped

diapir approaches the surface through the cylindrical

low viscous domain after displacing most of the

thickness of the young sedimentary layer.
he top of the primary diapir at successive times.



Fig. 8. A salt diapir subject to a lateral flow (model 5). At the initial time the interface between salt and overlain sediments is perturbed in the

model’s centre (a). The evolved structures (salt/overburden interfaces shown) under the applied horizontal velocity u*sin(2px2/l2) are presented
after 1 My in parts (b), (c), and (d) for three values of u*.
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4.5. Model 5. Evolution of a salt diapir subject to a

lateral flow

This subsection presents three models of a salt

diapir subject to a lateral flow into and out of the

model region (l1=l2=30 km, l3=10 km). This situation

models a growth of salt diapir in a complicated

environment, for instance, in regions of heterogeneous

extension or shortening. Values of the model param-

eters are the same as in model 1. A 2.5-km-thick salt

layer at the bottom of the model box is overlain

initially by a horizontal sedimentary layer 7.5 km

thick. The interface between salt and the overburden

is subject to a small perturbation (Fig. 8a).

At the two opposed vertical boundaries of the

model region C*={(x1,x2,x3)aX̄: x1=0, x1=l1,

0Vx2Vl2, 0Vx3Vl3} we prescribe an external flow

with velocity u=(u1,0,0), where u1=u*sin(2px2/l2) at
x2a[0,l2] and x3a[0,l3], and u* is a variable model

parameter. Both new sediments and underlying salt

enter into the model region from its opposite vertical

sides and escape from the same sides (see Fig. 8a).
Fig. 8 (b–d) illustrate the evolution of the salt/

overburden interface subject to the external horizontal

flow after 1 Ma. When the flow rate is sufficiently

small (u*=3 mm year�1, Fig. 8b), the interface

changes only slightly compared to a model of diapiric

growth with no lateral flow. When the flow rate is

chosen to be comparable to the average rate of the

diapiric growth (u*=2 cm year�1, Fig. 8c) and greater

than the growth rate by a factor of 5 (u*=10 cm

year�1, Fig. 8d), the evolution of the structure is

determined by the lateral flow. The rapid flow results

in developing four boundary diapirs (Fig. 8, c and d),

which grow much faster than the diapir in the centre

of the model region.
5. Discussion

Here we discuss the results of our numerical

models and their applicability to the evolution of salt

structures in general and to the Pricaspian basin in

particular. We should note that the numerical models
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in question are not intended to mimic the evolution of

any particular salt structures in the Pricaspian basin.

Our models are rather phenomenological and simulate

the major stages in the evolution of the salt structures

in the basin.

Model 1 followed the growth of salt structures

upbuilding from small and random initial perturba-

tions in the interface between salt and its prekinematic

overburden. Although salt structures in the Pricaspian

basin were mainly downbuilt by Triassic to Neogene

sediments and the thickness of the overburden varied

in time due to sedimentation and erosion, some

upbuilt salt structures in the basin might have evolved

according to this evolutionary model.

A knowledge of present-day salt structures, based

on 3D seismic data, allows reconstructing the history

of structural development by removing successively

younger layers in turn and restoring older layers and

any diapirs to the shapes they were likely to have had

at each step. Some salt was extruded and eroded or

dissolved in the Pricaspian basin during the major

Late Triassic–Early Jurassic hiatus. A restoration of

salt structures in such cases is certainly nonunique. To

avoid uncertainties concerning the eroded or dissolved

volumes of the salt and its overburden, the volumes of

salt and overburden were kept constant in model 1,

although changes in volumes of salt and/or over-

burden could be added in modelling.

Permian sediments prograded into the Pricaspian

basin from the east, Triassic sediments from the

southeast, and Jurassic sediments from the south. Each

of these prograding sequences downbuilt successive

salt structures basinward from its margins (Volozh et

al., 2003). The crests of salt diapirs and salt walls were

left near the depositional surface by the superimposed

sediments progressively burying (downbuilding) the

surrounding salt source layer. Model 2 describes some

aspects of this process. The sediments prograded over

the inclined salt layer of model 2 downbuilt a 2D salt

wall in the east. The later sediments prograded from

the southeastern corner converted the 2D salt wall into

3D structures.

Many of the diapirs in Zone R4B of the Pricaspian

basin (Fig. 1) have significant overhangs (see Fig.

2e) that can be interpreted as sheets of allochthonous

Late Permian salt that extruded over the surface,

likely accompanied by some recycling by dissolution

and recrystallization. Most Permian salt is likely to
have extruded during an Upper Triassic–Middle

Jurassic depositional hiatus, but some was still

extruding until the Late Jurassic. Fig. 2e illustrates

an example of a salt extrusion with overhangs in the

Pricaspian basin. The diapir that extruded this 6 km

long sheet of allochthonous salt (probably at the

beginning of the Late Triassic) upbuilt through

prekinematic Upper Permian and Lower Triassic

strata during Middle Triassic deposition in a primary

salt-withdrawal basin (Volozh et al., 2003). Lower

Jurassic deposition buried the extruded salt. The

sheet then sank into a secondary salt-withdrawal

basin that migrated distally during periods of active

upbuilding of the buoyant salt stock through the

surrounding downbuilding sediments. Volozh et al.

(2003) consider Iranian salt fountains to be modern

examples of many salt structures in the Pricaspian

basin as they were in the Upper Permian. Studies of

present-day salt extrusions at different stages of

development in Iran indicate that, where salt extrudes

faster than it dissolves and where deposition of

overburden is slow (or absent), extruding salt rises to

its level of neutral buoyancy in an extrusive dome

that then gravity spreads a sheet of allochthonous salt

(Talbot, 1998).

Model 3 has allowed analysis of the rates at which

salt can extrude and spread by gravity. The model

predicts the average rate of salt extrusion to be about 5

cm a year and the average horizontal velocity of salt

spreading to vary between 30 and 10 cm a year. Talbot

et al. (2000) estimated an extrusion rate near 1 m a

year and horizontal surface velocities measured in the

range from 4 to 0.5 m a year for one of the largest salt

fountains in Iranian Zagros. These discrepancies

between rates of extrusion and spreading can be

associated with the order of magnitude difference in

viscosity ratio between salt and its overburden used in

model 3 and in the model by Talbot et al. (2000).

Moreover, the rate of salt spreading (from early vigour

to later slowing) depends on the shape of the salt’s

overburden. An axisymmetric salt flow on a horizon-

tal surface spreads relatively slowly in all directions,

although salt extruded over a planar inclined surface

would flow in one direction down the inclined

substrate much faster.

The faults bounding the polygonal graben system

in the Pricaspian basin weakened and thinned the

overburden that had onlapped exposed still-potent
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Permian–Triassic salt structures. These structures

reacted by actively upbuilding back to the deposi-

tional surface. Some of these secondary diapir evolved

on the top of a salt overhang due to faulting of

nonkinematic sediments (see Fig. 2c). In model 4 we

have simulated this situation and analysed the growth

of primary and secondary diapirs.

It is unlikely that the entirely Pricaspian basin has

been subject to large lateral extension or shortening.

Nevertheless, some salt structures near the eastern

border of the basin might well have been influenced

by regional lateral forces. Model 5 explored the effect

of lateral forces on the development of salt structure.

The shape of a salt diapir is increasingly influenced, if

the rate of horizontal flow approaches the average rate

of diapiric growth.
6. Conclusion

We opened this multidisciplinary study by present-

ing our methodology for forward and backward 3D

numerical modelling of salt structure dynamics in

sedimentary basins. To understand the history of

deposition, erosion and deformation in sedimentary

basins, tools are needed to restore the basin evolution.

The backstripping method that is widely used in basin

analysis is severely limited for salt-bearing basins,

because the highly mobile and buoyant salt deforms

its sedimentary overburden. The suggested numerical

technique for backward modeling provides a quanti-

tative tool to study the interaction between sedimen-

tation and salt mobility. In a more comprehensive

sense, 3D dynamic restoration of salt structures

provides spatial-temporal information on the forma-

tion and evolution of structural traps and a general

framework for evaluating hydrocarbon migration

pathways.

Using the numerical technique we analysed phe-

nomenological (rather then data fitting) models of the

evolution of different types of salt structures to better

understand salt movements in the Pricaspian basin.

Mature salt diapirs developed from an initial random

perturbation of the interface between salt and its

overburden were restored to their initial stages with

small restoration errors. An evolutionary model of a

2D salt wall loaded by a 2D pile of sediments

predicted a decomposition of the salt wall into 3D
diapiric structures when a 3D sedimentary wedge was

added to the overburden of salt. We estimated rates of

salt extrusion (about 5 cm year�1) and gravity current

over the depositional surface (10–30 cm year�1) for

a reasonable range of physical parameters. We

modelled a growth of a secondary diapir initiated

by faulting of the overburden to salt overhangs.

We showed that the shape of a salt diapir can be

very different if the rate of horizontal flow is much

greater than the initial rate of diapiric growth

solely due to gravity.

We have neglected thermal effects here, although

the relevant numerical methodologies have been

already developed for modelling the thermomechan-

ical evolution of geostructures, both forwards (Ismail-

Zadeh et al., 2001c) and backwards in time (Ismail-

Zadeh et al., 2003). The authors work on the problem

of combined structural and thermal restorations of salt

basins.

The numerical methodology and models developed

here allow the following conclusions:

(i) The suggested numerical approach is appropri-

ate for modelling of the evolution of salt

structures in salt-bearing basins where the salt

overburden is essentially ductile.

(ii) The three-dimensional backward modelling

technique can be used to restore salt structures

and their overburden to their earlier depositio-

nal steps.

(iii) The different sizes, shapes and maturities of salt

structures in different parts of the Pricaspian

basin reflect areal differences in thicknesses of

salt and its overburden and loading history.
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Appendix A. The variational equation

To apply the Galerkin method to Eq. (5), we

replace the equations with an equivalent variational

equation. Consider any arbitrary admissible test

vector function %=(u1,u2,0) satisfying the same

conditions as for the vector function 8 and multiply

the first two equations of Eq. (5) by u1 and u2,

respectively. Integrating by parts the obtained equa-

tions over X and using the boundary conditions for

the desired and test vector functions, we obtain the

variational equation

L l;8;%ð Þ ¼ R l; q;%ð Þ; ðA1:1Þ

where

L l;8;%ð Þ ¼
Z

X
l½2e11ẽe11 þ 2e22ẽe22 þ 2e33ẽe33

þ e12ẽe12 þ e13ẽe13 þ e23ẽe23�dx;

and the expressions for ẽij in terms of % are

identical to the expressions for eij in terms of 8.

The right-hand side of Eq. (A1.1) has the following

forms: in the case of condition (9) (Tsepelev et al.,

2001)

R l; q;%ð Þ ¼
Z

X
gq

 
B/1

Bx2
� B/2

Bx1

!
dx

þ
Z

C1 x1¼l1ð Þ
l e12G2 þ e13G3½ �dC

�
Z

C1 x1¼0ð Þ
l e12G2 þ e13G3½ �dC

þ
Z

C2 x2¼l2ð Þ
l e21G1 þ e23G3½ �dC

�
Z

C2 x2¼0ð Þ
l e21G1 þ e23G3½ �dC

þ
Z

C3 x3¼l3ð Þ
l e31G1 þ e32G2½ �dC

�
Z

C3 x3¼0ð Þ
l e31G1 þ e32G2½ �dC;
and in the case of conditions (10) and (11)

R l; q;%ð Þ ¼
Z

X
gq

B/1

Bx2
� B/2

Bx1

	
dx:




Appendix B. Tricubic basis splines

The functions to be found are represented as sums

of tricubic basis splines with unknown coefficients.

Tricubic basis splines are products of basis cubic

splines constructed in the following manner. A

segment 0VyVL is divided into N small segments

by points yn=(n�1)h, h=L/(N�1), n=1, 2,. . .,N. Let
us introduce seven functions: a( y), b( y), d( y),
d*( y), b*( y), and a*( y) defined for 0VyV3h and

c( y) defined for 0VyV4h, each being a cubic

c0+c1( y�yi)/h+c2(( y�yi)/h)
2+c3(( y�yi)/h)

3 in a

small segment yn�1VyVyn, n=1, 2, 3, 4.
These seven standard functions so defined have the

following properties. These functions and their first

and second derivatives are continuous over their

supports, so that these functions are splines. They

satisfy the following conditions:

at y ¼ 0: a yð Þ ¼ b yð Þ ¼ b4 yð Þ ¼ a4 yð Þ
¼ d4 yð Þ ¼ 0; d yð Þ ¼ 1;

aV yð Þ ¼ dV yð Þ ¼ b4V yð Þ ¼ a4V yð Þ
¼ d4V yð Þ ¼ 0; bV yð Þ ¼ 1=h;

bW yð Þ ¼ dW yð Þ ¼ b4W yð Þ ¼ a4W yð Þ
¼ d4W yð Þ ¼ 0; aW yð Þ ¼ 1=h2;

at y ¼ 3h: a yð Þ ¼ b yð Þ ¼ c yð Þ ¼ b4 yð Þ ¼ a4 yð Þ
¼ d yð Þ ¼ 0; d4 yð Þ ¼ 1;

aV yð Þ ¼ dV yð Þ ¼ cV yð Þ ¼ bV yð Þ ¼ a4V yð Þ
¼ d4V yð Þ ¼ 0; b4V yð Þ ¼ � 1=h;

bW yð Þ ¼ dW yð Þ ¼ cW yð Þ ¼ b4W yð Þ ¼ aW yð Þ
¼ d4W yð Þ ¼ 0; a4W yð Þ ¼ 1=h2;

at y ¼ 4h: c yð Þ ¼ cV yð Þ ¼ cW yð Þ ¼ 0;

at y ¼ 2h: c yð Þ ¼ 1:
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Basis splines on the interval 0VyVL are functions

s1( y), s2( y),. . ., sN( y) chosen from the above stand-

ard splines:

s1( y) and s2( y) (boundary splines) are selected

from a( y), b( y), d( y) to satisfy boundary con-

ditions at y=0, e.g., s1( y)=d( y) and s2( y)=b( y) to

approximate a function f( y) such that f(0)=a and

f W(0)=0;
sN�1( y) and sN( y) (boundary splines) are selected

from a*( y), b*( y), d*( y) to satisfy boundary con-

ditions at y=L in the same manner as at y=0;
si yð Þ ¼ c y� i� 2ð Þhð Þ for i� 2ð ÞhVyV iþ 2ð Þh;
i ¼ 2; 3; N ;N � 2:
Tricubic basis splines have the form xijk(x1,x2,x3)=

gi(x1)fj(x2)#k(x3) where gi(x1), fj(x2), and #k(x3) are

basis splines constructed similarly to si( y) over

segments 0Vx1Vl1, 0Vx2Vl2, and 0Vx3Vl3 (edges of

X), divided into N1, N2, and N3 small segments of

length h1, h2, and h3, respectively. Boundary splines

in gi(x1), fj(x2), and #k(x3) are selected is such a way

as to satisfy boundary conditions of the problem.
Appendix C. Coefficients in the discrete governing

equations

Here we present coefficients entering into Eq. (15).

The matrix in the equation takes the form

Clmn
sijk ¼

X
lpqrwa1a2b1b2c1c2A

a1a2
silp B

b1b2
sjmqC

c1c2
sknr ;

where the sum is taken over all nonnegative integers

a1, a2, b1, b2, c1, and c2 such that each of them does

not exceed 2 and a1+a2+b1+b2+c1+c2=4. The values

of wa1a2b1b2c1c2
are readily obtained by collecting

similar terms in the sums. Coefficients Asilp
a1a2, Bsjmq

b1b2,

and Csknr
c1c2 are integrals of the form

Aa1a2
silp ¼

Z L1

0

Da1g
s
i x1ð Þ

� �
Da2g

s
l x1ð Þ

� �
s̃s1p x1ð Þdx1;

Bb1b2
sjmq ¼

Z L2

0

ðDb1f
s
j x2ð ÞÞ Db2f

s
m x2ð Þ

� �
s̃s2q x2ð Þdx2;

Cc1c2
sknr ¼

Z L3

0

Dc1#
s
k x3ð Þ

� �
Dc2#

s
n x3ð Þ

� �
s̃s1r x3ð Þdx3;
where {g}, {f}, and {#} are cubic basis splines (see

Appendix B) and {s̃} are linear basis functions.

Coefficients Fijk
lmn take the following forms:

Flmn
ijk ¼ P01

il Q
00
jmR

00
kn � P00

il Q
01
jmR

00
kn ;

where

Pab
il ¼

Z L1

0

Das̃s
1
i x1ð Þ

� �
Dbg

1
l x1ð Þ

� �
dx1;

Qab
jm ¼

Z L2

0

Das̃s
2
j x2ð Þ

� �
Dbf

1
m x2ð Þ

� �
dx2;

Rab
kn ¼

Z L3

0

Das̃s
3
k x3ð Þ

� �
Db#

1
n x3ð Þ

� �
dx3:

Appendix D. Method of characteristics

The method of characteristics can be used in

computations with relatively small numerical diffu-

sion of density and viscosity (Marchuk, 1994). The

characteristics of advection equations are defined as

dx tð Þ=dt ¼ u t; x tð Þð Þ: ðA4:1Þ

The density and viscosity have constant values on

the characteristics:

q t; x tð Þð Þ ¼ q0 x t0ð Þð Þ; l t; x tð Þð Þ ¼ l0 x t0ð Þð Þ; tz0:

Provided that the velocity has already been com-

puted at time t, we find the characteristics at time

t�Dt using the Euler formula:

x t � Dtð Þcx tð Þ � Dtu t; x tð Þð Þ:

The latter relations are used to define density and

viscosity in X at tN0:

q t; xð Þcq t � Dt; x� Dtu t; xð Þð Þ;
l t; xð Þcl t � Dt; x� Dtu t; xð Þð Þ:

When trilinear basis functions are used to approximate

density and viscosity, a sufficiently large number of

independent modules can be organised to compute the

characteristics of advection equations and the corre-



A. Ismail-Zadeh et al. / Tectonophysics 387 (2004) 81–103102
sponding densities and viscosities at parallel com-

puters with a distributed memory (Ismail-Zadeh et al.,

2001c).
Appendix E. Computational procedure

Here we describe briefly the procedure for solving

the problem. A uniform discretisation of the time axis,

tn=t0+H n (naZ), is defined a priori, where H is the

grid parameter. Next, computations are organised in

which n is consecutively assigned integer values

ranging from 0 to m. The integer m is prescribed prior

to computations to set the length of the interval [t0,tm]

of integration. When necessary, the process can be

continued further, starting from tm as an initial time.

At each iteration step in time, the following principal

steps are computed sequentially.

Step 1. The density q=q(tn,d ) and viscosity l=
l(tn,d ) at t=tn are used to determine the

components of vector velocity potential

8=8(tn,d ). To solve Eq. (15), we compute

the matrix Csijk
lmn, then the right-hand side

gqijk(t) Fijk
lmn, and find unknowns wijk

s (t) at

t=tn.

Step 2. Eq. (4) is used to calculate the components

of velocity u=u(tn,d ).

Step 3. The characteristics x(tn) of the advection

equations are found from Eq. (A4.1).

Step 4. The density and viscosity are advected

along the characteristics. The velocity

u=u(tn,d ), characteristics x(tn), density

q=q(tn,d ), and viscosity l=l(tn,d ) are

used to compute new density q=q(tn+1,d )
and viscosity l=l(tn+1,d ), at t=tn+1 by

solving Eq. (18).

The process results in a set of components of

the vector velocity potential 8=8(tn,d ), velocity

u=u(tn,d ), density q=q(tn,d ) and viscosity l=l(tn,d )
at t=tn (n=0,. . .,m). Once these distributions are

available, the evolution of the system on the interval

[t0,tm] can be recovered in more detail by interpolation.
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