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Abstract

A method is presented for assessing and statistically testing the similarity of detrital zircon U–Pb age distributions frequently

used in provenance analysis, correlation and tectonic reconstructions. The method accounts for intrinsic measurement

uncertainties by constructing kernel functional estimates of each set of age data that compensate for different degrees of

measurement error by the application of varying levels of smoothing. The dissimilarity between these estimates can be quantified

and provides a meaningful comparison between age distributions. AMonte Carlo permutation algorithm is used to test for equality

between age distributions by grouping two sets of age data and then resampling the age distributions. The techniques are

demonstrated with both synthetic and real data. Synthetic data illustrate the behaviour of the algorithms with data containing

varying age modes and measurement uncertainties. Real data from Tasmania and southeastern Australia illustrates both the broad

correlation with previous similarity assessment techniques and the applicability of the described methods to provenance, regional

correlation and tectonic reconstruction.
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1. Introduction

The U–Pb age of a detrital zircon from a

sedimentary rock provides a proxy for the age of the

igneous or metamorphic rock in which the zircon

originally formed. Thus, the distribution of measured

detrital zircon ages provides a record of the prove-

nance of the sedimentary detritus. Detrital zircon

geochronology has burgeoned recently with the

advent of analytical systems that produce large sets

of age data within reasonable timeframes. Some

examples of the wide range of geological problems

tackled are continental reconstruction (e.g. Rainbird et

al., 1998; Cox et al., 1998; Berry et al., 2001),
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tectonism (e.g. Gehrels et al., 2002; DeGraaff-Surp-

less et al., 2003) and basin evolution (e.g. Cawood

and Nemchin, 2000; Hallsworth et al., 2000).

The first stage of any interpretation of detrital

zircon age distribution is a simple visual comparison

of plotted data, typically univariate age distributions,

with either the bknownQ ages of potential proto-

sources or comparison with other age distributions

and a judgment of bsimilarityQ. While the human

eye is good at qualitatively recognizing similarities,

it must be recognized that detailed interpretation

based on simple visual comparison is always prone

to subjective bias. Also, as the volume of data

available for interpretation continues to grow, visual

interpretations will diminish in utility. For instance,

how does one, using visual inspection alone, mean-

ingfully describe the similarity between 25 age

distributions when there are 300 one-on-one com-

parisons? In cases such as continental reconstruction

where the interpretation of similarities may have

global impact, the need to objectively and quantifi-

ably compare age distributions has become vital.

Recently, a number of methods have been described

to tackle this issue (Gehrels, 2000; Sircombe, 2000;

Berry et al., 2001). While each has merit, they also

have fundamental difficulties that devalue their

application. A major challenge for any mathematical

comparison is accounting for intrinsic measurement

uncertainty. This is a notable problem where there is

a need to compare age distributions resulting from a

variety of analytical methods with markedly differ-

ent precision.

Section 2 of this paper examines some previous

methods before Section 3 develops a new method for

assessing the similarity of age distributions that does

account for measurement error. The methodology is

based upon the construction of kernel functional

estimates (Wand and Jones, 1995). Section 3 also

describes how the similarity of functional estimates

from different samples can be assessed and Section 4

explains how a Monte Carlo permutation test allows

formal comparison of pairs of age distributions.

Section 5 describes how clustering algorithms can

be applied to the similarity results to illustrate

relationships among samples. The algorithms des-

cribed have been implemented in the R statistical and

graphing package (Ihaka and Gentleman, 1996;

Grunsky, 2002); the implementations are detailed in

Appendix A. Both synthetic and real age data are used

in Section 6 to illustrate the application of algorithms.

2. Previous methods

There are two approaches to more sophisticated

comparisons of age distributions. The first approach is

to deconvolve an age distribution to reveal individual

age components and thereby make a comparison

between those components. Examples of this ap-

proach for fission-track and U–Pb grain ages are

detailed in Brandon (1992), Brandon and Vance

(1992) and Sambridge and Compston (1994). Such

deconvolution is a valuable tool for aiding the

interpretation of complex age distributions and has

been widely used. However, the inter-sample compar-

ison of resolved age components may still rely on a

qualitative assessment. For instance, deconvolution

may reveal that one sample has age components (and

2r errors) at 475F10, 550F12 and 1235F30 Ma

whereas a second sample has age components at

480F5, 570F10 and 1500F40 Ma. A qualitative

comparison would suggest that the first two compo-

nents are bsimilarQ, although another interpreter may

argue that the second components in each sample are

barely within uncertainty of each other and the case

for similarity is weak.

The second approach to the comparison of age

distributions looks at the age distributions as a whole

and deconvolution into components is not necessary.

Gehrels (2000, p. 8) describes the concept of overlap

and similarity between samples and established west-

ern North American references. Both overlap and

similarity vary from 0 (no match) to 1 (perfect match).

Overlap is defined as the presence of an age in both

age distributions being compared (Gehrels et al.,

2002, p. 205). Similarity is calculated by summing

the square root of the product of each pair of

probabilities (Gehrels, 2000, p. 8). While providing

a quantification of similarity and aiding the interpre-

tation of western North American provenance, this

approach does not include a statistical test.

Berry et al. (2001) used the Kolmogorov–Smirnov

(K–S) goodness-of-fit test to compare potential

provenance similarities between Neoproterozoic and

Cambrian sedimentary units in Tasmania, southern

and southeastern Australia and North America. This

K.N. Sircombe, M.L. Hazelton / Sedimentary Geology 171 (2004) 91–11192



test takes the stepwise cumulative probability distri-

bution of the measured ages and calculates a test

statistic on the basis of the maximum distance

between the distributions being compared. This

provides a statistical basis for testing similarity, but

the standard method does not account for age errors

and tends to be less sensitive at extreme ends of the

distribution (Press et al., 1988, p. 626) where complex

detrital populations may be expected to differ the

most.

Multivariate analysis has also been applied to large

sets of detrital data in eastern Australia (Sircombe,

2000). Based on the age probability distributions, this

approach proved useful in quantifying the effect of

longshore drift on the detrital zircon age distributions

without direct comparison with external references.

However, the method is computationally complex and

requires relatively large sets of data (e.g. 20+ samples

of ~60 ages each) to avoid outliers having a strong

influence.

3. Functional estimation

Imagine that there are two sites from which we are

to collect data, and that the true age distributions of

detrital zircon at the sites are described by the plots in

Fig. 1a and b. In practice, each age sampled from one

of these distributions will be subject to measurement

error. Suppose that we collect data at site 1, and by

chance those samples whose true age is less than 550

Ma are subject to measurement error with a standard

deviation of 30 Ma, while those samples whose true

age is greater than 550 Ma have measurement error

Fig. 1. (a, b) Density functions for distributions of true ages and (c, d) ages subject to measurement error, for two sites.
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with standard deviation 20 Ma. Suppose that at site 2

the situation is reversed, with the samples younger

than 550 Ma subject to measurement error with

standard deviation of 20 Ma, and those older than

550 Ma having measurement error with standard

deviation of 30 Ma. It can then be shown that the

distributions of observed (i.e. error prone) ages from

the two sites are as displayed in (Fig. 1c and d). They

are identical. It follows that any methodology for

comparing the age distributions at the two sites that

ignores measurement error (e.g. the Kolmogorov–

Smirnov test) will be completely powerless to detect

any difference between them. Of course, this example

is highly artificial, but it does illustrate the need for a

method of comparison that takes account of measure-

ment error.

In order to derive a method of comparison that

does account for measurement error, we must intro-

duce some notation. Consider data from a single site

and let the random variable X denote a typical

observed age. This age can be decomposed as

X=Y+Z where the random variable Y is the true age

of the particular sample of detrital zircon in question,

and the random variable Z represents measurement

error.

We assume that the true age Y has a continuous

probability distribution with probability density func-

tion (or simply density for short) f. If the sample was

collected at site 1 as described above, for example,

then this density f would be as displayed in Fig. 1a.

We assume that the measurement error Z is normally

distributed with mean zero and standard deviation r,

which we will refer to as the measurement standard

deviation. We will denote the corresponding normal

density (with mean zero and standard deviation r) by

/r. An implicit assumption underlying the method-

ology that we now develop is that the probability

density f represents faithfully the age distribution of

interest. The sampling distribution of Y will not be a

faithful representation of the true age distribution if

grains are analysed on a qualitative basis of colour or

morphology rather than a quantitative random selec-

tion (see Fedo et al., 2003). The method presented

here is inapplicable for qualitative data and it is

important to stress that some data in the literature will

not be suitable for comparison using this method.

We will denote the density function for the

observed age random variable X by g. If the

measurement standard deviation varies as described

in the opening paragraph of this section, then g for site

1 is displayed in Fig. 1c. In practice, we will assume

that the measurement standard deviation for each

observation is known, so that we may regard r as

fixed for each sampled age. In this case the density g,

conditional on r, is given by

g xjrð Þ ¼

Z

f yð Þ/r x� yð Þdyuf 4/r xð Þ ð1Þ

where * denotes a convolution (as defined by the

integral in the above equation) and /r is a normal

density as defined above. In the absence of detailed

knowledge regarding the form of f, estimation of this

true age density from error contaminated observations

like X is a nonparametric deconvolution problem

(Stefanski and Carroll, 1990). This type of problem is

known to be very difficult, with good results often

requiring millions of observations. It follows that

comparison of two age distributions by direct estima-

tion of their underlying density functions, f1 and f2,

will typically be impractical. Nonetheless, we can

hope to compare f1 and f2 by computing a measure of

the distance between some transformed versions of

the densities that is easier to estimate than the density

function itself. As we show below, f*/c is such a

transformation of the true age density, where c is a

constant to be determined.

Let X1,. . .,Xn be a random sample of n observed

ages from a particular site. The kernel density

estimator (e.g. Wand and Jones, 1995) computed

from these data is defined by

ĝg xð Þ ¼
1

n

X

n

i¼1

Kh x� XiÞð ð2Þ

where Kh(x)=K(x/h)/h. Here the kernel K is a

probability density function, and h is a smoothing

parameter called the bandwidth. The standard normal

density function is a popular choice of kernel, and

turns out to be particularly appropriate in the present

context because of its computational properties.

Therefore we assume Kh=/h (i.e. a normal density

with standard deviation h) henceforth. A pictorial

illustration of a kernel density estimate constructed

from four data points is given in Fig. 2a. Here the

solid line is the density estimate itself, which is the

aggregate of the individual kernel functions (each

weighted to carry probability mass H) that are
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displayed as dashed lines. The vertical ticks on the x-

axis show the locations of the data points.

The estimator given in Eq. (2) can be generalized

by allowing the bandwidth to vary from data point to

data point. We then obtain the sample-point adaptive

estimator (e.g. Silverman, 1986)

f̂f xð Þ ¼
1

n

X

n

i¼1

/bi
x� XiÞ:ð ð3Þ

This differs from Eq. (2) in that the kernel is

assumed to be normal, and that the fixed bandwidth h

has been replaced data point specific bandwidths bi
(i=1,K,n) The effect of this change is illustrated in

Fig. 2b, where the middle two data points have much

smaller bandwidths, and hence narrow kernels, than

the outer two bandwidths. Let us denote the measure-

ment standard deviations for Xi, by ri, (i=1,. . .,n), so

that the density of Xi is g(xjri) when ri is regarded as

fixed. With this additional notation, we may compute

the expected value of f̂(x):

E½ f̂f xð Þ� ¼
1

n

X

n

i¼1

Z

/bi
x� yð Þg

�

yjriÞdy

¼
1

n

X

n

i¼1

Z

/bi
x� yð Þf 4/ri

yð Þdy

¼
1

n

X

n

i¼1

Z Z

/bi
x� yð Þf zð Þ/ri

y� zð Þdzdy

¼
1

n

X

n

i¼1

Z

f z� xð Þ/bi
4/ri

zð Þdz

¼
1

n

X

n

i¼1

f 4/ki
xð Þ

ð4Þ

where ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2i þ r2i
p

. In deriving this expression, we

have used the fact that the convolution of two normal

Fig. 2. Construction of kernel density estimates, depicting the individual kernel functions. (a) Individual kernel functions with constant

bandwidth; (b) individual kernel functions with variable bandwidth.
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densities, each with zero mean and with standard

deviations bi and ri, is itself a normal density with

mean zero and standard deviation ki. See Wand and

Jones (1995, Appendix C) for an example.

Now, suppose that we chose the sample point

bandwidth in Eq. (3) by bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � r2i
p

. Then

ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � r2i þ r2i
p

¼ c, and we obtain E[ f̂(x)]=

f*/c(x) from Eq. (4) so long as cNmax{r1,. . .,rn}.

We have therefore demonstrated that we can

construct an estimator f̂ whose expected value does

not depend on the measurement standard deviations.

However, what we are estimating is not the true age

density f, but rather the transformed version of the

density, or ddensity functionalT, f*/c. We shall

therefore refer to f̂ as the functional estimator

henceforth. Return to the example in the opening

paragraph of this section, suppose that we choose

c=38 (Ma). Then the functionals that f̂ is estimating

at sites 1 and 2 are displayed in (Fig. 3c and d),

respectively. Unlike the observed age densities in

Fig. 1, the density functionals are different for sites

1 and 2, displaying the same type of qualitative

difference between the sites as for the true age

densities. Admittedly, the functionals do not differ-

entiate between the sites quite as clearly as the true

age densities, but that is simply a reflection of the

statistical difficulties in appropriately accounting for

measurement error.

The discussion in the previous paragraph indicates

that we can compare age distributions from different

Fig. 3. (a, b) Density functions for true age distributions and (c, d) for corresponding density functionals, for two sites.
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sites by comparing estimates of the corresponding

density functionals. To elaborate on this, we extend

our previous notation as follows. Let X11,. . .,X1n1
be

observed ages from site 1, with corresponding

measurement standard deviations r11,. . .,r1n1
, and

let X21,. . .,X2n2
be observed ages from site 2, with

corresponding measurement error standard deviations

r21,. . .,r2n2
. As above, we assume that X11,. . .,X1n1

and X21,. . .,X2n2
can be regarded as random samples

from the underlying distributions at sites 1 and 2,

respectively. Then the age distributions between the

two sites can then be compared using the following

algorithm:

(1) Select cNmax{r11,. . .,r1n1
,r21,. . .,r2n2

}.

(2) Construct functional estimators f̂1 and f̂2 (from

Eq. (3)) from data from the first and second sites,

respectively. The same value of c is used in both

cases.

(3) Compute a distance between f̂1 and f̂2.

Two issues remain in order to implement this

algorithm. First, how should c be chosen; second,

how should the distance between f̂1 and f̂2 be

calculated?

The constant c should be sufficiently large so

that the smallest bandwidth, bmin, is not too tiny. If

this bandwidth is too small, then the functional

estimate will be undersmoothed and have an

unnatural spike at the datum corresponding to this

bandwidth. On the other hand, the larger the value

of c, the greater the extent to which fine detail in f

will be obscured in the convolution f*/c. This is

illustrated in Fig. 4, which displays functional

Fig. 4. Estimated functionals from data from site 1, with varying choice of smoothing parameter c.
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estimates obtained from a sample of 100 ages

observed at site 1 from our ongoing example. Fig.

4a depicts the functional estimate with the small

value c=30.2, producing the kind of undersmoothing

mentioned above. Fig. 4b shows the functional

estimate with the large value c=150.0, leading to

oversmoothing in which the bimodal nature of the

distribution is almost obscured. An ad hoc solution

is to choose

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2max þ h20

q

ð5Þ

where rmax=max{r11,. . .,r1n 1
,r21,. . .,r2n 2

} and

h0=max{h1,h2}. Here h i is the dleast squares

cross-validationT bandwidth (Wand and Jones,

1995, Section 3.3) computed from the data observed

at site i (i=1,2). The rationale for this choice is that

h1 and h2 are relatively simple and well understood

choices of bandwidth in the standard kernel density

estimation problem (Silverman, 1986). With c

defined according to Eq. (5), a bandwidth at least

as large as h0 will be applied at all data points, and

hence there should be no undersmoothing. Applying

this methodology to the data from sites 1 and 2

gave h0=23.3 and hence c=38.0. The result func-

tional estimate is displayed in Fig. 4c.

We now turn to quantification of the dissimilarity

between f̂1 and f̂2. A natural choice is to use L2

distance:

d12 ¼ dð f̂f 1; f̂f 2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z

ðf̂f 1 xð Þ � f̂f 2 xð ÞÞ
2

dx

s

: ð6Þ

The use of normal kernel functions allows this

distance be expressed in closed form. More specifi-

cally, the squared distance is given by

d212 ¼
1

n21

X

n1

i¼1

X

n1

j¼1

/b1ij
X1i � X1j

� �

þ
1

n22

X

n2

i¼1

X

n2

j¼1

/b2ij
X2i � X2j

� �

�
2

n1n2

X

n1

i¼1

X

n2

j¼1

/b3ij
X1i � X2j

� �

where b1ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b21i þ b21j

q

, b2ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b22i þ b22j

q

and b3ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b21i þ b22j

q

in which b1i and b2i are the ith bandwidth

for the first and second samples, respectively. We

remark that this distance measure is dependent

upon the choice of c. Hence, given three functional

estimates, f̂1, f̂2 and f̂3, the result d( f̂1, f̂2)bd( f̂1, f̂3)

may be interpreted as indicating greater similarity

between age distributions 1 and 2 than between

age distributions 1 and 3 only if the same value of

c was employed in all three cases. Furthermore,

there is no absolute scale for interpreting a single

distance in isolation. Instead, we must employ the

machinery of statistical significance testing to

determine whether an observed distance d12 pro-

vides evidence of a difference between the age

distributions in question. We describe such a test in

the following section.

In summary, the functional estimation allows

comparison between sets of age data with variable

measurement error by pretending that all ages

have a measurement error larger than any actual

measurement—the c parameter. Comparing these

bsmoothedQ distributions avoids bias possible when

attempting to compare data from different meas-

urement techniques with varying measurement

precision. An analogy can be made with the

concept of upward continuation of geophysical

data when attempting to combine high and low

resolution data (e.g. Kearey and Brooks, 1991).

The difference between two age distributions is

measured as the integral of the squared difference

of the two graphs when plotted on the same

scale.

4. A Monte Carlo permutation test

Suppose that we observe n1 randomly selected

(error prone) ages from site 1, and n2 randomly

selected (error prone) ages from site 2. It is

possible to test formally the hypothesis H0: f1=f2
(i.e. the true age distributions are the same) against

the alternative H1: f1pf2 (i.e. the true age distribu-

tions are the different) using a Monte Carlo

permutation test (e.g. Edgington, 1987). The idea

is as follows. Suppose that the data from both sites

are combined and n1 observations are drawn at

random (and without replacement) from the pooled

data set, leaving n2 data unselected. If H0 is

correct, then all the data can be regarded as
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coming from one population, and hence the data

sets of size n1 and n2 created in this fashion (the

dresampledT data) should have equivalent statistical

properties to those of the original data sets. More

specifically, the value of d(f̂1,f̂2) obtained from the

original samples should be comparable to the value

of d(f̂1*,f̂2*) where f̂1* and f̂2* are functional

estimates obtained from resampled data sets. This

reasoning motivates the following Monte Carlo

algorithm.

4.1. Monte Carlo permutation test algorithm

(1) Compute d12=d( f̂1, f̂2) from the observed

data.

(2) Let N denote the number of resampled data sets

that we will generate. For i=1,. . .,N:

(i) Pool all of the observed data. Randomly

sample (without replacement) n1 obser-

vations from the pooled data with corre-

sponding measurement error standard

deviations. Denote this data set by

X11*,. . .,X1n1
* and denote the correspond-

ing measurement error standard devia-

tions by r11*,. . .,r1n1
* . Denote the remaining

set of n2 data points and their corre-

sponding measurement error standard de-

viations by X21*,. . .,X2n2
* and r21* ,. . .,r2n2

* ,

respectively.

(ii) Construct functional estimate f̂ 1* from

X11*,. . .,X1n1
* and r11*,. . .,r1n1

* , and con-

struct f̂ 2* from X21* ,. . .,X 2n2
* and r21* ,. . .,

r2n2
* .

(iii) Compute d12* [i]=d(f̂ 1*, f̂ 2*).

(3) Compute test P-value by P ¼ 1=Nð Þ
PN

i¼1 I

d12bd124 i½ �
��

where I is the indicator variable

defined for any event A by I(A)=1 if A

occurs and 0 otherwise. Note that P is simply

the proportion of the Monte Carlo distances

d12* [1],. . .,d12* [N] that are greater than the

distance computed from the original observed

data.

The number of Monte Carlo samples, N, should

be chosen so as to balance the competing require-

ments of precision in the P-value and computational

speed. A value of 1000 would be a suitable choice

in general.

5. Clustering and dendrograms

A computed array of similarity or distance

measurements also provides the basis for clustering

methods that illustrate relationships among samples.

Such clustering methods are a common aspect of

fields such as taxonomy dealing with sample

classification (e.g. Sneath and Sokal, 1973; Gordon,

1999). Hierarchical (or agglomerative) clustering

methods are most widely used in geological appli-

cations and can produce tree-like dendrograms that

summarize sample similarity (e.g. Davis, 1986,

p. 503; Burrett and Berry, 2002; Swan and Sandi-

lands, 1995).

Hierarchical clustering begins by pairing the two

samples with the least distance (=greatest similar-

ity). This pair is then treated as a single sample

and the distance array is recalculated accordingly.

The next two samples with the least distance are

then clustered and the array recalculated. The

process continues until all samples have been

merged.

There are a variety of methods for assessing the

least distance between clusters (Sneath and Sokal,

1973; Hartigan, 1975; Davis, 1986; Swan and

Sandilands, 1995; Gordon, 1999). For instance,

two samples or clusters may be merged because

the average distance between all members of those

clusters is the least. The array is then recalculated to

measure the average distance between all remaining

clusters. Other methods use single (or complete)

linkages where the least distance (or even the

greatest distance) between any two members in

two clusters is the clustering criteria.

An unweighted average clustering method has

been used here for the sake of simplicity although

there is no simple solution to judge which clustering

method is best. It should be emphasized that this stage

introduces an element of subjectivity back into the

interpretative process. Swan and Sandilands, (1995,

p. 396) discuss this further and suggest that although

clustering is generally useful for illustrating structures

within data, profound conclusions should not be

made.

Davis (1986, p. 513) suggests the use of a

cophenetic values to assess any distortion in the

clustering process. The cophenetic distance is the

distance that two samples actually merge during
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the clustering process. The cophenetic correlation

coefficient is calculated as the correlation between

the original distance between all the samples and

the cophenetic distance. The greater the correlation

the less the merging has distorted the samples from

their original distances. It is recommended that

regardless of the clustering method chosen the

cophenetic correlation coefficient is reported.

Finally, regardless of the clustering method

chosen, a dendrogram graphically illustrates when

samples (represented by branches) merge at the

levels of similarity calculated in the clustering

process. The further along the distance coefficient

axis two samples (or the clusters they are part of)

merge the more dissimilar they are. Drawing a

phenon line (Swan and Sandilands, 1995) across

the dendrogram at an arbitrary distance level where

numerous samples have been amalgamated to fewer

clusters may emphasise those clusters as having

some inherent significance and aid interpretation of

the data. However, because the phenon line

distance is arbitrary, it is a qualitative classification

method and should only be used for illustrative

purposes. An example of a dendrogram and how it

can used to illustrate the relationships in a large set

of age data is given in Section 6.4.

6. Examples

6.1. Synthetic example data: unimodal components

Seven sets of unimodal data were synthetically

generated to illustrate the quantification of compar-

ison between different modes of age data. Each set

consisted of 100 ages and measurement uncertainty

that yield normal distributions based around a mean

value (100, 101, 105, 110, 125, 1000 and 4000 Ma)

with a standard deviation of 5 My. The measure-

ment error standard deviation is 10 My. The

calculated distances between age functional esti-

mates are given in Table 1 and each is computed

using the same value of c (15.7) to ensure

comparability. The P-values for Monte Carlo per-

mutation test of equal true distributions are also

presented in this table.

As expected, the distances increase as the mean of

the age distributions become increasingly displaced.

Tests for equality of distributions provides statistically

significant evidence (at a 5% level) of differences

between all pairs of distributions except for the T1–

T2, T2–T3 and comparisons. These two positive

results indicate the methodological limits in resolving

close age components.

6.2. Synthetic example data: modal precision

Six sets of unimodal data were synthetically

generated to illustrate the quantification of compar-

ison between unimodal age data of varying degrees of

measurement uncertainty. Each set consisted of 100

ages where the true age distribution was normal with

mean 1000 Ma and standard deviation 5 My in all six

cases. The measurement error standard deviations

were 1, 2, 5, 10, 20 and 50 My, respectively. The

calculated distances between age functional estimates

and the P-values for Monte Carlo permutation test of

equal true distributions are given in Table 2. Again, a

Table 1

Matrix of comparison between the seven synthetic data sets drawn from age distributions, T1–T7, with varying mean

T1 T2 T3 T4 T5 T6 T7

T1: N(100,5)F10 0.219 0.002 0 0 0 0

T2: N(101,5)F10 7.4 0.053 0 0 0 0

T3: N(105,5)F10 24.4 18.1 0.066 0 0 0

T4: N(110,5)F10 41.3 35.9 18.6 0 0 0

T5: N(125,5)F10 104.4 100.5 84.1 65.9 0 0

T6: N(1000,5)F10 171.2 171.9 170.2 168.7 174.0 0

T7: N(4000,5)F10 173.0 173.7 172.0 170.6 175.8 173.0

These distributions are described in the left-hand column, where the notation N(a,b)Fc indicates that the age distribution is normally distributed

with mean a and standard deviation b, and the measurement error standard deviation is c. The value of c for this comparison was 15.7. The

values in the lower left half of the table are the calculated distances between the functional estimates, multiplied by 103. The bold values are the

minimum and maximum values. The italicized values in the upper right half are P-values for testing equality of age distributions.
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common value of c (78.6) was used to ensure

comparability. This differs from the value of c

employed in the previous example and emphasises

that comparisons between age data are dependent on

the actual data being analysed; i.e. attempting to

compare the results in Tables 1 and 2 is meaningless

without repeating the calculations on all the samples

at the same time.

While the calculated distance between estimates

increases by amodest amount as the measurement error

becomes more pronounced, none of the permutation

tests provide significant evidence against the hypoth-

esis of equal underlying true age distributions (i.e. all

P-values greater than 0.05 in Table 2). This indicates

that there is no significant bias in the results of

comparison between functional estimates based on

high and low precision data. Therefore this method-

ology should be applicable to a wide range of age

dating techniques provided that the samples selected

are representative of the complete population.

6.3. Application: Ovens Graben, New South Wales

Exotic Neoproterozoic-aged zircon grains are a

common feature of sedimentary rocks in southeastern

Australia (Ireland et al., 1998; Sircombe, 1999;

Veevers, 2000), but the provenance of these grains

is enigmatic. The Mid-Triassic Hawkesbury Sand-

stone of the Sydney Basin, New South Wales, is a

significant part of this problem because it represents

an influx of southwesterly derived cratonic detritus

with a dominant exotic Neoproterozoic detrital zircon

age distribution into a foreland basin setting otherwise

dominated by Palaeozoic material from the northeast.

The mystery is further compounded by the paucity of

zircon ages in the Hawkesbury Sandstone that can be

attributed to the Palaeozoic Lachlan Fold Belt even

though the Mid-Triassic fluvial system flowed over

this geological region.

Southwest of the Sydney Basin, the OvensGraben is

an infrabasin beneath the Cainozoic Murray Basin and

is considered to contain sedimentary units deposited

coevally with the Hawkesbury Sandstone (Veevers,

1984, p. 241). Because a confirmed correlation would

provide further information about the provenance and

palaeogeography of the Hawkesbury Sandstone, three

Permian–Triassic samples from the Ovens Graben, in

particular the Jerilderie Formation, have been exam-

ined to search for potential correlations with previously

examined Sydney Basin samples.

Detrital zircon grains were extracted from drill

core using standard methods. Isotopic dating was

made by an excimer laser ablation-inductively

coupled plasma-mass spectrometer (ELA-ICP-MS)

at the Research School of Earth Sciences, Australian

National University, based on procedures modified

from Horn et al. (2000) and further described in

Appendix B.

The results of functional estimation and permu-

tation testing of these data against previously

examined eastern Australian samples in the Sydney

and Murray Basin (Sircombe, 1999) are given in

Table 3 and illustrated in Fig. 5. This data set also

provides an opportunity to examine the response of

the technique to age data from different techniques

resulting in different measurement errors. Previous

eastern Australian zircon samples were analysed by

SHRIMP whereas the Ovens Graben samples were

analysed by ELA-ICPMS and have a greater

precision (Fig. 5).

The calculated P-values (Table 3; Fig. 5) indicate

that the null hypothesis of equal age distributions

between Urana, Jerilderie-A and Jerilderie-B samples

cannot be rejected at a 5% significance level. Beyond

Ovens Graben, there are no grounds for rejecting

equality between the Urana and Tallong, Spring Hill

and WIM-150 samples. A similar conclusion exists

between the Jerilderie-B and Tallong samples at 5%

Table 2

Matrix of comparison between the seven synthetic data sets drawn

from age distributions, U1–U6, with varying degrees of measure-

ment error

U1 U2 U3 U4 U5 U6

U1: N(1000,5)F1 0.192 0.297 0.442 0.894 0.412

U2: N(1000,5)F2 0.1 0.323 0.595 0.765 0.279

U3: N(1000,5)F5 0.2 0.3 0.330 0.791 0.322

U4: N(1000,5)F10 0.7 0.6 0.8 0.467 0.219

U5: N(1000,5)F20 1.2 1.2 1.0 1.0 0.210

U6: N(1000,5)F50 12.1 12.0 11.9 11.8 10.9

These distributions are described in the left-hand column, where the

notation N(a,b)Fc indicates that the true age distribution is

normally distributed with mean a and standard deviation b, and

that the measurement error standard deviation is c. The values in the

lower left half of the table are the calculated distances between the

functional estimates, multiplied by 103. The value of c for this

comparison was 78.6. The italicized values in the upper right half

are P-values for testing equality of age distributions.
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significance although Jerilderie-A has no significant

relationship with any sample outside the Ovens

Graben. Importantly, the permutation testing between

the Jerilderie Formation and Hawkesbury Sandstone

Formation samples (Calga and Bundeena) indicate

that equality can be rejected.

Because the Tallong Conglomerate and WIM-150

samples are strongly associated with a Lachlan Fold

Belt provenance (Sircombe, 1999), at least the Urana

sample is interpreted as having a similar provenance.

The same conclusion is drawn for the Jerilderie

samples, although apparently weaker correlation sug-

gests that the age components present may be some-

what different from those seen in the other Lachlan

Fold Belt derived samples examined in this analysis.

These results quantify the interpretation of the

Ovens Graben sedimentary rocks as being derived

from the nearby Palaeozoic–Mesozoic basement

rather than linked with an exotic Neoproterozoic

provenance. Therefore, while there are striking strati-

graphic and lithologic similarities between the Jer-

ilderie Formation and Hawkesbury Sandstone these

are not seen in the corresponding detrital zircon age

distributions. This result further constrains interpreta-

tion of the palaeogeography of the Hawkesbury

Sandstone and suggests that fluvial transportation of

detritus across southeastern Australia may have been

quite restricted.

6.4. Application: Neoproterozoic and Cambrian sand-

stones, Australia–Tasmania

Berry et al. (2001) examined five Neoproter-

ozoic and Cambrian sandstones in Tasmania to

examine potential correlation with mainland Aus-

tralia in comparison with previously measured

detrital zircon age distributions from elsewhere in

Tasmania (Black et al., 1997) the Adelaide and

Lachlan foldbelts (Ireland et al., 1998). This

comparison has been expanded here to include

detrital zircon geochronology from Amadeus

Basin (Camacho et al., 2002). Unfortunately, the

comparison with qualitatively chosen zircon data

from Nevada used by Berry et al. (2001) is not

statistically valid using the method described here.

The results quantify the similarity between these 25

detrital zircon samples and thus the interpretation of

tectonic significance of these similarities (Table 4).

Clustering was performed with an averaging algorithm

and the cophentic correlation coefficient was 0.82. The

dendrogram (Fig. 6) can be cut at a distance level of

12.5 to define four distinct clusters.

The first cluster consists of samples dominated

by modes in the 1500–2000 Ma age range and also

contains representatives from all regions except the

Amadeus and Kanmantoo, but is particularly domi-

nated by Tasmanian Neoproterozic samples. The

Table 3

Matrix of comparison between the zircon age data for Ovens Graben, Murray Basin and Sydney Basin

The value of c for this comparison is 159. The values in the lower left half are the calculated distances between the age distribution estimations

multiplied by 103 shaded from white (smaller d) to dark grey (larger d). Bold numbers indicate the maximum and minimum distance values. The

italicized values in the upper right half are P-values for testing equality of age distributions. Dark shaded cells have Pb0.01, medium shaded

cells have 0.05NPN0.01, unshaded cells have PN0.05.
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Fig. 5. Comparison of detrital zircon age distributions from Ovens Graben with Murray Basin and Sydney Basin samples as described

in text. Left-hand column is age distribution plots summing individual Gaussian distributions (Sircombe, 2004). The vertical axis on

these plots represents probability density with the vertical scale altered for clarity; n indicates the number of individual age

measurements in each distribution. The spikiness of the distributions for the three Ovens Graben samples at top illustrates the precision

difference between these ELA-ICPMS analyses and the remaining SHRIMP analyses. Right-hand column illustrates the distance

between age estimates for the Ovens Graben samples. Hollow squares: Jerilderie-A; filled squares: Jerilderie-B; grey-filled diamonds:

Urana.
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Table 4

Matrix of comparison between the detrital zircon age data from Neoproterozoic and Cambrian sedimentary strata in Tasmania, southeastern and central Australia

Data sources: (1) Berry et al., 2001; (2) Black et al., 1997; (3) Ireland et al., 1998; (4) Camacho et al., 2002. The values in the lower left half are the calculated distances between the

age distribution estimations multiplied by 103 shaded from white (smaller d) to dark grey (larger d). Bold values indicate minimum and maximum. The value of c for this comparison

was 240. The italicised values in the upper right half are P-values for testing equality of age distributions. Dark shaded cells have Pb0.01, medium shaded cells have 0.05NPN0.01,

light shaded cells have PN0.05.
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Fig. 6. Dendrogram illustrating the similarity relationships among Tasmanian, Adelaidean and Amadeus detrital zircon age data. Phenon line at

distance of 12.5 creates four clusters discussed in the text. Age probability density distribution plots summing individual Gaussian distributions

(Sircombe, 2004) are given in left-hand column. The vertical axis on these plots represents probability density with the vertical scale altered for

clarity; the number associated with each plot indicates the number of individual age measurements in each distribution. References for data

given in Table 4. Average clustering method used; cophenetic correlation: 0.82.
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close similarity of two Tasmanian Cambrian samples

(Sticht Range and Stitt Quartzites) with Neoproter-

ozoic samples reinforces previous interpretations

(Berry et al., 2001) that many of the Tasmanian

Cambrian detrital zircons have been recycled from

Neoproterozoic units.

The second cluster consists of samples that

display a wide range of ages from 500 to 2500

Ma with principal modes at ~1250 and ~1750

Ma. This cluster contains representatives from the

Tasmanian Cambrian and the Neoproterozoic in

the Tasmanian, Adelaidean and Amadeus regions.

In the Amadeus, the older component is inter-

preted as an Arunta Inlier or Gawler craton

provenance (Camacho et al., 2002). Clustering

here suggests that this source was also available

for the middle and top of the Adelaidean

succession (Marino Arkose, Bonney Sandstone

and Mitcham Quartzite) and possibly the Neo-

proterozoic in Tasmania (Jacob Quartzite) with

subsequent recycling into the Cambrian (Animal

Creek and Gog Greywackes).

The third cluster consists of the three Cambrian

Kanmantoo Group samples and Mt. Kosciuszko

with age distributions generally consisting of a

major component at 500–700 Ma, a minor compo-

nent at 900–1200 Ma and scattering of ages into

the Archean. The distinctiveness of this group is

well known and is interpreted as being derived

from the Neoproterozoic Ross-Delamerian orogen

(Ireland et al., 1998)—a source apparently unavail-

able to Cambrian-aged samples in Tasmania or the

Amadeus.

The fourth cluster consists largely of the Amadeus

Cambrian and Neoproterozoic samples dominated by

age modes in the 1000–1500 Ma age range interpreted

as derived from the Musgrave Complex (Camacho et

al., 2002). The inclusion of the Cambrian Heatherdale

Shale from the Normanville Group within this cluster

suggests that there may be some provenance links

between the Musgrave Complex and younger succes-

sions within the Adelaide region.

7. Concluding remarks

The kernel functional estimation methodology

presented here is an advance on other methods

comparing detrital zircon age distributions. Pre-

vious methods have been inadequate in either

not having an inherent statistical test or not

accounting for measurement uncertainty in the

data. Sample data must also quantitatively

represent the age distributions—a strict criterion

that may exclude a lot of existing data in the

literature.

The methodology described here has been

demonstrated for both synthetic and real data.

While the calculated distance between age esti-

mates increases with increased precision of the

data, the probability of similarity does not fall

below significance levels (Table 2). In application

to real data, the results have been consistent with

previous measurements of similarity as well as

pointing out further subtleties in interpretation

(Tables 3 and 4). Application to provenance

problems with both regional and global scope has

demonstrated the ability to quantify relationships

between samples to aid provenance interpretations

in situations with implications for tectonic and

palaeogeographic reconstructions.

The principal advantage of this methodology will

be in providing a quantification of similarity

between detrital zircon age distributions and is thus

a powerful tool in the further development of

detrital zircon geochronology.
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Appendix A. Implementation of algorithms

The techniques described in this paper have

been applied using bRQ, a system for statistical

computation and graphics (Ihaka and Gentleman,
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1996; Grunsky, 2002). It is free software distrib-

uted under a GNU-style system and can be

accessed at http://www.r-project.org/. The functional

estimation and Monte Carlo permutation testing

algorithms have been implemented using the

following functions:
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Age data (age and 1 sigma measurement

uncertainty) are loaded from comma delimited

text files (CSV). A typical analytical session

in R, using the Tasmanian data of Berry et

al. (2001) as an example, would be as

follows:
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Appendix B. Laser ablation isotopic zircon dating

Laser ablation isotopic dating of the Ovens Graben

samples was conducted by a pulsed ArF LambdaPhy-

sik LPX 120I UV excimer laser operated at a constant

voltage between 21 and 23 kV at 5Hz. The spot

diameter was 29 Am. The ablated material was carried

by He–Ar gas mixture from a custom-designed

sample cell and flow homogenizer to a Fissions VG

PlasmaQuad II+ICP-MS. Raw count rates for 10B,
29Si, 32P, 96Zr, 206Pb, 207Pb, 208Pb, 232Th and 238U

were collected in time-resolved mode. 204Pb was not

measured because of a relatively high 204Hg back-

ground. The integration time for the three Pb isotopes

was 102.4 ms, whereas for the other isotopes it was

20.48 ms sampling at 1 point per peak. Data were

acquired for 20 s with the laser off and 40 s with the

laser on, giving~120 mass scans for a penetration

depth of ~20 Am.

Corrections were made for mass bias drift, isotopic

fractionation and common-Pb. After triggering the

laser it took three to four mass scans for the counts to

reach a steady signal so these initial datawere

excluded. Depth-dependent inter-element fractiona-

tion of Pb, Th, and U (e.g. Hirata and Nesbitt, 1995;

Horn et al., 2000) were corrected by reference to

standard zircon CZ3 (Nelson, 1997). Measured
207Pb/206Pb, 206Pb/238U and 208Pb/232Th ratios in

CZ3 were averaged over the course of the analytical

session to calculate correction factors. These correc-

tion factors were then applied to each sample to

simultaneously correct for instrument mass bias and

depth-dependent elemental and isotopic fractionation.

Common Pb was subtracted after corrections and

based on the difference between the measured and

expected 208Pb/206Pb given measured 208Pb/232Th

according to the methods of Compston et al. (1984).

Unknown samples were analysed sequentially with

standard zircon CZ3 (564 Ma, 550 ppm U; Nelson,

1997) and standard silicate glass NIST SRM 612

(Pearce et al., 1997). Data are excluded from further

provenance interpretation based on the degree of

discordance (5%) and ratio variability across scans

(MSWD: 10).

Table B1

Univariate U–Pb age data (age and 1r uncertainty in Ma) for Ovens

Graben samples

JRA JRB URA

x j x j x j

378.5 1.5 292.8 3.8 290.8 1.2

388.2 1.5 367.4 1.7 302.7 2.1

393.1 1.4 370.1 0.9 303.1 1.6

394.4 1.1 370.8 1.2 326.6 1.9

410.7 1.1 384.2 2.4 364.0 1.2

413.5 2.5 385.1 2.5 369.1 1.5

416.9 1.5 386.1 3.3 385.2 2.1

419.5 1.9 389.3 1.0 386.8 1.3

423.2 2.6 389.5 2.6 406.8 1.4

423.5 1.8 389.7 1.3 407.6 1.8

426.8 1.5 397.0 1.5 407.9 1.5

429.9 0.9 403.4 1.2 411.5 2.7

431.6 3.0 408.6 2.0 412.6 3.3

432.6 7.1 409.9 1.9 415.0 1.7

(continued on next page)
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2000. Carboniferous sand provenance in the Pennine Basin,

UK: constraints from heavy mineral and detrital zircon age data.

Sedimentary Geology 137, 147–185.

Hartigan, J.A., 1975. Clustering Algorithms. Wiley, New York.

JRA JRB URA

x j x j x j

432.7 1.8 410.0 2.0 419.0 1.4

433.5 2.3 412.3 1.3 426.3 1.7

433.8 1.9 415.2 1.8 431.2 1.4

435.4 3.3 417.5 2.9 432.6 1.2

441.0 1.9 419.4 1.0 443.5 2.4

441.6 2.9 420.3 2.2 451.4 1.2

444.9 2.9 424.3 1.4 505.0 1.9

450.0 2.4 424.7 2.6 520.5 2.8

451.9 2.9 426.1 2.1 523.9 1.9

453.5 1.7 430.6 1.7 611.5 2.8

453.9 1.9 432.9 1.8 639.0 1.7

477.8 2.5 441.2 1.8 749.1 2.4

489.0 3.1 463.8 3.4 853.8 4.8

493.4 1.7 486.5 1.9 863.7 2.4

494.2 2.5 487.0 2.1 1027.6 3.2

499.2 3.2 487.5 2.1 1102.6 17.3

504.0 1.5 499.7 1.5 1155.7 4.0

507.1 2.3 504.6 1.8 1180.6 4.7

508.2 2.0 505.3 2.5 2808.8 7.0

510.5 3.1 506.5 1.4

526.0 1.7 507.9 3.1

558.0 2.6 545.0 2.0

602.9 2.3 568.9 2.0

603.5 2.7 570.1 1.7

623.6 1.9 590.5 2.6

631.3 3.1 591.2 3.0

632.3 4.2 592.6 2.6

990.6 5.6 995.9 2.9

1032.9 2.6 1106.6 2.3

1046.4 5.0 1158.0 9.0

1138.5 8.2 1158.5 5.2

1717.9 8.4 1211.8 5.3

2406.8 5.6 1651.2 28.9

2469.7 12.0 1679.5 5.7

2505.8 6.1 1765.3 5.2

1802.8 6.5

JRA: Jerilderie-A; JRB: Jerilderie-B; URA: Urana.

Table B1 (continued)

K.N. Sircombe, M.L. Hazelton / Sedimentary Geology 171 (2004) 91–111110



Hirata, T., Nesbitt, R.W., 1995. U–Pb isotope geochronology of

zircon: evaluation of the laser probe-inductively coupled plasma

mass spectrometry technique. Geochimica et Cosmochimica

Acta 59, 2491–2500.

Horn, I., Rudnick, R.L., McDonough, W.F., 2000. Precise elemental

and isotope ratio determination by simultaneous solution

nebulization and laser ablation-ICP-MS: application to U–Pb

geochronology. Chemical Geology 164, 281–301.

Ihaka, R., Gentleman, R., 1996. R: a language for data analysis and

graphics. Journal of Computational and Graphical Statistics 5,

299–314.

Ireland, T.R., Flfttman, T., Fanning, C.M., Gibson, G.M., Preiss,

W.V., 1998. Development of the early Paleozoic Pacific margin

of Gondwana from detrital zircon ages across the Delamerian

orogen. Geology 26, 243–246.

Kearey, P., Brooks, M., 1991. An Introduction to Geophysical

Explorations. Blackwell Scientific Publications, London.

Nelson, D.R., 1997. Compilation of SHRIMP U–Pb zircon geo-

chronology data 1996. Geological Survey of Western Australia

Record 1997/2.

Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P.,

Jackson, S.E., Neal, C.R., Chenery, S.P., 1997. A compilation

of new and published data for NIST SRM 610 and NIST SRM

612 glass reference materials. Geostandards Newsletter 21,

115–144.

Press, W.H., Teukolosky, S.A., Vetterling, W.T., Flannery, B.P.,

1988. Numerical Recipes in C: The Art of Scientific Computing.

Cambridge Univ. Press, Cambridge.

Rainbird, R.H, Stern, R.A., Khudoley, A.K., Kropachev, A.P.,

Heaman, L.M., Sukhorukov, V.I., 1998. U–Pb geochronology of

Riphean sandstone and gabbro from southeast Siberia and its

bearing on the Laurentia–Siberia connection. Earth and Plane-

tary Science Letters, 409–420.

Sambridge, M.S., Compston, W., 1994. Mixture modelling of multi-

component data sets with application to ion-probe zircons. Earth

and Planetary Science Letters 128, 373–390.

Silverman, B.W., 1986. Density Estimation for Statistics and Data

Analysis. Chapman & Hall, London.

Sircombe, K.N., 1999. Tracing provenance through the isotope ages

of littoral and sedimentary detrital zircon, eastern Australia.

Sedimentary Geology 124, 47–67.

Sircombe, K.N., 2000. Quantitative comparison of large sets of

geochronological data using multivariate analysis: a provenance

study example from Australia. Geochimica et Cosmochimica

Acta 64, 1593–1616.

Sircombe, K.N., 2004. AgeDisplay: an EXCEL workbook to

evaluate and display univariate geochronological data using

binned frequency histograms and probability density distribu-

tions. Computers & Geosciences 30, 21–31.

Sneath, P.H.A., Sokal, R.R., 1973. Numerical Taxonomy: The

Principles and Practice of Numerical Classification. W. H.

Freeman, San Francisco.

Stefanski, L., Carroll, R.J., 1990. Deconvoluting kernel density

estimators. Statistics 21, 169–184.

Swan, A.R.H., Sandilands, M., 1995. Introduction to Geological

Data Analysis. Blackwell Science, Oxford.

Veevers, J.J., 1984. Phanerozoic Earth History of Australia. Oxford

Science Publishers, Oxford.

Veevers, J.J., 2000. Antarctic Beardmore-Ross and Mirny prove-

nances saturate Paleozoic–Mesozoic East Gondwanaland with

0.6–0.5 Ga zircons. In: Veevers, J.J. (Ed.), Billion-year earth

history of Australia and neighbours in Gondwanaland. Gemoc

Press, Sydney.

Wand, M.P., Jones, M.C., 1995. Kernel Smoothing. Chapman &

Hall, London.

K.N. Sircombe, M.L. Hazelton / Sedimentary Geology 171 (2004) 91–111 111


	Comparison of detrital zircon age distributions by kernel functional estimation
	Introduction
	Previous methods
	Functional estimation
	A Monte Carlo permutation test
	Monte Carlo permutation test algorithm

	Clustering and dendrograms
	Examples
	Synthetic example data: unimodal components
	Synthetic example data: modal precision
	Application: Ovens Graben, New South Wales
	Application: Neoproterozoic and Cambrian sandstones, Australia-Tasmania

	Concluding remarks
	Acknowledgments
	Implementation of algorithms
	Laser ablation isotopic zircon dating
	References


