УДК 549.6+549.612(234.852)

© Кудрявцева О.Е.¹, Бакшеев И.А.¹, Попов М.П.², Устинов В.И.³

ТУРМАЛИН-СОДЕРЖАЩИЕ МЕТАСОМАТИТЫ УРАЛЬСКИХ ИЗУМРУДНЫХ КОПЕЙ, СРЕДНИЙ УРАЛ. СТАТЬЯ III. ТУРМАЛИН-МАРГАРИТОВЫЕ ПРОЖИЛКИ С АЛЬБИТОМ, ФЛОГОПИТОМ И ХЛОРИТОМ

 1 – Геологический факультет Московского государственного университета им. М.В.Ломоносова
2 – Уральская государственная горно-геологическая академия

3 – Институт геохимии и аналитической химии им. В.И. Вернадского, РАН (Представлена д.чл. УАГН, проф. Э.М. Спиридоновым)

© Kudryavtseva O.E., Baksheev I.A., Popov M.P., Ustinov V.I.

TOURMALINE-BEARING ALTERATIONS IN THE EMERALD MINES, CENTRAL URALS. PART 3. TOURMALINE-MARGARITE VEINLETS WITH ALBITE, PHLOGOPITE AND CHLORITE

Abstract

Tourmalines from tourmaline-margarite veinlets can be divided into two groups. The first one is relic from phlogopitite with the Fe₂*100%/(Fe₂+Mg), Ca*100%/(Ca+Na) ratios and flour content ranging from 13.8 to 34.6%, from 18.4 to 45.9%, and from 0.11 to 0.44 apfu, respectively. The second group includes newly formed tourmaline that is simulteneous with margarite. This can be classified as variety between the shorl-dravite endmembers with the Fe₂*100%/(Fe₂+Mg) and Ca*100%/(Ca+Na) ratios ranging from 18.7 to 41.1% and from 5.5 to 16.1%. Based on the F⁻ contents tourmaline composition ranges from dravite to "fluor-dravite" (0.03-0.72 apfu F). Crystallization temperature of the tourmaline estimated from the tourmaline-biotite thermometer is 350-360°C. Tourmaline-margarite veinlets have been formed at the f_{F2} increasing and low values of f_{C2} and f_{CO2} .

Для многих месторождений изумрудов «сланцевого» геолого-промышленного типа характерны маргарит-содержащие жилы и прожилки: Изумрудные Копи на Урале, Рила в Болгарии [4], Роопа в Австралии [8] и другие.

Данная статья продолжает серию работ о турмалинсодержащих метасоматитах Уральских Изумрудных копей [1, 2]. В работе приведена характеристика химического состава турмалина и ассоциирующих с ним маргарита, флогопита, хлорита и альбита, изотопного состава кислорода турмалина. Дана оценка условий их формирования.

Методы исследования

Химический состав минералов определен с помощью электронного микрозонда "Сатеса SX-50" (кафедра минералогии МГУ, аналитик Н.Н.Кононкова); ток зонда на образце 30 нА, ускоряющее напряжение 15 кВ, диаметр зонда ~3 мкм. Эталоны: роговая обманка (Si, Al, Ca, Mg, Fe), ортоклаз (K), альбит (Na), фторфлогопит (F), пирофанит (Mn, Ti), ванадинит (V), NiO (Ni), Cr₂O₃ (Cr). Чувствительность определений 0.02%, ошибка измерений основных компонентов ±2 отн.%, элементов примесей ~20 отн.%; для процедуры коррекции использованы РАР поправки.

Определение содержания лития в турмалине выполнено методом эмиссионной пламенной спектрофотометрии (прибор AAC Varian – 875) в лаборатории ИГЕМ РАН, аналитик Г.Е.Каленчук; чувствительность метода 0.5 г/т.

ИК спектры минералов получены на кафедре минералогии МГУ с помощью спектрофотометра UR-20; щелевая программа 3; способ нанесения – эмульсия на вазелиновом масле. ЯГР спектры и их интерпретации выполнены в Институте минералогии УрО РАН в г. Миассе, аналитик А.Б.Миронов.

Изотопный анализ кислорода турмалина проведен с помощью фторидной методики выделения O_2 и последующей масс-спектрометрической регистрацией $\delta^{18}O$ (SMOW) с воспроизводимостью ±0.2‰ [5].

Результаты исследования

На месторождениях Уральских Изумрудных Копей маргарит слагает оторочки мощностью 1-5 см около бериллплагиоклазовых жил, в которых развиты также кварц, мусковит, турмалин, флюорит, апатит и молибденит. Согласные бериллплагиоклазовые жилы окружены ореолом зеленовато-серых слюдитов [3]. Кроме того, маргарит и турмалин являются главными минералами жил и прожилков, рассекающих сланцеватость изумрудоносных слюдитов. В их состав входят перемен-52 ные количества флогопита, хлорита и альбита и корунда. Длина секущих жил и прожилков варьирует от нескольких см до 3 м, мощность достигает 50 см. Нами изучен минеральный состав и химический состав минералов таких образований.

Маргарит представлен чешуйками белого цвета размером до 2 мм. По содержанию Mg и Fe можно выделить два типа маргарита: первый характеризуется высокими содержаниями -0.24 и 0.12 ф.е., второй - существенно более низкими - 0.01-0.04 и 0.01-0.02 ф.е., соответственно. Содержание Na в маргарите составляют 0.09-0.15 ф.е. По содержанию F и Ti можно выделить две разновидности маргарита второго типа: с низким содержанием F (0.07-0.14 ф.е.) и титана (до 0.06 мас.% TiO₂) (табл. 1, ан. 1-2) и с более высокими содержаниями F (0.20-0.25 ф.е.) и титана (до 0.15 мас.% TiO₂) (табл. 1, ан. 4-8).

ИК-спектр изученного маргарита (рис. 1а) отвечает обычному безбериллиевому маргариту по [4].

Флогопит слагает мелкочешуйчатые агрегаты золотистокоричневого цвета. Границы кристаллов флогопита и турмалина - компромиссные (индукционные). По химическому составу выделяется две разновидности флогопита. Первая характеризуется повышенными содержаниями A1 (1.36-1.42 ф.е.) и относительно пониженными фтора (0.72-0.77 ф.е.). Представительный анализ минерала (мас.%): SiO₂ 40.26, TiO₂ 0.17, Al₂O₃ 16.56, FeO 6.79, MnO 0.13, MgO 20.57, K₂O 9.03, Na₂O 0.33, F 3.17, H₂O_{nacy} 2.31, F=O 1.33, сумма 97.99; кристаллохимическая формула в 7 расчете на катионов: $(K_{0.82}Na_{0.05})_{0.87}(Mg_{2.23}Fe_{0.41}Al_{0.34}Ti_{0.01}Mn_{0.01})_{3}[Al_{1.08}Si_{2.92}O_{10}](OH_{1.12}F)_{1.08}$ 0.73O0.15)2.00. Железистость [f=Fe_{обш}*100%/(Fe_{обш}+Mg)] варьирует от 12.4 до 15.6%. Для второй характерны более низкие концентрации Al (1.17-1.25 ф.е.) и более высокие F (0.98-1.13 ф.е). Содержание титана варьирует от 0.16 до 1.15 мас.% TiO₂. Железистость составляет 12.3-15.6%. (табл. 2). Таким образом, первая разновидность по химическому составу отвечает высокофтористому флогопиту, вторая – фторфлогопиту.

<u>Хлорит</u> представлен мелкими единичными чешуйками. Отличительной особенностью минерала является повышенное содержание фтора (0.21-0.39 ф.е.). Химический состав минерала (мас.%) SiO₂ 27.32-29.03; Al₂O₃ 21.71-23.10; MgO 20.32-23.05; FeO 17.19-10.32; TiO₄ 0.06-0.08; MnO 0.57-0.27; F 0.66-1.22; 53

Химический состав (мас.%) маргарита из турмалин-

Таблица 1

маргаритовых прожилко

	Ma	ларит	ОВЫХ	а прож	килкс	в	-	
Компонент	1	2	3	4	5	6	7	8
SiO_2	30.06	29.66	30.70	30.88	30.58	29.59	30.90	30.79
TiO ₂	0.06	0.06	0.13	0.15	0.14	0.14	0.13	0.09
Cr ₂ O ₃	0.06	0.04	0.04	0.08	0.00	0.08	0.35	0.03
V_2O_3	0.04	0.05	0.00	0.03	0.00	0.05	0.05	0.00
Al ₂ O ₃	49.44	47.38	45.78	47.55	49.70	48.36	46.78	48.82
NiO	0.06	0.00	0.00	0.05	0.01	0.04	0.01	0.03
MnO	0.05	0.07	0.02	0.00	0.00	0.03	0.00	0.00
FeO	0.25	0.23	2.14	0.36	0.13	0.26	0.18	0.13
MgO	0.26	0.41	2.42	0.25	0.13	0.19	0.24	0.13
CaO	12.83	12.98	11.11	11.92	12.28	12.79	12.18	12.04
K ₂ O	0.01	0.01	0.02	0.41	0.04	0.06	0.04	0.03
Na ₂ O	0.93	0.64	0.91	1.31	0.97	0.64	0.93	1.17
F	0.48	0.32	1.22	0.93	0.61	0.90	1.16	0.66
$\mathrm{H_2O}^*$	4.12	4.13	3.04	3.84	4.02	3.88	3.72	4.04
-F=O	0.20	0.13	0.52	0.39	0.26	0.38	0.49	0.28
Сумма	98.45	95.84	97.03	97.35	98.35	96.63	96.19	97.68
4	ормулы	ные един	ницы в	расчете	на 6 ка	атионо)B	
Si	2.02	2.06	2.05	2.11	2.05	2.03	2.13	2.08
Al^{IV}	1.98	1.94	1.95	1.89	1.95	1.97	1.87	1.92
Сумма	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Al^{VI}	1.95	1.93	1.64	1.94	1.97	1.95	1.94	1.97
Mg	0.03	0.04	0.24	0.03	0.01	0.02	0.02	0.01
Ti	0.00	0.00	0.11	0.02	0.01	0.01	0.01	0.00
Fe	0.01	0.01	0.12	0.02	0.01	0.01	0.01	0.01
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00
V	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Сумма	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Ca	0.93	0.96	0.79	0.87	0.88	0.94	0.90	0.87
Na	0.12	0.09	0.12	0.17	0.13	0.09	0.12	0.15
K	0.00	0.00	0.00	0.04	0.00	0.01	0.00	0.00
Сумма	1.05	1.05	0.91	1.08	1.01	1.03	1.03	1.03

Таблица 2

Продолжение таблицы 1

Компонент	1	2	3	4	5	6	7	8
OH-	1.85	1.91	1.35	1.75	1.80	1.78	1.72	1.82
F	0.10	0.07	0.26	0.20	0.13	0.20	0.25	0.14
O ²⁻	0.00	0.02	0.00	0.05	0.00	0.00	0.03	0.00
Сумма	1.95	2.00	1.61	2.00	1.93	1.97	2.00	1.96
Al_{Σ}	3.92	3.87	3.60	3.83	3.92	3.92	3.80	3.89

Примечание. * - рассчитано по стехиометрии.

Рис. 1. ИК-спектры маргарита (А) и турмалина (Б) из турмалин-маргаритовых прожилков.

H₂O_{расч} 12.86-12.98, -F=O 0.51-0.28, сумма 102.14-98.09. Кристаллохимическая формула в расчете на 10 катионов: (Мg_{3 04-} $_{3.51}Fe_{0.91-0.46}Mn_{0.05-0.02}Ti_{0-0.01})_4(Al_{1.47-1.57}Fe_{0.53-0.43})_2[Al_{1.26-1.04}Si_{2.74-1.04}Si_{2.75}Si_{2.75}Si_{2.75}Si_{2.75}Si_{2.75}Si_{2.75}Si_{2.75}Si_{2.75}$ 2.96O10] (OH7.39-7.16O0.22-0.63F0.21-0.39)8. Согласно классификации [10], хлорит представлен низкожелезистыми брунсвигитом (Si=2.96, f 32.2 %) и шериданитом (Si=2.74, f 20.1%).

Плагиоклаз представлен мелкозернистыми агрегатами (срастаниями) альбита Ап₉₋₁₀.

Турмалин слагает светло- и темно-коричневые удлиненные, оптически слабо зональными и очень слабо плеохроирующими кристаллами размером до 0.5 см и их сростками кристаллов диаметром до 5 см. Наблюдения в шлифах показывают, что отдельные зерна частично замещены мелкокристаллическим агрегатом флогопита, маргарита и альбита (рис. 2) и, 55

Химический состав (мас.%) флогопита из турмалин-

маргаритовых прожилков											
Компонент	1	2	3	4	5						
SiO ₂	42.63	42.66	44.09	43.31	41.51						
TiO ₂	1.12	0.18	0.19	0.19	0.19						
Cr ₂ O ₃	0.00	0.00	0.00	0.18	0.18						
V ₂ O ₃	0.05	0.03	0.00	0.00	0.00						
Al ₂ O ₃	14.63	14.19	13.85	14.15	14.77						
NiO	0.00	0.05	0.02	0.00	0.05						
FeO	6.33	5.83	5.67	5.87	5.66						
MnO	0.20	0.16	0.16	0.17	0.16						
MgO	21.55	21.98	21.53	22.01	22.43						
CaO	0.00	0.00	0.00	0.00	0.13						
K ₂ O	8.90	9.40	9.30	9.34	9.72						
Na ₂ O	0.51	0.50	0.43	0.58	0.50						
F	5.01	4.63	4.32	5.01	6.08						
H ₂ O*	1.18	1.40	1.23	1.11	0.83						
-F=O	2.11	1.95	1.82	2.11	2.56						
Сумма	100.00	99.06	98.95	99.81	99.65						
Форму	льные еди	ницы в р	асчете н	а 7 катио	нов						
Si	3.04	3.06	3.16	3.09	2.98						
Al ^{IV}	0.96	0.94	0.84	0.91	1.02						
Сумма	4.00	4.00	4.00	4.00	4.00						
Mg	2.29	2.35	2.30	2.34	2.40						
Fe	0.37	0.35	0.34	0.35	0.34						
Al ^{VI}	0.27	0.26	0.34	0.28	0.24						
Ti	0.06	0.01	0.01	0.01	0.01						
Mn	0.02	0.01	0.01	0.01	0.01						
Cr	0.00	0.00	0.00	0.01	0.01						
V	0.00	0.00	0.00	0.00	0.00						
Ni	0.00	0.00	0.00	0.00	0.00						
Сумма	3.00	3.00	3.00	3.00	3.00						
К	0.81	0.86	0.85	0.85	0.89						
Na	0.07	0.07	0.06	0.08	0.07						
Ca	0.00	0.00	0.00	0.00	0.01						
Сумма	0.88	0.93	0.91	0 94	0.96						

Продолжение таблицы 2

Компонент	1	2	3	4	5
F	1.13	1.05	0.98	1.13	1.38
OH-	0.56	0.67	0.59	0.53	0.40
O ²⁻	0.32	0.28	0.43	0.34	0.21
Сумма	2.00	2.00	2.00	2.00	2.00
Al_{Σ}	1.23	1.20	1.17	1.19	1.25
f,%	13.8	13.0	12.9	13.0	12.3

Примечание. * - рассчитано по стехиометрии. $f=Fe_{obm}*100\%/(Fe_{obm}+Mg)$

Рис. 2. Брекчированный кристалл реликтового турмалина слюдитов (I), сцементирован и частично замещен тонкокристаллическим агрегатом флогопита, маргарита и альбита. В нижней части фотографии расположен кристалл новообразованного турмалина (II). Николи скрещены. Ширина поля зрения 0.96 мм.

вероятно, являются реликтовыми. Границы между пластинками маргарита и кристаллами новообразованного турмалина без признаков замещения одного минерала другим (рис. 3).

По величине кальциевости [*Ca*=Ca*100%/(Ca+Na)] турмалины можно разделить на две группы. К первой относятся частично замещенные (реликтовые) кристаллы с высокой величи-57 ной *Ca* (18.4-45.9%), ко второй – новообразованные с более низкой *Ca* (5.5-17.4%) (табл. 3, 4, рис. 4).

Таблица 3

Химический состав (мас.%) реликтового турмалина

Amminec	Лимический состав (мас. 70) реликтового турмалина										
Компонент	1	2	3	4	5	6ц	7 пр	8 к			
$B_2O_3^*$	10.69	10.67	10.59	10.80	10.53	10.60	10.41	10.68			
SiO ₂	34.83	34.87	34.95	36.85	34.92	34.89	35.52	36.28			
TiO ₂	0.27	0.21	0.29	0.22	0.28	0.46	0.15	0.11			
Cr ₂ O ₃	0.06	0.00	0.02	0.17	0.21	0.06	0.00	0.03			
V_2O_3	0.00	0.00	0.03	0.02	0.00	0.09	0.06	0.08			
Al ₂ O ₃	34.30	33.78	32.97	34.02	32.69	34.10	32.06	32.75			
NiO	0.00	0.04	0.04	0.00	0.04	0.01	0.10	0.00			
FeO	4.28	4.16	4.24	3.85	3.68	6.56	2.63	2.81			
MnO	0.03	0.14	0.07	0.00	0.05	0.04	0.06	0.03			
MgO	8.82	9.13	9.16	8.54	9.33	6.97	9.45	9.87			
K ₂ O	0.02	0.01	0.01	0.04	0.02	0.00	0.00	0.01			
CaO	0.97	0.94	1.44	1.05	1.27	1.02	2.29	1.27			
Na ₂ O	2.25	2.30	2.08	2.17	2.18	2.03	1.49	2.09			
F	0.47	0.60	1.12	1.07	1.18	1.02	1.12	0.90			
H_2O^*	3.44	3.36	3.27	3.29	3.29	3.22	3.14	3.18			
-F=O	0.20	0.25	0.47	0.45	0.50	0.43	0.47	0.38			
Сумма	100.23	99.95	99.80	101.64	99.17	100.64	97.72	99.71			
(Формуль	ные ед	иницы	в расче	те не 15	катионо)B				
В	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00			
Si	5.66	5.68	5.74	5.93	5.76	5.72	5.73	5.91			
Al_T	0.34	0.32	0.26	0.07	0.24	0.28	0.27	0.09			
Сумма Т	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00			
Alz	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00			
Mg	2.14	2.20	2.24	2.05	2.30	1.70	2.17	2.41			
Fe	0.58	0.57	0.58	0.52	0.50	0.90	0.49	0.38			
Aly	0.24	0.17	0.12	0.38	0.12	0.31	0.32	0.19			
Ti	0.03	0.03	0.04	0.03	0.03	0.06	0.01	0.01			
Cr	0.01	0.00	0.00	0.02	0.03	0.01	0.00	0.00			
V	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01			
Ni	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00			
Mn	0.00	0.02	0.01	0.00	0.02	0.01	0.01	0.00			
Сумма Ү	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00			

Компонент	1	2	3	4	5	6ц	7 пр	8 к			
(Формуль	ные ед	иниць	і в расче	те не 15	катион	ЭB				
Na	0.71	0.71 0.73 0.66 0.68 0.70 0.65 0.50									
Вакансия	0.12	0.11	0.09	0.13	0.08	0.17	0.08	0.12			
Ca	0.17	0.16	0.25	0.18	0.22	0.18	0.42	0.22			
K	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00			
Сумма Х	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
OH ⁻ w	0.73	0.65	0.58	0.54	0.62	0.53	0.50	0.46			
$O^{2-}W$	0.02	0.00	0.31	0.02	0.25	0.30	0.08	0.29			
F_{W}	0.24	0.31	0.11	0.44	0.13	0.17	0.42	0.24			
Сумма W	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00			
Al_{Σ}	6.57	6.49	6.38	6.45	6.36	6.59	6.59	6.28			
f,%	21.4	20.5	20.6	20.2	17.9	34.6	18.5	13.8			
Ca, %	19.2	18.4	27.7	21.1	24.4	21.7	45.9	25.1			

Продолжение таблицы 3

Примечание ц – центр кристалла, пр – промежуточная зона, к – край кристалла. f=Fe*100%/ (Fe+ +Mg). *Ca*=Ca*100%/(Ca+Na), * - рас-считано по стехиометрии.

Рис. 3. Кристалл новообразованного турмалина в мелкочешуйчатой массе маргарита. При одном николе. Ширина поля зрения 0.96 мм. Турмалин первой группы обогащен фтором (0.24-0.62 ф.е.), содержит титан (0.11-0.46 мас% TiO₂), его железистость варьирует от 13.8 до 34.6% (табл. 3). По классификации [9] турмалины первой группы относятся к низко- и высокофтористому дравиту (рис. 4).

Содержание фтора в турмалинах второй группы варьирует в широких пределах, что позволяет разделить их на три подгруппы. Турмалины первой подгруппы характеризуются низкими концентрациями фтора (0.03-0.04 ф.е. F) и ассоциируют с богатым фтором флогопитом и с бедным фтором маргаритом. Вариации содержаний титана, железистости и кальциевости - от 0.13 до 0.21 мас% TiO_2 , от 18.7 до 21.2% и от 11.6 до 16.1%, соответственно (табл. 4, ан. 1-3). Турмалины второй и третьей подгрупп ассоциируют со фторфлогопитом и относительно высокофтористым маргаритом. Кристаллы турмалина второй подгруппы зональны по химическому составу: от центральных к краевым частям увеличиваются содержание фтора от 0.17-0.22 до 0.21-0.37 ф.е. и кальциевость от 5.5-11.4% до 7.5-12.3%. В целом, железистость варьирует в пределах от 20.5 до 28.8%.

Изменения железистости в пределах одного кристалла носит осциляционный характер. Содержание титана составляет 0.10-0.14 мас.% TiO₂ (табл. 4, ан. 4-9). Концентрация фтора в турмалинах третьей подгруппы варьирует от 0.41 до 0.61 ф.е., титана – от 0.14 до 0.38 мас.% TiO₂. Железистость изменяется от 20.4 до 41.1 %, а величина *Ca* - от 7.4 до 17.4% (табл. 4, ан. 10-20). По классификации [9] турмалины первой подгруппы отвечают низкофтористому дравиту, турмалины второй подгруппы - высокофтористому дравиту, а турмалины третьей подгруппы – "фтордравиту" (рис. 4).

Таблица 4

Химический состав (мас.%) турмалина из турмалинмаргаритовых прожилков

	Компонент	1	2	3	4 ц	5 к	6ц	7 к	8ц	9 п
	$B_2O_3^*$	10.44	10.76	10.92	10.76	10.63	10.96	10.86	10.90	11.00
	SiO ₂	35.57	37.38	37.79	35.29	35.28	36.08	36.33	35.73	37.47
ſ	TiO ₂	0.21	0.14	0.13	0.13	0.13	0.10	0.14	0.11	0.12
Ī	Cr ₂ O ₃	0.04	0.03	0.05	0.04	0.08	0.00	0.00	0.10	0.00
Ī	V ₂ O ₃	0.00	0.01	0.00	0.02	0.02	0.00	0.00	0.06	0.02
6)									

Продолжение таблицы 4

	Продолжение таолицы 4										
Компон	нент	1		2	3	4ц	5 к	6ц	7 к	8ц	9 п
		Фор	мульнь	іе едини	ицы в ра	счете н	а 15 ка	гионов			
Al_{Σ}		6.34		6.31	6.40	6.63	6.53	6.93	6.62	6.79	6.48
f,%		18.7	r	21.2	19.3	21.7	22.2	28.8	23.6	27.5	20.9
Ca, C	%	16.1		11.6	12.0	11.4	12.3	5.5	7.5	6.9	8.7
	•	1	r	r	1		Прод	олжен	ние та	блиц	ы 4
Компо- нент	10 к	11	12 п	13 к	14	15	16	17	18	19	20
B ₂ O ₂ *	10.88	10.84	10.83	10.84	10.83	10 71	10 58	10.69	10 73	10.65	10.58
SiO ₂	37.02	35.57	36.25	36.20	36.97	36.44	35.43	35.78	35.99	35.70	35.40
TiO ₂	0.14	0.13	0.11	0.14	0.14	0.35	0.38	0.33	0.36	0.38	0.23
Cr ₂ O ₃	0.07	0.00	0.04	0.02	0.05	0.00	0.00	0.02	0.04	0.04	0.04
V ₂ O ₃	0.04	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.02	0.00
Al ₂ O ₃	33.75	34.80	35.18	35.43	33.34	34.03	33.69	34.60	34.10	34.23	35.37
NiO	0.00	0.00	0.09	0.08	0.11	0.07	0.00	0.08	0.09	0.00	0.00
FeO	4.13	4.28	4.65	4.55	4.13	6.60	6.50	7.55	6.30	7.18	6.62
MnO	0.08	0.00	0.13	0.05	0.04	0.06	0.14	0.04	0.13	0.07	0.00
MgO	8.96	8.91	7.79	7.75	9.06	6.68	6.96	6.06	7.16	6.37	5.70
K ₂ O	0.01	0.03	0.01	0.00	0.02	0.00	0.02	0.02	0.03	0.02	0.00
CaO	0.62	0.57	0.23	0.28	0.56	0.68	0.81	0.77	0.73	0.55	0.28
Na ₂ O	2.41	2.40	2.12	2.25	2.43	2.07	2.13	2.13	2.28	2.31	1.95
F	0.66	0.50	0.45	0.56	1.08	1.02	1.18	1.04	1.15	0.89	0.79
$\mathrm{H_2O}^*$	3.24	3.23	3.23	3.23	3.23	3.19	3.16	3.19	3.20	3.18	3.16
-F=O	0.28	0.21	0.19	0.24	0.45	0.43	0.50	0.44	0.48	0.37	0.33
Сумма	101.73	101.05	100.93	101.16	101.54	101.51	100.48	101.86	101.81	101.22	99.79
		Фор	мульнь	іе едини	ицы в ра	счете н	а 15 ка	гионов			
В	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Si	5.92	5.70	5.81	5.80	5.93	5.91	5.82	5.82	5.83	5.82	5.81
Al_T	0.08	0.30	0.19	0.20	0.07	0.09	0.18	0.18	0.17	0.18	0.19
Сумма Т	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Alz	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Mg	2.13	2.13	1.86	1.85	2.17	1.62	1.70	1.47	1.73	1.55	1.40
Fe	0.55	0.57	0.62	0.61	0.55	0.90	0.89	1.02	0.85	0.98	0.90
Aly	0.27	0.28	0.47	0.50	0.24	0.42	0.34	0.45	0.34	0.41	0.66
Ti	0.02	0.02	0.01	0.02	0.02	0.03	0.05	0.04	0.04	0.04	0.03
Cr	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01
V	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
62											

Продолжение таблицы 4

									лиць
Компонент	1	2	3	4ц	5 к	6ц	7 к	8ц	9 п
Al ₂ O ₃	32.28	33.17	34.10	34.83	33.90	37.06	35.09	36.12	34.83
NiO	0.11	0.05	0.06	0.00	0.11	0.00	0.00	0.03	0.01
FeO	3.58	4.10	3.70	4.28	4.23	5.11	4.57	5.09	4.08
MnO	0.14	0.04	0.06	0.13	0.10	0.04	0.04	0.06	0.04
MgO	8.76	8.57	8.67	8.52	8.47	7.02	8.13	7.51	8.64
K ₂ O	0.00	0.00	0.00	0.00	0.02	0.01	0.01	0.00	0.02
CaO	0.82	0.59	0.60	0.58	0.62	0.20	0.32	0.28	0.41
Na ₂ O	2.36	2.49	2.42	2.48	2.44	1.89	2.19	2.08	2.39
F	0.07	0.08	0.06	0.44	0.55	0.33	0.42	0.38	0.74
H_2O^*	3.11	3.21	3.26	3.21	3.17	3.27	3.24	3.25	3.28
-F=O	0.03	0.03	0.03	0.19	0.23	0.14	0.18	0.16	0.31
Сумма	97.46	100.59	101.78	100.52	99.52	101.93	101.16	101.53	102.74
	Форм	ульные е	диниць	і в расчо	ете на	15 катис	онов	1	1
В	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Si	5.92	6.04	6.02	5.70	5.77	5.72	5.81	5.70	5.92
Al _T	0.08	0.00	0.00	0.30	0.23	0.28	0.19	0.30	0.08
Сумма Т	6.00	6.04	6.02	6.00	6.00	6.00	6.00	6.00	6.00
Alz	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Mg	2.17	2.06	2.06	2.05	2.06	1.66	1.94	1.79	2.04
Fe	0.50	0.55	0.49	0.57	0.59	0.67	0.60	0.68	0.54
Al_{Y}	0.26	0.31	0.40	0.33	0.30	0.65	0.43	0.49	0.40
Ti	0.03	0.02	0.02	0.02	0.02	0.01	0.02	0.01	0.01
Cr	0.01	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.00
V	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
Ni	0.01	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00
Mn	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01
Сумма Ү	3.00	2.96	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Na	0.76	0.78	0.75	0.78	0.77	0.58	0.68	0.64	0.73
Вакансия	0.09	0.12	0.15	0.12	0.12	0.40	0.27	0.31	0.20
Ca	0.15	0.10	0.10	0.10	0.11	0.03	0.05	0.05	0.07
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Сумма Х	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
OH W	0.67	0.55	0.55	0.73	0.61	0.79	0.72	0.78	0.40
O ²⁻ w	0.30	0.41	0.42	0.05	0.11	0.04	0.06	0.00	0.23
F_W	0.04	0.04	0.03	0.22	0.28	0.17	0.21	0.19	0.37
Сумма W	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00

Продолжение таблицы 4

Компонент	10 к	11	12 ц	13 к	14	15	16	17	18	19	20
		Фор	мульны	е едини	цы в рас	счете на	15 кати	юнов			
Ni	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.00	0.00
Mn	0.01	0.00	0.02	0.01	0.01	0.01	0.02	0.01	0.02	0.01	0.00
Сумма Ү	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Na	0.75	0.75	0.66	0.70	0.76	0.65	0.68	0.67	0.72	0.73	0.62
Вакансия	0.14	0.14	0.30	0.25	0.14	0.23	0.18	0.20	0.14	0.17	0.33
Ca	0.11	0.10	0.04	0.05	0.10	0.12	0.14	0.13	0.13	0.10	0.05
K	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
Сумма Х	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fw	0.47	0.71	0.72	0.58	0.55	0.52	0.61	0.53	0.59	0.46	0.41
OH- ^w	0.20	0.00	0.05	0.14	0.29	0.16	0.17	0.18	0.17	0.28	0.33
$O^{2-}W$	0.33	0.25	0.23	0.28	0.16	0.32	0.22	0.29	0.24	0.26	0.26
Сумма W	1.00	0.96	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Al_{Σ}	6.36	6.58	6.65	6.70	6.30	6.51	6.52	6.63	6.51	6.58	6.85
f,%	20.5	21.2	25.1	24.8	20.4	35.7	34.4	41.1	33.0	38.7	39.5
<i>Ca</i> , %	12.4	11.6	5.7	6.4	11.3	15.4	17.4	16.7	15.0	11.6	7.4

См. примечание к таблице 3.

График, представленный на рисунке 5, демонстрирует прямую зависимость между содержаниями Al и количеством вакансии в первой кристаллохимической позиции в турмалине, что свидетельствует о вероятной на схеме изоморфизма: \Box + $Al^{3+} \leftrightarrow Na^+ + (Mg, Fe)$.

На рисунке 16 приведен ИК-спектр турмалина. По данным ЯГР-исследований усредненной большая часть железа в турмалине находится в двухвалентной форме $\mathrm{Fe}^{3^+}/\mathrm{Fe}_{\mathrm{ofin}}$.=0.08. По данным эмиссионной пламенной спектрофотометрии содержание лития в турмалине составляет 0.053 мас.% Li₂O, по данным полуколичественного спектрального анализа содержание бериллия составляет десятки г/т. Величина $\delta^{18}\mathrm{O}$ (SMOW) турмалина составляет +10.3‰.

Рис. 4. Химический состав турмалинов турмалинмаргаритовых прожилков. А – соотношение \Box - Са – Na(+K); Б – соотношение Fe-Al-Mg. В –; соотношение анионов O²⁻ - F⁻ - OH⁻ в позиции W. Контуром обозначено поле химических составов турмалинов других типов метасоматитов Уральских Изумрудных Копей. Поля: I – вакансионные турмалины; II - кальциевые турмалины; III – щелочные турмалины; IV – окси-турмалины; V – фтор-турмалины; VI – гидроксил-турмалины. Границы полей нанесены в соответствии с работой [9]. 1 – реликтовые турмалины слюдитов; 2-4 – новообразованный турмалин: 2 – низкофтористый дравит, 3 – высокофтористый дравит, 4 – «фтордравит».

Рис. 5. График зависимости между содержанием Al и количеством вакансии в турмалинах турмалин-маргаритовых прожилков. Условные обозначения см. рис. 4.

Обсуждение результатов

Морфология кристаллов турмалина первой группы и их химический состав (содержание фтора, величины *Ca* и f) который идентичен дравитам турмалин-флогопитовых слюдитов [2], позволяют сделать предположение, что они являются реликтовыми минералами изумрудоносных слюдитов.

Ассоциация низкофтористых дравита, маргарита и высокофтористого флогопита, по-видимому, фиксирует начало процесса формирования маргаритсодержащих прожилков. В дальнейшем процесс шел с увеличением f_{F2} во флюиде, что привело к образованию высокофтористого дравита, «фтордравита», фторфлогопита и маргарита с относительно высокими содержаниями фтора.

Реликтовые турмалины и турмалины, парагенные с маргаритом, характеризуются различным положением фигуративных точек на диаграмме ^ĵ-Ca-Na(+K). Для первых характерен

65

тренд к увиту, как и для турмалинов слюдитов [2], для вторых – к вакансионным турмалинам (рис. 4а). Последнее может быть обусловлено тремя факторами: 1) повышенной кислотностью среды минералоообразования; 2) парагенетической ассоциацией с маргаритом, при образовании которой имеющийся в растворе кальций связывается преимущественно в слоистом алюмосиликате и 3) возможно также и более низкой температурой кристаллизации по сравнению с турмалинами слюдитов в условиях низкой фугитивности CO₂.

Слабый плеохроизм у кристаллов турмалина свидетельствует о преобладании в его составе ионов железа одной из валентностей. Фигуративные точки составов изученных дравитов на треугольнике Fe-Al-Mg лежат выше линии шерл-дравит (рис. 4б), что косвенно указывает на незначительные количества в них Fe³⁺ [12]. Это подтверждается данными спектроскопических исследований. Таким образом, большая часть железа в турмалине находится в двухвалентной форме. Незначительные содержания ионов трехвалентного железа указывают на невысокий окислительный потенциал среды минералообразования. Содержание Li в тумалине прожилков близко к таковому для дравитов слюдитов (0.021-0.046 мас.% Li₂O).

Новообразованные «фтордравиты» из турмалинмаргаритовых прожилков характеризуются в целом большей величиной железистости и ее размахом, чем низко- и высокофтористые дравиты (рис. 4б). Вероятно, это, обусловлено снижением температуры в процессе формирования прожилков.

Для высокофтористых дравитов и «фтордравитов», парагенных с маргаритом, характерна в целом более высокая глиноземистость и более широкий размах ее величины и меньшие содержания Na по сравнению с турмалинами других минеральных ассоциаций (рис. 4a, б). Вероятная схема изоморфизма: \Box +Al³⁺ \leftrightarrow Na⁺+(Mg, Fe).

Температура формирования высокофтористого дравита и "фтордравита", оцененная по биотит-турмалиновому геотермометру [7], составляет 350-360°С, что коррелирует с температурой определенной по хлоритовому геотермометру [6] (~380°С). Согласно экспериментальным данным бескварцевые маргарит содержащие минеральные ассоциации образуются при давлении не более 3 кбар [13]. Величина $lg(f_{\rm HF}/f_{\rm H2O})$, рассчитанная по 66 уравнению, предложенному в работе [11], для флогопита турмалин-маргаритовых прожилков с хлоритом, турмалинфлогопитовых слюдитов и фторфлогопит-турмалинфлюоритовых прожилков в слюдитах [2] составляет соответственно -4.308 и -5.083 и -3.955. Эти расчеты показывают, что турмалин-маргаритовые прожилки формировались при более высокой активности фтора, чем турмалин-флогопитовые слюдиты, но более низкой, по сравнению со фторфлогопиттурмалин-флюоритовой ассоциацией.

Величина δ^{18} О‰ водной фазы флюида, ответственного за формирование турмалина, рассчитанная по уравнению [14], составляет +8.5‰. Это позволяет предположить магматогенную и/или метаморфогенную природу источника растворов.

Выводы

Турмалин-маргаритовые прожилки формировались на фоне повышения f_{F2} , более высокой по сравнению с другими метасоматитами активности Al^{3+} и низких величинах f_{O2} и f_{CO2} при температуре 350-360°С, давлении не более 3 кбар с участием магматогенных и/или метаморфогенных флюидов.

Благодарности

Авторы признательны профессору Э.М.Спиридонову за советы и замечания, высказанные при подготовке рукописи к печати.

Литература

1. Бакшеев И.А., Кудрявцева О.Е. Фирсова Н.П., Попов М.П. Турмалинсодержащие метасоматиты Уральских Изумрудных Копей. Статья І. Ранние альбит-турмалин-роговообманковые метасоматиты.// Уральский геологический журнал, 2002, N 4. с. 25-35.

2. Бакшеев И.А., Кудрявцева О.Е., Беляцкий Б.В., Попов М.П., Саранцева Н.П., Выдрин М.В. Турмалин-содержащие метасоматиты Уральских Изумрудных копей. Статья II. Слюдиты (флогопититы). // Уральский геологический журнал, 2003, N 4. с. 3-34.

3. Куприянова И.И. О генезисе Малышевского бериллий-изумрудного месторождения (Средний Урал, Россия). // Геол. рудн. м-ний, 2002. Т. 44. N 4. С. 314-330.

4. Минералы. Справочник. Т. IV. Вып. 1. Слоистые силикаты. М.: Наука, 1992. **5. Устинов В. И.** Методические аспекты геохимии изотопов легких элементов. //Всесоюз. школа-семинар "Методы изотопной геохимии". М.: ГЕОХИ АН СССР, 1983. С. 7.

6. Cathelineau M. Cation site occupancy in chlorites and illites as a function of temperature // Clay Miner. 1988. V. 23. P. 471-485.

7. Colopietro M.R., Friberg L.M. Tourmaline-biotite as a potential geothermometer for metapelites, Black Hills, South Dakota // GSA, 1987. Abstracts. N 140176.

8. Grundman G., Morteani G. Alexandrite, emerald, ruby and topaz in a biotite-phlogopite fels from Poona, Cue district, Western Australlia // Austral. Gem. 1998. V. 20. N 4.

9. Hawthorne F.S., Henry D.J. Tourmaline classification // Eur. J. Min. 1999. V.11. N 2. P. 201-215.

10. Foster M. Interpretation of the composition and a classification of the chlorites. // US. Geol. Surv. Prof. Paper. 1962. 414-A. P. 1-33.

11. Munoz J.L. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. Rev. Mineral, 1984. V. 13. P. 469-491.

12. Slack J.F. Tourmaline associations with hydrothermal ore deposits. In Boron: Mineralogy. Petrology, and Geochemistry (E.S.Grew, A.M.Anovitz, eds). Rev. Mineral, 1996. V. 33. P. 559-644.

13. Velde B. The stability and natural occurrence of margarite. // Min. Mag. 1971. V. 38. P. 317-318.

14. Zheng Y-F. Calculation of oxygen isotope fraction in hydroxyl-bearing silicates // Earth Planet. Sci. Lett. 1993. V.120, p.247-263.