УДК 550.84.094+552.2+.321.1(234.854)

© Д. чл. УАГН Г. И. Самаркин, Е. Я. Самаркина

ПЕТРОГРАФИЧЕСКИЙ СОСТАВ И ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ГРАНИТОИДНЫХ СЕРИЙ БОРЛИНСКОГО КОМПЛЕКСА МУГОДЖАР (ЮЖНЫЙ УРАЛ)

Институт геологии и геохимии им. А.Н. Заварицкого УрО РАН 620151 Екатеринбург, Почтовый переулок, 7

© Samarkin G. I., Samarkina E. Ja.

THE PETROGRAPHIC COMPOSITION AND GEOCHEMICAL ESPECIALLY OF THE GRANITOID SERIES OF THE BORLINSKY COMPLEX MOOGODJAR (SOUTH URALS)

Автореферат

В составе борлинского комплекса впервые выделены три последовательно развитые серии: адамеллит-гранитная - D₃fm, габбро-монцодиорит-граносиенит-гранитная - C₁₋₂, субщелочная гранит-лейкогранитная - P₁₋₂. Соответственно доказана принадлежность гранитоидов выделенных серий к S, I, A типам. В породах изучено распределение Na, K, Sr, Rb, Li, Cs, Ba, Pb, Sn, Mo, La, Ce, Sm, Eu, Tb, Yb. Для гранитов характерна геохимическая специализация на Mo - 3.3-6.8 г/т. В них установлено закономерное снижение содержаний Ba от ранних - D₃fm -571 г/т, C₁₋₂ - 280 г/т к поздней серии - P₁₋₂ - 214 г/т и увеличение в этом направлении суммы La, Ce, Sm от 18.4-90.9 г/т до 73.6-138.8 г/т, что обусловлено повышением лейкократовости и щелочности гранитоидных пород.

Ключевые слова: петрография, петрохимия, гранитоиды, Борлинский комплекс, Мугоджары, Южный Урал.

Abstract

The borlinsky granit complex includs of the three series: adamellitegranitic - D_3 fm, gabbro-monzodiorite-granosienite-granitic - C_{1-2} and subalkali granite-leicogranitic - P_{1-2} . The granit series belong to S, I, A types. It was stady the distribution of Na, K, Sr, Rb, Li, Cs, Ba, Pb, Sn, Mo, La, Ce, Sm, Eu, Tb, Yb in the rock types. The granites have of the geochemical specialization on Mo - 3.3-6.8 g/t. The Ba decrease from early (D_3 fm - 571 g/t, C_{1-2} - 280 g/t), to late serie (P_{1-2} - 214 g/t) of granite. Has been estimated from the early series to late serie also granitics increase sum of La, Ce, Sm from 18.4-90.9 g/t to 73.6-138.8 g/t, that connection with increase of the rock alkalinity.

Геологическое развитие

К борлинскому комплексу относится субмеридиональный пояс гранитоидных массивов, приуроченных к зоне тектонических разломов, отделяющих рифейские метаморфические породы Мугоджарского блока от среднедевонских вулканических пород зеленокаменной зоны Западных Мугоджар (рис.1). Протяженность пояса около 100 км. Большинство интрузий борлинского комплекса распологаются среди рифейских метаморфических пород Мугоджарского блока. Реже они развиты среди вулканических пород зеленокаменной зоны Западных Мугоджар. Интрузии часто вытянуты в субмеридиональном направлении, что говорит о контролирующей роли в их расположении зоны тектонических нарушений.

До настоящего времени нет единства взглядов на геологическое развитие гранитоидов борлинского комплекса [4, 5, 6, 9. 10. 24. 27]. Тем не менее. исследователи считают, что в составе его развиты все группы интрузивных пород от габбро, диоритов, кварцевых диоритов до сиенитов и аляскитовых гранитов (табл. 1). В начале исследований гранитоиды борлинского комплекса были отнесены к соколовско-сарбайскому [4], а позднее к южной группе магнитогорского комплекса [5, 6]. Впервые борлинский комплекс гранитоидов выделен Г.И. Водорезовым [9,10]. Г.И. Водорезовым была указана приуроченность интрузий борлинского комплекса к зоне глубинных тектонических разломов, отделяющих Мугоджарский блок от вулканического пояса Западных Мугоджар [10]. Возраст формирования гранитоидов борлинского комплекса был отнесен к нижнему карбону на основании интрузивного влияния гранитов на визейские известняки в районе р. Байбек. В то же время было сказано, что "возраст этого комплекса точно не установлен" [10, стр. 122].

Проведенные полевые исследования позволили нам в борлинском комплексе выделить три последовательно развитые гранитоидные серии: адамеллит-гранитную, габбро-монцодиорит-граносиенит-гранитную и субщелочную гранит-лейкогранитную.

Для пород адамеллит-гранитной серии характерны плоские выходы и матрацевидная отдельность. Иногда они подвержены катаклазу с образованием булковидных линз (р. Шан-44

ские карты м-ба 1:200000 Г. А. Костик, 1:50000 И. Е. Костик, 1:50000 А. Ф. Шарапова, 1:100000 И. П. Смирно-Схематическая геологическая карга района борлинского комплекса (использованы геологиче-Рис. 1. (Ba).

 тектоническая зона борлинского глубинного разлома, 6 - зайский, 3 - Сарыобинский, 4 - Дамдынский, 5 - Амангель-- нижний палеозой Мугоджар-- вулканиты и габбдынский, 6 - Караобинский, 7 - Котртобенский, 8 - Байментауский, 9 - Тамдынский, 10 - Байменбулакский, 11 4 блока (слюдистые сланцы, плагиогнейсы, аплитогнейсы, кварциты, амфиболиты), - Северо-Бугетсайский, 2 - Южно-Бугетсайский, 3 - Сарыобинский, 4 поздний рифей ŝ осадочные отложения карбона, роиды зеленокаменной зоны Западных Мугоджар, 5 Геректауский, 12 - Итастыблакский. 2 гранитоиды, массивы: CKOLO

Схема развития гранитоидного магматизма борлинского комплекса

Таблица 1

December 7	Г	ф D И	Common D T	Г
Водорезов I.	ьилиоина Г. И.,	Федоров В. И.	Старков В. Д.,	1 ранитоид-
И., 1961 [10]	1970[6]	и др., 1970	знаменскии	ные серии по
		[27]	н.д., 1977 [24]	авторам
І фаза	І фаза	І фаза	I фаза (главная)	1. Адамеллит-
1. Розовые	 Нормальные 	1. Диориты	1. Граниты	гранитная,
ортоклазовые	биотитовые	2. Гранодио-	лейкократовые	$D_3 fm(?)$
граниты	граниты	риты	биотитовые и	 Габбро-
	2 Гранодиориты		биотит-амфибо-	монцодиорит-
II фаза	II фаза	П фаза	ловые на от-	граносиенит-
1. Граниты	1. Субщелочные	1. Амфиболо-	дельных участ-	гранитная,
красные сред-	пертитовые	вые граниты	ках переходят в	C_1 - C_2
незернистые	граниты	2. Биотитовые	граносиениты,	3. Субщелоч-
лейкократовые	2. Граносиени-	граниты	сиениты, грано-	ная гранит-
ортоклаз-	ты и кварцевые	3. Лейкограни	диориты, дио-	лейкогранит-
пертитовые	сиениты слага-	ты	риты	ная, Р-Т ₁
2. Кварцевые	ют тела в пер-	4.Гранит-	II фаза (допол-	
сиениты пере-	титовых грани-	порфиры,	нительных	
ходящие в	тах и диоритах	гранит-	интрузий)	
сиениты	южной части	аплиты	1. Лейкократо-	
III фаза	массива	5. Гибридные	вые мелкозер-	
1. Мелкозер-		породы, кали-	нистые граниты	
нистые диори-		шпатизиро-	2. Гранит-	
ты, дайки		ванные дио-	порфиры	
диорит- пор-		риты, кварце-		
фиритов		вые сиениты,		
IV фаза		рапакивиоб-		
1. Дайки круп-		разные ще-		
нозернистых		лочные гра-		
щелочных		ниты		
сиенитов и				
щелочных				
гранитов				

ды-Ащисай). В отличие от адамеллит-гранитной серии гранитоиды габбро-монцодиорит-граносиенит-гранитной серии наряду с плоскими выходами и грубой матрацевидной отдельностью образуют параллелепипедальную и шаровую отдельности. В серии установлено гомодромное развитие от габбро до гранитов. Гранитоиды этой серии (обычно дайки кварцевых сиенитов, монцодиоритов, граносиенитов, монцоадамеллитов) пересекают породы адамеллит-гранитной серии (правый берег р. Орь к северу от пос. Шиликтысай), а сами пересекаются дайками миаролитовых гранитов субщелочной гранит-лейкогранит-46 ной серии (Тамдынский, Байменбулакский, Теректауский массивы). Для пород субщелочной гранит-лейкогранитной серии характерны булковидная, шаровая и параллелепипедальная отдельности. Дайки этой серии часто располагаются вдоль плоскостей матрацевидной отдельности пород адамеллит-гранитной серии и секут породы габбро-монцодиорит-граносиентгранитной серии. Как установлено полевыми исследованиями в большинстве массивов борлинского комплекса наблюдается развитие пород всех трех серий, что говорит о полигенном и полихронном формировании массивов. Реже развиты массивы состоящие из гранитоидов одной серии. При этом в северной части пояса преобладают массивы адамеллит-гранитной (Южно-Бугетсайский) и субщелочной гранит-лейкогранитной (Северо-Бугетсайский, Дамдынский, Караобинский и др.) серий. В южной, наряду с указанными сериями, широко развиты гранигаббро-монцолиорит-граносиенит-гранитной тоилы серии (Тамдынский, Байменбулакский, Теректауский, Итастыблакский массивы).

Определенный калий-аргоновым методом возраст гранитоидов борлинского комплекса варьирует от фамена до поздней перми включительно, что подтверждает длительное развитие в этой зоне гранитоидного магматизма и говорит о многократной тектонической активизации зоны сочленения рифейских метаморфических пород Мугоджарского блока с поясом вулканических пород Западных Мугоджар (табл. 2). На основании данных калий-аргонового возраста гранитоидов в зоне борлинского глубинного разлома отчетливо выделяется три этапа тектонической активизации: позднедевонский (фаменский) - 364 млн. лет, ранне-среднекаменноугольный - 345-293 млн. лет, раннепозднепермский - 281-251 млн. лет (табл. 2). Выделенные этапы тектонической активизации борлинского разлома соответствуют по времени трем этапам рифтогенной активизации Уральской складчатой системы [19, 20, 23].

Петрографическая характеристика

Адамеллит-гранитная серия. В составе серии преобладают среднезернистые равномернозернистые, реже слабо порфировидные биотитовые адамеллиты (SiO₂ - 68-71%) и граниты (SiO₂ - 72-74%). Структура пород гипидиоморфнозернистая, местами катакластическая. Состав: кварц, плагиоклаз-олигоклаз, калие-47

Таблица 2 Калий-аргоновый возраст гранитоидов борлинского комплекса

Автор	№ про- бы	Массив	Порода	Минерал	Возраст млн.лет
Самаркин	49*	Байментауский	Гранит амфибол-	Биотит	252 ±8
Г. И.			биотитовый	Амфибол	338±11
Самаркин	41*	Тамдынский	Гранит амфибол-	Биотит	280±8
Г. И.			биотитовый	Амфибол	320±12
[24]	345-C	Байментауский	Биотитовый	Биотит	345
			гранит		
[24]	452-C	Котртобенский	Амфиболовый	Амфибол	364
		г. Котртобе	гранит		
**		Тамдынский	Щелочной гранит	Порода	333±7
**		Тамдынский	Гранит-порфир	Порода	251;
			жильный	Порода	293
**		Южная часть ком-	Гранит амфибол-	Порода	319
		плекса	биотитовый		
**		Тастыкарасайский	Лейкогранит	Порода	281
[27]		Борлинский массив	Лейкогранит	Порода	275
		(комплекс)			

* - номера проб соответствуют табл. 3. ** - данные И. П. Смирнова

вый полевой шпат, биотит. Центральные части зерен плагиоклаза слабо пелитизированы и серицитизированы, иногда соссюритизированы. Состав калиевого полевого шпата изменяется от промежуточного ортоклаза (Or_{91 7}Ab_{8 0}An_{0 3}, Δp=0, ΔZ=0.50) до максимального микроклина (Or₉₈₇Ab₀₉An₀₄, Δp=0.75, ΔZ=0.82) [22]. При микроскопическом исследовании в них очень редко наблюдается четкая микроклиновая решетка. Под микроскопом, в отличие от интенсивно пертитизированных красновато-бурых калиевых полевых шпатов гранитоидов габбро-монцодиоритграносиенит-гранитной и субщелочной гранит-лейкогранитной серий, они имеют светло-серый цвет с слабо окрашенными буроватыми участками, и содержат тонкие неравномерно развитые пертитовые вростки альбита. Местами в них видны мирмекитоподобные вростки кварца, что было установлено ранее [28]. В калиевых полевых шпатах гранитоидов более поздних серий мирмекиты не установлены. Развитие мирмекитовых структур, наряду с другими петрографическими особенностями, существенно отличает их от гранитов более поздних серий и позволяет относить граниты адамеллит-гранитной серии к более глубин-48

ным, мезоабиссальным образованиям [31] и сопоставлять с позднедевонскими гранитами Западно-Кайрактинского массива [24].

Биотит в гранитах средне-мелкочешуйчатый, часто замещается хлоритом с выделением окислов железа. В единичных случаях наблюдается замещение биотита мусковитом, особенно в жильных гранит-аплитах. По химическому составу биотит относится к магнезиально-железистой группе триоктаэдрических слюд. Характеризуется высокими значениями коэффициента общей железистости - Fe*100/(Fe+Mg) = 54.6-71.0%. По общей глиноземистости выделяется два ряда биотитов - флогопит-аннитовый (Al₂O₃=12.62-13.89%) и истонит-сидерофиллитовый (Al₂O₃=17.64-18.25%). Последние по химическому составу сопоставимы с биотитами верхнепалеозойских гранитов Южного Урала [21], что еще раз подтверждает более глубинные условия формирования интрузий адамеллит-гранитной серии по сравнению с интрузиями габбро-монцодиоритграносиенит-гранитной и субщелочной гранит-лейкогранитной серий борлинского комплекса.

Габбро-монцодиорит-граносиенит-гранитная серия. Состав серии варьирует от монцогаббро (SiO₂ - 53%) до гранита (SiO₂ - 72-74%). Макроскопически это серые, розоватосветлосерые средне- мелкозернистые породы, равномернозернистые в группах основных и средних пород. В более кислых породах, граносиенитах и гранитах, местами отчетливо выражена порфировидная структура и светло-сереневатый цвет, что сближает их с нижнекаменноугольными высококалиевыми гранитоидами Восточно-Кайрактинского массива. Структура в основных и средних породах габбровая, монцонитовая, реже призматическизернистая, в кислых - гипидиоморфнозернистая, иногда, микропегматитовая.

Характерной особенностью всех пород этой серии является развитие в них амфибола, постоянное присутствие кварца, зонального плагиоклаза, красновато-бурого пелитизированного калиевого полевого шпата, криптопертитового в габбро и диоритах и микропертитового в кварцевых монцодиоритах, граносиенитах, гранитах. Иногда в ассоциации с магнетитом видны мелкие реликтовые зерна клинопироксена. В породах кислой группы совместно с амфиболом развит биотит. Биотит обычно

замещает амфибол, т.е. является более поздним неравновесным по отношению к амфиболу минералом. Это объясняет более молодой калий-аргоновый возраст биотита по сравнению с сосуществующим амфиболом (табл. 2). Биотитовые граниты для ланной серии не характерны.

Содержание плагиоклаза варьирует от 60% в габбро до 30-40% в гранитах. Состав изменяется от лабрадора-андезина в габбро и диоритах до кислого олигоклаза и альбита в гранитах. Центральные части зерен плагиоклазов часто серицитизированы и соссюритизированы, что говорит о их первичной зональности. Иногда зерна плагиоклаза обрастают каймой калиевого полевого шпата. Состав калиевого полевого шпата в гранитоидах серии изменяется от низкого ортоклаза (Or_{98.9}Ab_{2.9}An_{0.2} Δp=0, ΔZ=0.80) до микроклин-ортоклаза (Or_{47.8}Ab_{50.1}An_{2.1}, Δp=0/0.75, ΔZ=0.79/0.79, Or-25%, Mic-75%) [22]. Амфиболы относятся к группе кальциевых амфиболов (Na+K)/(Na+K+Ca) ≤ 33, к ряду низкоглиноземистых высокожелезистых роговых обманок -Al₂O₃= 6.70-4.64%, Fe*100/(Fe+Mg)= 52.2-77.6%. Содержание их варьирует от 50-40% в габбро до 3-5% в гранитах и граносиенитах. Биотит относится к магнезиально-железистой группе триоктаэдрических слюд, замещает амфибол. Часто подвержен опацитизации. Характеризуется высокими коэффициентами общей железистости - Fe*100/(Fe+Mg)=56.1-80.1% и низкой общей глиноземистостью - Al₂O₃= 11.31-12.80%. По химическому составу соответствует ряду флогопита-аннита.

Субщелочная гранит-лейкогранитная серия . В серии установлены амфиболовые, амфибол-биотитовые и биотитовые разности гранитоидных пород. Характерными особенностями пород являются кирпично-красный и красноватый цвет, лейкократовость, среднезернистые и крупнозернистые непорфировидные структуры, часто с мелкими 1-3 мм миароловыми пустотами. В серии выделяются двухполевошпатовые и однополевошпатовые граниты. Местами установлены рапакивиобразные граниты (верховья ручья Курмуксай, 10 км к ю-в от пос. Шиликтысай, данные И.Е. Костик).

Структура пород гипидиоморфнозернистая, микропегматитовая, миаролитовая. Плагиоклазы представлены слабо пелитизированным альбитом и кислым олигоклазом. Кварц, наряду с 50

ксеноморфными, часто имеет округлые формы зерен. Калиевый полевой шпат имеет красновато-бурый цвет, интенсивно пелитизирован и пертитизирован. Состав его изменяется от низкого ортоклаза (Or_{94 4}Ab_{5 0}An_{0 6}, $\Delta p=0$, $\Delta Z=0.72$) и микроклинортоклаза (Ог_{66 6}Ab_{32 6}An_{1.1}, Δp=0/0.75, ΔZ=0.81/0.81, Ог-35%, Mic-65%) до максимального микроклина (Or_{67.6}Ab_{31.7}An_{0.7}, Δp=0.88, ΔZ=0.91) [22]. Для большинства из них характерно высокое содержание альбитового минала, что отражает гипабиссальные условия формирования интрузий субщелочной гранит-лейкогранитной серии [22]. Амфиболы представлены кальциевой, натрий-кальциевой и кальций-натриевой группами -(Na+K)/(Na+K+Ca) =19.9-31.9%; 34.9-52.3%. Относятся к ряду амфиболов низкоглиноземистых, высокожелезистых Al₂O₃=3.66-6,82%, Fe*100/(Fe+Mg)=70.0-88.7%. По данным рентгено-структурного анализа состав их отвечает ферроэдениту-феррогастингситу. Биотит средне- мелкочешуйчатый, часто подвержен опацитизации. Относится к группе высокожелезистых триоктаэдрических слюд к ряду низкоглиноземистых флогопитов-аннитов - Al₂O₃=10.35-13.25%, Fe*100/(Fe+Mg)=52.3-79.4%. В гранитах установлены заключенные в магнетите мелкие бесцветные зерна клинопироксена, имеющего спайность под ∠87°, что говорит о двухстадийной кристаллизации гранитного расплава. Кристаллизация ранней стадии гранитного расплава происходила в "сухих" условиях, поздней - в условиях более высокого парциального давления воды.

Геохимическая характеристика

<u>Адамеллит-гранитная серия</u>. Биотитовые среднезернистые граниты главной фазы характеризуются устойчивыми содержаниями натрия, калия и большинства изученных редких элементов, что подтверждается невысокими значениями коэффициентов вариации (табл..3) Исключение представляет литий. Значительные изменения содержаний лития в гранитах, вероятно, связаны с перераспределением и, возможно, выносом этого элемента из гранитов при постмагматической хлоритизации биотита, так как слюды в гранитах являются основными носителями и концентраторами лития.

В аплитовидных гранитах этой серии, по сравнению с биотитовыми гранитами, снижаются средние содержания Sr, 51

Rb, Li, Cs, что объясняется их лейкократовостью - увеличением кислотности плагиоклаза и уменьшением содержаний биотита. По сравнению с среднезернистыми гранитами в аплитовидных гранитах снижение средних содержаний Rb связано с уменьшением средних содержаний калия (табл. 3). В жильных аплитах по сравнению с охарактеризованными гранитами адамеллитгранитной серии установлено существенное понижение Sr в 2-5 раз и, особенно, Ва - в 5-7 раз, что говорит о снижении концентраций этих элементов в остаточном расплаве при дифференциации интрузий адамеллит-гранитной серии. Во всех гранитоидах данной серии установлены повышенные по отношению к кларку [8] содержания молибдена в 3-4 раза, что свидетельствует о их обогащенности этим элементом и позволяет сравнивать с палеозойскими гранитами-лейкогранитами Забайкалья, которые так же характеризуются повышенными средними содержаниями молибдена, но не сопровождаются молибденовыми месторождениями [30]. В этом отношении гранитоиды адамеллит-гранитной серии борлинского комплекса Южного Урала аналогичны немолибденоносным палеозойским гранитам молибденового пояса Забайкалья. Граниты адамеллит-гранитной серии характеризуются низкими коэффициентами вариации распределения редких элементов (олова 33.5% и молибдена 32.6%) и слабым развитием процессов мусковитизации, что характерно для нередкометальноносных гранитов других складчатых областей [30].

На диаграмме Sr - Rb/Sr точки состава среднезернистых гранитов располагаются в поле коровых гранитоидов S-типа и следуют тренду дифференциации известково-щелочных серий активных континентальных окраин (рис. 2). Принадлежность среднезернистых гранитов к известково-щелочной серии под-тверждается соотношением в них Li - K/Rb [14]. По химическому составу все граниты относятся к плюмазитовому типу пород пересыщенных алюминием - Al-(2Ca+Na+K)=15.2 - 46.8. Геохимические составы их аналогичны плюмазитовым гранитоидам других складчатых областей (рис. 4Б). На диаграмме Rb - K/Rb точки состава среднезернистых гранитов следуют вдоль геохимического тренда дифференциации молибденоносного гуджирского комплекса Забайкалья (рис. 3). При этом часть из них располагается в поле гранитов А-типа Ньюфаундленда, что 52

Таблица 3

Содержания Na, K (в мас.%) и редких элементов (г/т) в грани-

№ про- бы Порода (бы Na K Sr Rb Li Cs Ba Pb Sn Mo 1 Адамеллигт, гранит 3.22 3.97 69 152 0.3 3.0 800 34.0 2.7 3.7 2 гранит 2.65 3.86 60 17.8 10.0 4.0 360 17.0 5.0 4.6 4 " 2.48 3.77 98 165 17.0 4.0 60 19.0 2.3 5.2 6 " 2.81 3.62 66 179 22.0 2.0 360 26.0 3.9 4.7 7 " 2.87 3.87 80 189 3.0 2.0 610 18.0 2.4 2.2 9 " 90 2.19 14 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <th colspan="11">тоидах оорлинского комплекса</th>	тоидах оорлинского комплекса												
про- бы ламеллит. з.2 з.97 69 152 0.3 3.0 800 34.0 2.7 3.7 1 Адамеллит, гранит 2.65 3.86 60 178 10.0 4.0 360 17.0 5.0 4.6 4 " 2.64 3.22 26 11.6 3.0 6.0 1040 11.0 3.7 3.5 5 " 2.76 3.84 68 184 2.0 3.0 480 19.0 2.3 5.2 6 " 2.81 3.62 66 17.0 4.0 260 12.0 1.8 2.4 2.2 8 " 2.29 3.59 44 152 7.0 4.0 260 12.0 1.8 2.8 9 " 81 249 " - - - - - - - - - - 1.0 1.1 3.1 2.1 <	N⁰	Порода	Na	Κ	Sr	Rb	Li	Cs	Ba	Pb	Sn	Mo	
бы	про-	•											
Адамеллит-гранитная серия, D:fm (?) 1 Адамеллит, гранит 3.22 3.97 69 152 0.3 3.0 800 34.0 2.7 3.7 2 гранит 2.65 3.86 60 17.0 4.0 360 17.0 5.0 4.6 3 " 2.48 3.77 98 165 17.0 4.0 680 4 " 2.64 3.32 2.6 116 3.0 4.0 360 1040 11.0 3.7 3.5 6 " 2.87 3.87 80 189 3.0 2.0 610 18.0 2.4 2.2 9 " 2.29 3.59 44 152 7.0 4.0 260 12.0 1.8 2.8 9 " 9 2.29 2.29 2.0 2.0 1.0 3.1 3.0 10 " 2.29 3.59 209 1.6 1.50	бы												
1 Адамеллиг, гранит 3.22 3.97 69 152 0.3 3.0 800 34.0 2.7 3.7 2 транит 2.65 3.86 60 17.8 10.0 4.0 360 17.0 5.0 4.6 3 " 2.64 3.32 26 116 3.0 6.0 1040 11.0 3.7 3.5 5 " 2.76 3.84 68 184 2.0 3.0 480 19.0 2.3 5.2 6 " 2.87 3.87 80 189 3.0 2.0 610 18.0 2.4 2.2 8 " 2.29 3.59 44 152 7.0 4.0 260 12.0 1.8 2.8 9 " 2.287 3.59 944 152 7.0 4.0 260 12.0 1.8 2.8 10 " 2.56 3.91 72 169		Адамеллит-гранитная серия, D ₃ fm (?)											
2 гранит 2.65 3.86 60 178 10.0 4.0 360 17.0 5.0 4.6 3 " 2.48 3.77 98 165 17.0 4.0 680 17.0 5.0 4.6 4 " 2.64 3.32 266 116 3.0 6.0 1040 11.0 3.7 3.5 5 " 2.76 3.84 68 184 2.0 3.0 480 19.0 2.3 5.2 6 " 2.87 3.87 80 189 3.0 2.0 610 18.0 2.4 2.2 8 " 2.29 3.59 44 152 7.0 4.0 260 12.0 1.8 2.4 2.2 9 " - 9 2.19 14.0 - - - - - - - - - - - - - -	1	Адамеллит,	3.22	3.97	69	152	0.3	3.0	800	34.0	2.7	3.7	
3 " 2.48 3.77 98 165 17.0 4.0 680 10.0 17.0 3.5 4 " 2.64 3.32 2.6 116 3.0 6.0 10.40 11.0 3.7 3.5 5 " 2.76 3.84 68 184 2.0 3.0 480 19.0 2.3 5.2 6 " 2.81 3.62 66 179 22.0 2.0 360 26.0 3.9 4.7 7 " 2.87 3.87 80 189 3.0 2.0 610 18.0 2.4 2.2 8 " 2.99 3.59 44 152 7.0 4.0 260 12.0 1.8 2.8 10 " 2.29 3.59 44 152 7.0 4.0 260 1.3 1.1 11 " 2.25 3.51 141 1.9 1.0 3.1	2	гранит	2.65	3.86	60	178	10.0	4.0	360	17.0	5.0	4.6	
4 " 2.64 3.32 26 116 3.0 6.0 1040 11.0 3.7 3.5 5 " 2.76 3.84 68 184 2.0 3.0 480 19.0 2.3 5.2 6 " 2.81 3.62 66 179 22.0 2.0 360 26.0 3.9 4.7 7 " 2.87 3.87 80 189 3.0 2.0 610 18.0 2.4 2.2 8 " 2.29 3.59 44 152 7.0 4.0 260 12.0 1.8 2.8 9 " 9 2.12 3.0 241 -<	3	r	2.48	3.77	98	165	17.0	4.0	680				
5 " 2.76 3.84 68 184 2.0 3.0 480 19.0 2.3 5.2 6 " 2.81 3.62 66 179 22.0 2.0 360 26.0 3.9 4.7 7 " 2.87 3.87 80 189 3.0 2.0 610 18.0 2.4 2.2 9 " 2.29 3.59 44 152 7.0 4.0 260 12.0 1.8 2.8 9 " .90 219 .90 219 .90 200 1.0 .90 1.8 2.8 2.8 10 " .90 211 .90 241 .90 1.8 2.8 2.8 2.0 1.8 2.8 3.0 4.0 660 16.0 3.1 2.1 13	4	٠٠	2.64	3.32	26	116	3.0	6.0	1040	11.0	3.7	3.5	
6 " 2.81 3.62 66 179 22.0 2.0 360 26.0 3.9 4.7 7 " 2.87 3.87 80 189 3.0 2.0 610 18.0 2.4 2.2 8 " 2.29 3.59 44 152 7.0 4.0 260 12.0 1.8 2.8 9 " 2.29 3.59 44 152 7.0 4.0 260 12.0 1.8 2.8 9 " 81 249 </td <td>5</td> <td>٠٠</td> <td>2.76</td> <td>3.84</td> <td>68</td> <td>184</td> <td>2.0</td> <td>3.0</td> <td>480</td> <td>19.0</td> <td>2.3</td> <td>5.2</td>	5	٠٠	2.76	3.84	68	184	2.0	3.0	480	19.0	2.3	5.2	
7 " 2.87 3.87 80 189 3.0 2.0 610 18.0 2.4 2.2 8 " 2.29 3.59 44 152 7.0 4.0 260 12.0 1.8 2.8 9 " 81 249	6	٠٠	2.81	3.62	66	179	22.0	2.0	360	26.0	3.9	4.7	
8 " 2.29 3.59 44 152 7.0 4.0 260 12.0 1.8 2.8 9 " 81 249	7	٠٠	2.87	3.87	80	189	3.0	2.0	610	18.0	2.4	2.2	
9 " 90 219	8	٠٠	2.29	3.59	44	152	7.0	4.0	260	12.0	1.8	2.8	
10 " 81 249	9	"			90	219							
11 " 79 241	10	"			81	249							
12 " 95 209	11	"			79	241							
13 " 32 218 14 " 60 217 <td>12</td> <td>"</td> <td></td> <td></td> <td>95</td> <td>209</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	12	"			95	209							
14 " 60 217	13	"			32	218							
15 " 2.56 3.91 72 169 15.0 6.9 16 Гранит пег- матоидный 2.78 3.65 90 186 7.0 4.0 660 16.0 3.1 2.1 X 2.70 3.74 69 189 8.3 3.8 571 19.1 3.1 3.6 V 8.8 5.0 29.9 18.0 83.9 39.9 41.3 39.6 33.5 32.6 18 Гранит апли- 2.76 3.73 46 143 0.3 4.0 1180 2.0 <	14	"			60	217							
16 Гранит пег- матоидный 2.65 3.70 63 192 5.0 3.0 460 17 матоидный 2.78 3.65 90 186 7.0 4.0 660 16.0 3.1 2.1 X 2.70 3.74 69 189 8.3 3.8 571 19.1 3.1 3.6 V 8.8 5.0 29.9 18.0 83.9 39.9 41.3 39.6 33.5 32.6 18 Гранит апли- 708идный 2.69 3.73 46 143 0.3 4.0 1180 -	15	"	2.56	3.91	72	169	15.0	6.9					
17 матоидный 2.78 3.65 90 186 7.0 4.0 660 16.0 3.1 2.1 X 2.70 3.74 69 189 8.3 3.8 571 19.1 3.1 3.6 V 8.8 5.0 29.9 18.0 83.9 39.9 41.3 39.6 33.5 32.6 18 Гранит апли- товидный 2.69 3.73 46 143 0.3 4.0 1180 - <td>16</td> <td>Гранит пег-</td> <td>2.65</td> <td>3.70</td> <td>63</td> <td>192</td> <td>5.0</td> <td>3.0</td> <td>460</td> <td></td> <td></td> <td></td>	16	Гранит пег-	2.65	3.70	63	192	5.0	3.0	460				
X 2.70 3.74 69 189 8.3 3.8 571 19.1 3.1 3.6 V 8.8 5.0 29.9 18.0 83.9 39.9 41.3 39.6 33.5 32.6 18 Гранит апли- товидный 2.69 3.73 46 143 0.3 4.0 1180 20 " 1.95 4.00 36 134 1.4 1.9 1040 21 " 2.55 3.58 25 133 0.2 2.0 480 22 " 2.86 3.64 42 129 1.4 1.9 1140 7.9 3.2 4.0 X 2.61 3.62 36 135 0.7 2.6 844 9.2 3.9 3.4 24 Аплит жильн. 2.93 3.51 14 200 15.0 4.0 100 19.0 7.5 4.5 25 Габбро, диорит, мон- иодиорит, ква	17	матоидный	2.78	3.65	90	186	7.0	4.0	660	16.0	3.1	2.1	
V 8.8 5.0 29.9 18.0 83.9 39.9 41.3 39.6 33.5 32.6 18 Гранит апли- товидный 2.76 3.52 38 127 1.4 1.9 1040 19 товидный 2.69 3.73 46 143 0.3 4.0 1180 20 " 1.95 4.00 36 134 1.40 1.9 1040 21 " 2.55 3.58 25 133 0.2 2.0 480 2.86 3.64 42 129 1.4 1.9 1140 7.9 3.2 4.0 X 2.61 3.62 36 135 0.7 2.6 844 9.2 3.9 3.4 24 Аплит жильн. 2.93 3.51 14 200 15.0 4.0 100 19.0 7.5 4.5 26 диорит, мон- цодиорит, квар- цевый монцо, мар 2.61		Х	2.70	3.74	69	189	8.3	3.8	571	19.1	3.1	3.6	
18 Гранит апли- товидный 2.76 3.52 38 127 1.4 1.9 1040 19 товидный 2.69 3.73 46 143 0.3 4.0 1180 20 " 1.95 4.00 36 134 0.3 4.0 1180 21 " 2.55 3.58 25 133 0.2 2.0 480 22 " 2.86 3.23 30 144 0.3 3.0 380 10.5 4.6 2.8 23 " 2.86 3.64 42 129 1.4 1.9 1140 7.9 3.2 4.0 X 2.61 3.62 36 135 0.7 2.6 844 9.2 3.9 3.4 24 Аплит жильн. 2.93 3.51 14 200 15.0 4.0 100 19.0 7.5 4.5 Габбро, диорит, мон- 360 41 2.37 </td <td></td> <td>V</td> <td>8.8</td> <td>5.0</td> <td>29.9</td> <td>18.0</td> <td>83.9</td> <td>39.9</td> <td>41.3</td> <td>39.6</td> <td>33.5</td> <td>32.6</td>		V	8.8	5.0	29.9	18.0	83.9	39.9	41.3	39.6	33.5	32.6	
19 товидный 2.69 3.73 46 143 0.3 4.0 1180 20 " 1.95 4.00 36 134 1.80	18	Гранит апли-	2.76	3.52	38	127	1.4	1.9	1040				
20 " 1.95 4.00 36 134 <t< td=""><td>19</td><td>товидный</td><td>2.69</td><td>3.73</td><td>46</td><td>143</td><td>0.3</td><td>4.0</td><td>1180</td><td></td><td></td><td></td></t<>	19	товидный	2.69	3.73	46	143	0.3	4.0	1180				
21 " 2.55 3.58 25 133 0.2 2.0 480 22 " 2.86 3.23 30 144 0.3 3.0 380 10.5 4.6 2.8 23 " 2.86 3.64 42 129 1.4 1.9 1140 7.9 3.2 4.0 X 2.61 3.62 36 135 0.7 2.6 844 9.2 3.9 3.4 24 Аплит жильн. 2.93 3.51 14 200 15.0 4.0 100 19.0 7.5 4.5 Габбро-монцодиорит-граносиенит-гранитная серия, C ₁₋₂ 25 Габбро, 1.88 304 77 3.4 3.4 <td>20</td> <td></td> <td>1.95</td> <td>4.00</td> <td>36</td> <td>134</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	20		1.95	4.00	36	134							
22 " 2.86 3.23 30 144 0.3 3.0 380 10.5 4.6 2.8 23 " 2.86 3.64 42 129 1.4 1.9 1140 7.9 3.2 4.0 X 2.61 3.62 36 135 0.7 2.6 844 9.2 3.9 3.4 24 Аплит жильн. 2.93 3.51 14 200 15.0 4.0 100 19.0 7.5 4.5 Габбро-монцодиорит-граносиенит-гранитная серия, C ₁₋₂ 25 Габбро, 1.88 304 77 7 7 4.5 26 диорит, мон- 360 41 7 7 7 7 7 7 7 7 7 7 7 7 7 7 860 41 7 7 7 7 7 7 7 7 7 8 7 7 7 7 7 8 7 7 7 7 7 7 8 7	21	"	2.55	3.58	25	133	0.2	2.0	480				
23 " 2.86 3.64 42 129 1.4 1.9 1140 7.9 3.2 4.0 X 2.61 3.62 36 135 0.7 2.6 844 9.2 3.9 3.4 24 Аплит жильн. 2.93 3.51 14 200 15.0 4.0 100 19.0 7.5 4.5 Габбро-мон-сонорит-граносиенит-гранитная серия, C ₁₋₂ 25 Габбро, 1.88 304 77 4.5 26 диорит, мон- 360 41 28 " 1.08 361 46 29 Кварцевый 2.61 173 63 30 диорит, квар- 2.61 173 63	22	"	2.86	3.23	30	144	0.3	3.0	380	10.5	4.6	2.8	
X 2.61 3.62 36 135 0.7 2.6 844 9.2 3.9 3.4 24 Аплит жильн. 2.93 3.51 14 200 15.0 4.0 100 19.0 7.5 4.5 Габбро-монцодиорит-граносиенит-гранитная серия, C ₁₋₂ 25 Габбро, диорит, мон- цодиорит 1.88 304 77 7 7.5 4.5 28 " 1.08 361 46 7 7.5 7.5 29 Кварцевый диорит, квар- 31 2.61 173 63 7.5 1.0 7.5 7.5 30 диорит, квар- 32 2.61 173 63 7.5 <t< td=""><td>23</td><td>"</td><td>2.86</td><td>3.64</td><td>42</td><td>129</td><td>1.4</td><td>1.9</td><td>1140</td><td>7.9</td><td>3.2</td><td>4.0</td></t<>	23	"	2.86	3.64	42	129	1.4	1.9	1140	7.9	3.2	4.0	
24 Аплит жильн. 2.93 3.51 14 200 15.0 4.0 100 19.0 7.5 4.5 Габбро-монцодиорит-граносиенит-гранитная серия, C ₁₋₂ 25 Габбро, диорит, мон- цодиорит 1.88 304 77		Х	2.61	3.62	36	135	0.7	2.6	844	9.2	3.9	3.4	
Габбро-монщодиорит-граносиенит-гранитная серия, С ₁₋₂ 25 Габбро, диорит, мон- цодиорит 1.88 304 77 26 диорит, мон- цодиорит 360 41 108 361 46 28 " 1.08 361 46 108 361 46 29 Кварцевый диорит, квар- 30 2.61 173 63 119 119 24.0 6.4 32 диорит, 2.85 176 100 6.4 108 366 107 10.0 6.4 10.0 1.88 116 10.0 6.4 100 10.0 6.4 100 10.0 6.4 100 10.0 6.4 100 10.0	24	Аплит жильн.	2.93	3.51	14	200	15.0	4.0	100	19.0	7.5	4.5	
25 Габбро, диорит, мон- цодиорит 1.88 304 77 1 1 1 26 диорит, мон- цодиорит 360 41 323 44 1		Габбр	о-мон	цодиори	т-гран	осиени	т-гран	итная с	ерия, С1.	2			
26 диорит, мон- цодиорит 360 41 27 цодиорит 323 44 28 " 1.08 361 46 X 1.48 337 52 29 Кварцевый диорит, квар- за 2.61 173 63 31 цевый монцо- за 3.28 3.36 199 119 24.0 6.4 32 диорит, монцонит, 2.85 176 100 6.4 34 монцонит, 1.88 214 67 35 монцограно- з6 3.54 150 107 38 " 144 100	25	Габбро,		1.88	304	77							
27 цодиорит 323 44	26	диорит, мон-			360	41							
28	27	цодиорит			323	44							
X 1.48 337 52 29 Кварцевый 237 84 <	28	"		1.08	361	46							
29 Кварцевый 237 84 30 диорит, квар- 2.61 173 63 31 цевый монцо- 3.28 3.36 199 119 24.0 6.4 32 диорит, 2.85 176 100 6.4 100 33 кварцевый 3.66 2.03 200 51 10.0 6.4 34 монцограно- 3.82 135 59 6.4 135 100 36 диорит 3.54 150 107 135 110 144 100		Х		1.48	337	52							
30 диорит, квар- цевый монцо- 2.61 173 63 31 цевый монцо- 3.28 3.36 199 119 24.0 6.4 32 диорит, 2.85 176 100 6.4 33 кварцевый 3.66 2.03 200 51 10.0 6.4 34 монцограно- 3.82 135 59 6.4 135 100 36 диорит 1.88 214 67 6.4 100 6.4 35 монцограно- 3.82 135 59 6.4 100 6.4 37 " 3.54 150 107 135 110 100 38 " 144 100 100 100 100 100	29	Кварцевый			237	84							
31 цевый монцо- 3.28 3.36 199 119 24.0 6.4 32 диорит, 2.85 176 100 6.4 33 кварцевый 3.66 2.03 200 51 10.0 6.4 34 монцонит, 1.88 214 67 6.4 35 монцограно- 3.82 135 59 6.4 36 диорит 135 110 6.4 37 " 3.54 150 107 38 " 144 100 6.4	30	диорит, квар-		2.61	173	63							
32 диорит, кварцевый 2.85 176 100 33 кварцевый 3.66 2.03 200 51 10.0 6.4 34 монцонит, 35 1.88 214 67 67 6.4 36 диорит 3.82 135 59 6 100 6.4 37 " 3.54 150 107 100 6.4 38 " 144 100 6.4 6.4	31	цевый монцо-	3.28	3.36	199	119	24.0	6.4					
33 кварцевый 3.66 2.03 200 51 10.0 6.4 34 монцонит, 1.88 214 67	32	диорит,		2.85	176	100							
34 монцонит, монцограно- 1.88 214 67 35 монцограно- 3.82 135 59 36 диорит 135 110 37 " 3.54 150 107 38 " 144 100 100	33	кварцевый	3.66	2.03	200	51	10.0	6.4					
35 монцограно- 3.82 135 59 36 диорит 135 110 37 " 3.54 150 107 38 " 144 100 100	34	монцонит,		1.88	214	67							
36 диорит 135 110 37 " 3.54 150 107 38 " 144 100 100	35	монцограно-		3.82	135	59							
37 " 3.54 150 107 38 " 144 100 107	36	диорит			135	110							
38 " 144 100	37	· · ·		3.54	150	107							
	38	"			144	100							

						Π	родо	лжеі	ние т	абли	ЦЫ
№	Порода	Na	K	Sr	Rb	Li	Cs	Ba	Pb	Sn	Mo
про-											
бы											
	Габбро	о-монц	одиорит	-гранос	иенит	гранит	ная се	рия, С	1-2		
	X	3.47	2.87	176	86	17.0	6.4				
	V		26.1	20.2	28.3						
39	Граносиенит,	2.82	3.79	128	176	20.9	1.9	720			
40	монцоадамел-	2.70	3.46	103	178	27.0	2.0	620	20.0	4.6	6.3
41	лит-гранит	2.84	3.74	98	184	12.0	5.0	530			
42	"		3.59	108	191		• •				
43	"	2.82	3.53	142	174	11.2	3.8				
44		3.03	3.57	117	175	11.2	2.8				
45				104	163						
46		3.31	3.64	100	163	22.0	7.2				
4/			3.38	125	154						
48	v	2.02	4.42	82	170	174	2.0	(22	20.0	1.(()
	A	2.92	3.69	111	1/3	1/.4	3.8	623	20.0	4.6	0.3
10	V	2.40	8.8	15.7	6.2	1.0	5.0	200	22.0	1.6	6.0
49 70	Гранит	3.48	3.57	51	132	1.0	5.0	280	23.0	4.6	6.8
50				96	142						
51				107	140						
52	"	2.54	2.74	52	152		6.4				
55	"	3.54	3.74	60	146	8.0	6.4				
54 55	"	4.45	3.64	64	104	3.0	6.4				
55 57	"		4.12	97	125						
50 57	دد		4.15	52	119						
59	"	2 66	2 5 5	56	111	2.0	6.4				
50	"	3.00	3.33 4.20	50 71	101	2.0	1.9				
59	v	3.00	3.82	75	101	2.0	4.0	280	23.0	4.6	6.8
		5.70	3.02	13	120	3.4	5.0	200	23.0	4.0	0.0
	v			32.0 Wum	15.0						
60	Kp auguut	1 20	1 97	126	202	7.0	7.2				1
00	Кв. сиснит-	4.30	4.07	120	202	7.0	1.2				
61	Граносногит	2 20	2.01	52	196	2.0	62				-
62	Траносиенит-	2.20	2.62	14	160	3.0	0.2				
63 64	порфир	2.83	3.02	14	167	5./ 12.0	2.0				
04 65	"	2.97	5.71	2 5	107	15.0	2.0				
66	Гранит аплит	2.20	3 74	2	150	2.0	3.4				
00	транит-аплит v	2.00	2.02	12	161	2.0	3.0				
	λ	2.90 En	3.93	12	101	4./	4.1 D T				1
67	Пойкорранит	2 20	анит-лет 1 15	1K01 pan	125	0 4	2.0	210	2.2	11	5
68	леикогранит	2.29	4.13	17	100	0.4	3.0	160	3.2	4.4	5.
69	двуполево-	2.01	3.05	18	222	3.0	2.0	170			
70	шпатовыи "	2.01	3.68	19	233	1.0	1.0	180	24.0	3.0	2
71	"	2.05	3.63	22	210	14.0	2.0	230	13.0	5.5	2
72	"	2 46	3 11	52	191	6.5	1.0	230	13.0	5.5	2.
73	"	3.00	3 54	26	232	0.5	1.7				
74	Лейкогранит	2.56	3 81	10	206	03	4.0	200	31.0	47	5
75	лвуполево-	2.50	3 77	8	194	0.3	4.0	420	11.0	55	6

Продолжение таблицы 3

№ про-	Порода	Na	Κ	Sr	Rb	Li	Cs	Ba	Pb	Sn	Мо
бы	1 ''										
Гранит-лейкогранитная серия, Р-Т ₁											
76	шпатовый	2.36	3.83	7	193	0.3	4.0	115	8.7	3.6	2.8
77	миаролито-	2.55	4.09	31	136	0.1	4.0	240	14.0	1.8	3.0
78	вый	2.94	3.71	48	208	8.4	1.9				
79		2.94	3.49	52	190	10.2	3.8				
80				30	218						
81		2.83	4.61	34	202	3.0	5.2				
82				28	196						
83				41	210						
84		2.65	4.05	18	195	3.0	5.2				
85				50	168						
86				63	140						
87				39	163						
88		2.74	4.05	40	162	3.0	5.3				
89		2.94	4.32	42	165	16.0	7.2				
90	Лейкогранит	3.25	3.77	16	239	4.0	2.0	170	11.0	5.4	7.1
91	олнополево-	2.49	3.16	10	188	3.3	2.8				,
92	шпатовый	2.88	3.29	15	238	3.9	3.8				
93		2.93	3.93	20	150	12.0	4.0	140	12.0	5.0	3.7
94		3.00	4 79	24	152	0.2	2.0	200			•••
95		2.42	3.96	16	142	2.0	3.0	220	10.0	4.9	8.7
96		2.78	415	38	148	3.0	2.0	280			
97		2.51	3 86	21	158	0.7	2.0	220	18.0	48	71
98		3 46	4 32	48	174	19	2.8	220	10.0	1.0	/.1
99		5.10	1.52	52	211	1.9	2.0		6.0	2.9	11
100	Пейкогранит	3 25	3 77	18	206	3.0	2.0	160	93	3.5	23
101	микропегма-	2.63	3.67	14	140	2.0	3.0	160	7.5	5.5	2.5
102	титовый	2.05	3.90	43	140	8.0	2.0	270			
102		2.77	5.70	71	206	0.0	2.0	270			
105	x	2 78	3.85	30	185	41	3.2	214	13.2	42	4.6
	V	10.4	9.05	55.2	17.1	107.6	13.2	33.0	56.4	27.6	50.6
	v	10.4	9.9	35.2 Wm	17.1	107.0	43.5	33.9	50.4	27.0	30.0
104	A	256	4.10	20	155	1.0	2.0	115	i	1	1
104	АШИТ	2.30	4.10	20	133	1.0	5.0	115			
105	Fnorum	2.75	5.09	19	164	0.9	1.9	200			
100	гранит-	2.13	4.13	19	104	0.2	2.0 6.5	200			
107 62	порфир	2.74	4.32	30 25	210	3.0	0.5				
102	Пайнати	3.33	4.12	55	218	3.0	0.0	140	12.0	2.4	2.2
108	леикогранит	2.60	3.90	45	200	4.0	5.0 5.6	440	12.0	2.4	3.5
109	миаролито-	2.83	4.50	33	14/	3.0	5.0				
110	выи	2.65	3.83	1/	183	10.0	5.5	175			
111	Π- Υ	3.03	3.82	30	212	10.0	0.0	1/5			
112	леикогранит	2.83	4.05	1/	236	2.0	0.0				
113	микропегма- титовый	3.00	3.97	/	145	2.0	5.5				
	Х	2.77	4.03	29	190	3.6	4.5	218	12	2.4	3.3
	V	5.6	6.1	59.5	21.9	98.6	39.5				
114	Лиабаз в гра-	2.31	0.71	385	35	11.6	1.9	460	1		
115	нитах	2.91	1.89	394	74	36.7	2.8				
	X	2.61	1 32	390	55	24.1	2.3	460			
		2.01	1.52	570	55		2.5	100		1	55

Примечание к таблице 3.

Анализы выполнены в ИГиГ УрО РАН. Содержание Na, K, Li, Cs определены методом фотометрирования пламени; Rb, Sr, Ba - рентгенофлуоресцентным методом на VRA-30; Pb, Sn, Mo - количественным спектральным методом. Чувствительность в г/т: Rb - 3, Sr -3, Pb - 0,5, Sn - 0.2, Li - 0.2, Cs - 0.2, Mo - 0.1. X - среднее арифметическое, V - коэффициент вариации.

Распределение анализов по массивам: Северо-Бугетсайский -67, 74, 75, 76. Южно-Бугетсайский - 1, 2, 3, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 39, 47, 60, 95, 101, 110. Сарыобинский - 87, 88, 89, 107. Дамдынский - 96, 97, 102, 104. Амангельдынский - 86, 103, 113. Караобинский - 4, 73, 77, 114. Котртобенский - 91, 92. Байментауский - 5, 6, 7, 14, 40, 49, 68, 69, 70, 105. Тамдынский - 13, 25, 26, 27, 28, 31, 32, 33, 34, 37, 41, 42, 43, 44, 45, 46, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 71, 78, 79, 85, 90, 93, 94, 98, 99, 100, 106, 109, 111, 115. Байменбулакский - 29, 30, 35, 36, 38, 48, 50, 51. Теректауский - 8, 12, 72, 80, 81, 82, 83, 84, 108, 112. Итастыблакский - 9, 10, 11. Расположение массивов смотри на рис. 1.

подтверждает их формирование в условиях тектонической активизации Мугоджарского блока. Соотношение Sr - Ва в среднезернистых гранитах соответствует гранитоидам А-типа Ньюфаундленда и мезозойским гранитоидам малокуналейского комплекса Забайкалья (рис. 4А).

В отличие от среднезернистых гранитов аплитовидные граниты адамеллит-гранитной серии, так же располагаясь в поле коровых гранитоидов, более отвечают гранитам А-типа и сопоставимы с составом слабо молибденоносных мезозойских гранитов малокуналейского комплекса молибденового пояса Забайкалья (рис. 2). Они характеризуются более высокими Rb/Sr и K/Rb отношениями и полностью соответствуют гранитам А-типа Ньюфаундленда (рис. 3). Как и среднезернистые граниты аплитовидные граниты относятся к типу низколитиевых плюмазитовых гранитоидов известково-щелочной серии пересыщенных алюминием - Al-(2Ca+Na+K)=4.6 - 68.6. Аплитовидные граниты, в отличие от среднезернистых, характеризуются низкими содержаниями Sr и неравномерным распределением Ва в связи с чем по соотношению этих элементов не имеют аналогов среди приведенных эталонных комплексов (рис. 4 А). Петрохимический состав и геохимические особенно-56

Рис. 2. Диаграмма Sr - Rb/Sr пород гранитоидных серий борлинского комплекса. К - коровые, МК - мантийно-коровые, М - мантийные. Тренды серий изверженных пород: I - толеитовая, II - известково-щелочная островных дуг, III - известково-щелочная активных континентальных окраин [11]. Гранитоиды A, S, I - типов [33, 38, 39]. Пунктирными линиями выделены поля гранитоидов эталонных серий: 1 - А-типа Нубийского щита Египта (заштрихованы точками)[32], 2 - I и А-типов Ньюфаундленда [36], 3 - однополевошпатовых малокуналейского комплекса Забайкалья [30].

Адамеллит-гранитная: 1 - гранит, 2 - аплитовидный гранит, 3 аплит. <u>Габбро-монцодиорит-граносиенит-гранитная</u>: 4 - монцогаббро, монцодиорит, 5 - монцогранодиорит, кварцевый монцодиорит, 6 монцоадамеллит, граносиенит, 7 - гранит, 8 - кварцевый сиенитпорфир, граносиенит-порфир, 9 - аплит. <u>Субщелочная гранитлейкогранитная</u>: 10 - субщелочной одно- и двухполевошпатовый гранит, 11 - лейкогранит, аляскит.

Рис. 3. Диаграмма Rb-K/Rb пород гранитоидных серий борлинского комплекса. Эталонные поля гранитоидов 1, 2, 3, 4 см. рис. 2. 5 поле субщелочных гранитоидов А - типа Белых гор, США-Канада [34]. Условные обозначения те же, что на рис. 2.

Рис. 4. Диаграммы Sr-Ba и Rb/Ba - Rb/Sr пород гранитоидных серий борлинского комплекса. На рис. А -эталонные поля 1, 2, 3, 4 см. рис. 2. На рис. Б - пунктиром выделено поле сильно пересыщенных алюминием постколлизионных гранитов Альп, Гималаев, Европы, Австралии, Британских каледонид [37]. Условные обозначения те же, что на рис. 2. 58

сти дают основание относить гранитоиды адамеллит-гранитной серии к гранитам палингенного известково-щелочного плюмазитового типа с отклонением по Na, K, Sr, Mo в область составов плюмазитовых редкометальных гранитов [25, 26]. Отсутствие связи с габброидами позволяет говорить о коровом палингенном происхождении пород адамеллит-гранитной серии за счет переплавления рифейских метаморфизованных терригенно-осадочных пород в зоне глубинного борлинского разлома, заложенного вдоль окраины Мугоджарского блока. Повышенное содержание щелочных петрогенных элементов и молибдена связано с протолитовыми породами Мугоджарского блока.

Габбро-монцодиорит-граносиенит-гранитная серия. На диаграмме Sr - Rb/Sr точки состава пород данной серии располагаются в полях коровых, мантийно-коровых и мантийных серий (рис. 2). Состав их изменяетс от гранитов S-типа до I-типа и следует вдоль трендов дифференциации известковощелочных серий островных дуг и активных континентальных окраин. Принадлежность пород к известково-щелочной серии подтверждается соотношением в них Li - K/Rb [14]. Точки геохимического состава гранитоидов располагаются в поле коровых и мантийно-коровых серий, отличаясь от гранитов мировых эталонов S-типа более низкими содержаниями стронция (рис. 2). Граносиениты расположены в поле мантийно-коровых серий и приближаются к гранитам І-типа. Они так же как и граниты отличаются от эталонных гранитов І-типа меньшими содержаниями стронция. При этом точки геохимического состава гранитов на диаграмме Sr - Rb/Sr располагаются в полях гранитоидов А-І-типов Ньюфаундленда и малокуналейского комплекса Забайкалья, а граносиенитов следуют вдоль этих полей (рис. 2). Большая часть (60-70%) граносиенитов и гранитов данной серии относятся к типу пород пересыщенных глиноземом - Al-(2Ca+Na+K)=8.6 - 33.6, что подтверждается расположением их фигуративных точек в поле гранитоидов сильно пересыщенных алюминием (рис. 4Б). Остальная часть граносиенитов и гранитов (40-30%) относится к породам нормального типа - Al < (2Ca+Na+K).

Набор изверженных пород серии позволил Т. В. Билибиной сопоставлять борлинский комплекс, а согласно нашим исследованиям часть его, с магнитогорским габбро-гранитным 59 комплексом Южного Урала [6]. Тесная связь граносиенитов и гранитов с габброидами говорит о существенном влиянии на формирование серии базальтового мантийного расплава, контаминированного в зоне борлинского разлома коровым материалом, что привело этот расплав при последующей кристаллизационной дифференциации к образованию граносиенитов и гранитов. Петрографические и геохимические особенности пород позволяют относить гранитоиды данной серии к породам латитового геохимического типа с отклонением по Sr, Ва в область плюмазитовых редкометальных гранитов [25, 26].

Субщелочная гранит-лейкогранитная серия завершает развитие борлинского комплекса. В составе серии развиты пересыщенные кремнеземом и глиноземом субщелочные граниты - SiO₂=73-76%, Al-(2Ca+Na+K)= 14.0-53.6, коэффициент агпаитности - (Na+K)/Al=0.76-0.90. Все они занимают промежуточное положение межлу палингенными известково-шелочными и плюмазитовыми редкометальными гранитами [25, 26]. Характерной геохимической особенностью является пониженные в гранитах, по сравнению с редкометальными гранитами, содержания Li, Rb, Cs, Sn, что существенно отличает их от геохимического типа плюмазитовых редкометальных гранитов многих складчатых областей [7]. В то же время в них установлено четырехкратное увеличение, по отношению кларка концентраций для кислых пород [8], содержаний молибдена, подтверждая тем самым принадлежность субщелочных гранитов к данному геохимическому типу.

Из всех изученных гранитоидов, граниты субщелочной гранит-лейкогранитной серии характеризуются наиболее высокими Rb/Sr отношениями, частично сопоставимыми с аплитовидными гранитами адамеллит-гранитной серии. На диаграмме Sr - Rb/Sr точки геохимического состава их располагаются в поле коровых гранитоидов, вблизи эталонной серии гранитов Атипа и соответствуют полю однополевошпатовых гранитов малокуналейского комплекса молибденового пояса Забайкалья (рис. 2). Соотношение в гранитах Rb - K/Rb соответствует молибденоносным гранитам гуджирского комплекса Забайкалья и частично с гранитам А-типа Нубийского щита Египта (рис. 3). По соотношению Sr - Ва составы гранитов полностью отвечают составу гранитов А-типа Нубийского щита (рис. 4 А). Все это 60 подтверждает их принадлежность к постколлизионным гранитам А-типа, формировавшихся в условиях тектонической активизации окраины Мугоджарского блока. Развитие жильных диабазов в массивах субщелочной гранит-лейкогранитной серии (пробы 114, 115) позволяет предположить, что исходный гранитный расплав формировался в зоне борлинского глубинного разлома при плавлении пород Мугоджарского блока под влиянием тепла мантийных диапиров базальтовой магмы.

<u>Редкоземельные элементы.</u> В гранитоидах главных фаз, выделенных серий борлинского комплекса, из РЗЭ определены La, Ce, Sm, Eu, Tb, Yb (табл. 4). По сравнению с постколлизионными плюмазитовыми [34, 36] и, особенно, агпаитовыми [13, 32] гранитоидами они характеризуются более низкими содержаниями легких лантаноидов (La, Ce, Sm). Снижение содержаний легких лантаноидов объясняется более низкой щелочностью борлинских гранитов: коэффициент агпаитности борлинских гранитов- 0.76-0.90, Ньюфаундленда- 0.85-0.96 [36], Белых гор США-Канады - 0.84-1.00 [34], Нубийского щита Египта -0.98-1.06 [32], щелочных пород Восточного Казахстана- 0.96-1.23 [13].

Все кривые нормированных к хондриту содержаний РЗЭ в гранитоидах борлинского комплекса имеют отчетливо выраженный правосторонний наклон и европиевый минимум за исключением пробы 3 гранитов адамеллит-гранитной серии (рис. 5 А). Низкие значения отношений легких лантаноидов к хондриту [18], небольшой правосторонний наклон кривой и слабо выраженный европиевый минимум в гранитах пробы 3 говорят о слабой дифференциации исходного гранитного расплава, что в данном случае можно объяснить неполным переплавлением пород протолита Мугоджарского блока при формировании адамеллит-гранитной серии. В гранитах пробы 3 это подтверждается большей основностью плагиоклаза (интенсивная соссюритизация центра зерен) по сравнению с слабо пелитизированными и серицитизированными плагиоклазами в сходных с ними гранитах адамеллит-гранитной серии, характеризующихся четко выраженным европиевым минимумом (пробы 11, 17, рис. 5 А).

В гранитоидах борлинского комплекса установлены варьирующие значения европиевого минимума. В ранних сериях значения европиевого минимума возрастают от граносиенитов 61 габбро-монцодиорит-граносиенит-гранитной (проба 42) к гранитам адамеллит-гранитной серии (пробы 11, 17), что объясняется различными условиями генерации исходных расплавов сравниваемых серий. Кривые распределения РЗЭ в граносиенитах и гранитах данных серий отличаются от эталонных кривых распределения РЗЭ плюмазитовых и агпаитовых гранитов Атипа меньшим содержанием легких лантаноидов и иттербия, тем самым подтверждая их самостоятельное развитие, отличное от постколлизионных гранитов субщелочной гранитлейкогранитной серии борлинского комплекса и эталонных гранитов А-типа, формировавшихся в условиях тектонической активизации блоков континентальной коры.

В поздней субщелочной гранит-лейкогранитной серии установлено увеличение европиевого минимума от однополевошпатовых (пробы 93, 99) к двухполевошпатовым гранитам (пробы 71, 74). Снижение содержаний европия от однополевошпатовых к двухполевошпатовым гранитам связано с увеличением кислотности исходного расплава при кристаллизации гранитов в этом направлении, что отмечалось ранее [13]. Данный вывод полностью подтверждается снижением суммы легких лантаноидов - лантана и церия - от 120.6-130г/т в однополевошпатовых до 68-86,2 г/т в двухполевошпатовых гранитах, что, как известно, связано с изменением щелочности пород (табл. 4).

Таблица 4

Содержание (г/т) РЗЭ в породах борлинского комплекса*

Nº	Порода	La	Ce	Sm	Eu	Tb	Yb	(La/Yb) _H
пробы	_							
3	Гранит	5.0	11.0	2.4	0.7	0.5	1.0	3.3
11	٠٠	26.0	60.0	4.9	0.3	2.3	3.0	5.8
17	Гранит	14.0	37.0	4.8	0.3	1.0	0.8	11.7
	пегматоидный							
42	Граносиенит	23.0	36.6	6.2	0.6	1.5	3.8	4.0
71	Гранит	26.0	60.2	5.9	0.3	1.1	3.0	5.8
73	٠٠	28.7	88.0	8.1	0.7	1.5	2.4	8.0
74	دد	18.0	50.0	5.6	0.3	2.2	3.0	4.0
93	دد	36.0	94.0	8.8	0.7	1.0	3.0	8.0
99	دد	39.6	81.0	8.0	1.6	1.2	3.8	7.0

*Номер пробы соответствует таблице №3. La, Ce, Sm, Eu, Tb, Yb -определены нейтронно-активационным методом в лаборатории ядерного анализа Объединения "Уралгеология". 62

Рис. 5. Распределение нормированных к хондриту [18] содержаний РЗЭ в породах гранитоидных серий борлинского комплекса. Точками показано поле гранитоидов А - типа Нубийского щита Египта [32], пунктиром - I и А -типов Ньюфаундленда [36]. Цифры у кривых распределения РЗЭ в гранитоидах соответствуют номеру анализа в табл. 4.

Рис. 6. Диаграммы соотношений РЗЭ в гранитоидах борлинского комплекса. На рис. А, Б, В, Г - эталонные поля гранитоидов 1, 2 см. рис. 2. На рис. А римскими цифрами обозначены поля щелочных гранитоидов: I - наиболее цериевые, II - промежуточные, III - наиболее иттриевые[13]. Поле 3 - пермских щелочных гранитов и комендитов Восточного Казахстана [13].

Условные обозначения те же, что на рис. 2.

В отличие от гранитоидов ранних серий кривые нормированных к хондриту содержаний РЗЭ в гранитах субщелочной гранит-лейкогранитной серии соответствуют в области легких лантаноидов и европиевого минимума гранитам А-типа Ньюфаундленда и Нубийского щита Египта, что подтверждает с одной стороны самостоятельное развитие интрузий субщелочной гранит-лейкогранитной серии, с другой - становление их в условиях постколлизионной тектонической активизации Мугоджарского блока. Понижение содержаний иттербия в гранитах суб-64 щелочной гранит-лейкогранитной серии по сравнению с приведенными эталонами гранитов А-типа Ньюфандленда и Нубийского щита Египта, вероятно, связано с первичным составом исходных магматических расплавов.

Проведенное сравнение содержаний РЗЭ в гранитах субщелочной гранит-лейкогранитной серии с принятыми эталонами гранитов А-типа Ньюфаундленда и Нубийского щита Египта на диаграммах La - Sm - Yb. Ce - Eu. La/Yb - Ce. Ce - Yb позволяет сделать ряд дополнительных выводов (рис. 6 А, Б, В, Г). На диаграммах отчетливо видны более низкие содержания в них церия по сравнению с эталонными гранитами А-типа, что, как было сказано ранее, связано с их более низкой щелочностью. На диаграмме La/Yb - Се содержания РЗЭ в гранитах главных фаз выделенных серий соответсвуют полю гранитов А-типа Ньюфаундленда, отличаясь от них более высокими La/Yb отношениями за счет снижения содержаний иттербия. На диаграмме La -Sm - Yb составы их расположены в поле промежуточных по церию и иттрию гранитоидных пород и соответствуют гранитам А-типа Ньюфаундленда. Таким образом, редкоземельный состав гранитоидов поздней серии борлинского комплекса приближается к редкоземельному составу миароловых гранитов Атипа Ньюфаундленда, отражая тем самым сходство геологических условий формирования постколлизионных борлинских и ньюфаундлендских гранитов, развитых в составе массивов более ранних гранитоидных комплексов. В отличие от уральских (борлинских) и ньюфаундлендских гранитов А-типа, формировавшихся в континентализированных структурах каледонских и герцинских складчатых поясов, формирование гранитов А-типа Нубийского щита Египта происходило в зоне активизации древней континентальной плиты, отсюда высокая щелочность нубийских гранитов и существенное микроэлементное различие их от уральских (борлинских) и ньюфаундлендских (остров Фого) гранитов А-типа.

Выводы

На Южном Урале в зоне борлинского глубинного разлома впервые выделены три последовательно развитые интрузивные серии: адамеллит-гранитная - D₃fm, габбро-монцодиоритграносиенит-гранитная - C₁₋₂, субщелочная гранитлейкогранитная - P₁₋₂. Указанные интрузивные серии соответст-65 венно относятся к принятым мировым эталонам гранитов S, I и А-типов.

В составе адамеллит-гранитной серии преобладают биотитовые адамеллиты и граниты. Гранитоиды адамеллитгранитной серии относятся к гранитам S-типа. Петрохимический состав и геохимические особенности дают основание относить гранитоиды адамеллит-гранитной серии к гранитам палингенного известково-щелочного плюмазитового типа с отклонением по Na, K, Sr, Mo в область составов плюмазитовых редкометальных гранитов. Имея геохимическую специализацию на молибден интрузии адамеллит-гранитной серии не сопровождаются редкометальным оруденением в связи с низким содержанием летучих компонентов при их кристаллизации, что подтверждается слабым развитием в гранитах процессов мусковитизации.

Габбро-монцодиорит-граносиенит-гранитная серия характеризуется гомодромным развитием от габбро до гранита. Характерной особенностью всех пород этой серии является развитие в них амфибола, иногда мелких реликтовых зерен клинопироксена, постоянное присутствие кварца, зонального плагиоклаза, красновато-бурого пелитизированного калиевого полевого шпата криптопертитового в группе основных и средних и микропертитового в группе кислых пород. Петрохимический состав и геохимические особенности позволяют относить гранитоиды данной серии к гранитам латитового геохимического типа с отклонением по Sr, Ва в область плюмазитовых редкометальных гранитов. Гранитоиды относятся к гранитам I-типа. С гранитоидами данной серии, особенно с их жильной фацией, могут быть обнаружены золотые и золото-меднопорфировые месторождения.

Субщелочная гранит-лейкогранитная серия завершает развитие борлинского комплекса. Представлена средне- крупнозернистыми амфиболовыми, амфибол-биотитовыми и биотитовыми гранитами. По петрохимическим и геохимическим особенностям слагающие серию гранитоиды занимают промежуточное положение между плюмазитовыми редкометальными и палингенными гранитами щелочного ряда. По условиям формирования, петрохимическим и геохимическим особенностям граниты относятся к А-типу. С гранитами субщелочной гранит-66 лейкогранитной серии возможно обнаружение молибденовых и вольфрам-молибденовых месторождений.

Литература

1. Абдулин А.А., Знаменский Н.Д., Старков В.Д., Русин А.И., Тельгузиев А.Т. Гранитоиды Мугоджар//Вопросы петрологии и геохимии гранитоидов Урала. Тр. ИГиГ. Вып.122. Свердловск, 1975. С.11-25.

2. Абдулин А.А., Байдильдин Э.А., Касымов М.А. и др. Металлогения Мугоджар. Алма-Ата, 1976. 280с.

3. Алексиев Е.И. Редкоземельные элементы в молодых гранитах Северной Нигерии и Камеруна и их генетическое значение//Геохимия. 1970, № 2. С. 192-198.

4. Билибина Т.В. Металлогения южной части Южного Урала//Сов. геология. 1960, № 6. С. 28-40.

5. Билибина Т.В. Интрузивные комплексы Мугоджар и их металлогения//Магматизм, метаморфизм, металлогения Урала. Первое Уральское петр.совещ. Т. 1. Свердловск, 1963. С. 179-195.

6. Билибина Т.В. Интрузивные комплексы Мугоджар//Тр. ИгиГ УФ АН СССР. Вып. 85. Свердловск, 1970. С. 3-85.

7. Бородин Л.С., Гинзбург Л.Н. Геохимический тип плюмазитовых редкометальных лейкогранитов: эволюционный петрохимический тренд и корреляция редких элементов//Геохимия. 2002, № 9. С. 933-945.

8. Виноградов А.П. Среднее содержание химических элементов в главных типах изверженных горных пород земной коры//Геохимия. 1962, № 7. С. 555-571.

9. Водорезов Г.И. Магматизм Мугоджар//Бюлл. Москов. об-ва испытат. природы. 1960. Т. 65 (35). Отдел геолог. Вып. 4. С. 135-136.

10. Водорезов Г.И. Основные черты магматизма Мугоджар// Матер. по геол. и полезным ископ. Урала. Вып. 8. М.: Госгеолтехиздат, 1961. С. 112-123.

11. Даценко В.М. Петрогеохимическая типизация гранитоидов югозападного обрамления Сибирской платформы//Второе Всерос. петрограф. совещ. Т.2. Сыктывкар, 2000. С. 270-274.

12. Дудкинский Д.В., Ефремов С.В., Козлов В.Д. Литий-фтористые граниты Чукотки и их геохимические особенности//Геохимия. 1994, № 3. С. 393-402.

13. Ермолов П.В., Владимиров А.Г., Тихомирова Н.И. Петрология пересыщенных кремнеземом агпаитовых щелочных пород. Новосибирск: Наука, 1988. 86с.

14. Коваленко В.И. Геохимическая специализация редкометальных гранитоидов и их положение в общей схеме эволюции континентального магматизма//Геохимия, минералогия, петрология. М.: Наука, 1976. С. 144-152.

15. Коваленко В.И., Горегляд А.В., Ярмолюк В.В., Наумов В.Б. Геохимия и генезис комендитов, пантеллеритов, щелочных гранитоидов юга Монголии//Геохимия. 1986, № 8. С. 1071-1091.

16. Милецкий Б.Е. Герцинские гранитоидные интрузии Мугоджарского антиклинория и связь с ними редкометального оруденения//Матер. по геологии и полезн. ископ. Зап. Казахстана. Вып.3. Алма-Ата, 1966. С. 144-155.

17. Минин В.А., Шипицин Ю.Г., Довгаль В.Н., Иванова Л.Д., Маликова И.Н. Редкие и редкоземельные элементы в среднепалеозойских гранитах нагорья Сангилен (ю-в Тува)//Редкоземельные элементы в магматических породах. Новосибирск, 1988. С. 44-59.

18. Редкоземельные элементы в магматических породах. Новосибирск, 1988. С. 3-5.

19. Самаркин Г.И., Чувашов Б.И. О завершенности позднегерцинского тектоно-магматического этапа на Урале//Докл. АН СССР. 1978. Т. 239, № 4. С. 934-937.

20. Самаркин Г.И., Самаркина Е.Я., Лядский П.В. О выделении формации добатолитовых самостоятельных малых интрузий в Главном гранитоидном поясе Южного Урала// Докл. АН СССР. 1985. Т. 281, № 1. С. 135-137.

21. Самаркин Г.И., Самаркина Е.Я. Гранитоиды Южного Урала. М.: Наука, 1988. 208с.

22. Самаркин Г.И., Самаркина Е.Я., Пальгуева Г.В. Калиевые полевые шпаты гранитоидов различных фаций глубинности активной континентальной окраины Южного Урала//Препринт. ИгиГ УрО РАН. Екатеринбург, 1998. 42с.

23. Самаркин Г.И. О развитии позднегерцинских орогенических тектонических движений на Урале//Уральский геологический журнал. 2003, № 3 (33). С. 29-44.

24. Старков В.Д., Знаменский Н.Д. Гранитоидный магматизм Восточно-Мугоджарского поднятия. М.: Наука, 1977. 132с.

25. Таусон Л.В. Геохимические типы и потенциальная рудоносность гранитоидов. М.: Наука, 1977. 278с.

26. Таусон Л.В. Типизация магматитов и их потенциальная рудоносность//27-й МГК. Т. 9. Петрология. М.: Наука, 1984. С. 221-228.

27. Федоров В.И., Костик И.Е., Бурмин Ю.А. Борлинский гранитный комплекс и связь с ним молибденового оруденения//Изв. АН СССР. Сер. геол. 1970, № 11. С. 154-159.

28. Ферштатер Г.Б., Карагодин С.С., Краснобаев А.А., Бородина Н.С. Петрология гранитоидов Мугоджар//Тр. ИгиГ УНЦ АН СССР. Вып. 100. Свердловск, 1973. С. 92-119.

29. Харланд У.Б., Кокс А.В., Ллевеллин П.Г. и др. Шкала геологического времени. М.: Мир, 1985. 140с.

30. Шеремет Е.М., Козлов В.Д. Петрология, геохимия и рудоносность гранитоидов молибденового пояса Забайкалья. Новосибирск: Наука, 1981. 132с.

31. Штейнберг Д.С., Ферштатер Г.Б., Фоминых В.Г. Фации глубинности гранитоидов Урала//Зап. Всесоюзн. мин. об-ва. 1968. Т. 97, № 4. С. 385-393.

32. Abdel-Rahman A.-F. M., Martin R.F. The Maunt Gharib A-type granite, NubianShield: petrogenesis and role of metasomatism at the Sourse//Contrib. Mineral. and Petrology. 1990. V. 104, № 2. P. 173-183.

67

33. Collins W.J., Beams S.D., White A.J.R., Chappell B.W. Nature and origin of A-Type granites with particular referense to Southeastem Australia//Contrib. Mineral. and Petrology. 1982. V. 80, № 2. P. 189-200.

34. Eby G-N. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis//Lithos. 1990. V. 26, $N_{\rm P}$ 1-2. P. 115-134.

35. Imeokparia E.G. Geochemical evolution of the metaluminous and peraluminous granites of Ganawuri Younger granite complex, northern Nigeria//J. Afr. Earth sci. 1986. V. 5, № 2. P. 193-200.

36. Sandeman H. A. and Malpas J. Epizonal I- and A-type granites and associated ash-flow tuffs, Fogo island northeast Newfoundland//Can. J. Earth Sci. 1995. V. 32, № 11. P. 1835-1844.

37. Sylvester P.J. Post-collisional strongly peraluminous granites//Lithos. 1998. N.45. P. 29-44.

38. White A.J.R., Chappell B.W. Granitoids types and their distribution in the Lachlan Fold Belt//Geol. Sos. Amer. Memoir. 1983. V. 159. P. 23-34.

39. White A.J.R., Chappell B.W. Some supracrustal (S-type) granites of the Lachlan Fold Belt//The origin of granites. Earth Sci. V. 79. P. 169-181.