—— ГЕОХИМИЯ —

УДК 549.21.211(234.852)

НОВЫЙ ТИП СИНГЕНЕТИЧЕСКИХ КСЕНОМИНЕРАЛЬНЫХ ВКЛЮЧЕНИЙ В АЛМАЗЕ

© 2004 г. В. И. Силаев, И. И. Чайковский, В. И. Ракин, В. Н. Филиппов

Представлено академиком Н.П. Юшкиным 10.06.2003 г.

Поступило 24.06.2003 г.

Важнейшим источником информации о генезисе алмазов служат сингенетические ксеноминеральные включения, подразделяемые в настоящее время по признаку магматического или метаморфического источника на три парагенезиса (класса) [1–5]: ультрабазитовый (оливин, пироксены, гранаты пиропового состава, хромшпинелиды), эклогитовый (гранаты альмандинового состава, омфацит, хромдиопсид, кианит), карбонатитовый (карбонаты, слюды). В результате проведенных нами исследований в кристалле алмаза из элювиально-делювиально-пролювиальной россыпи на Среднем Урале [6] выявлен новый, не известный ранее класс сингенетических включений, представленный Ti-Fe-Si-Zr-Al-okсидными твердыми растворами.

В качестве объекта исследований использован двойник в форме выпуклогранного додекаэдроида размером 0.95 × 0.76 × 0.7 мм и массой 1.2 мг. По классификации Ю.Л. Орлова этот кристалл отвечает конечной форме растворения в рамках I разновидности алмазов. Ксеноминеральные включения установлены в результате двукратного стачивания додекаэдроида на алмазном диске. При этом в роли фиксатора исследуемого кристалла использовалась деревянная шайба. Морфология и состав включений изучены на аналитическом электронном микроскопе JSM-6400, оснащенном энергетическим спектрометром фирмы "Link" и волновым спектрометром "Microspec".

В результате проведенных исследований обнаружены две генерации(?) оксидных включений, одна – в периферийной части алмазного кристалла, другая – в центральной.

Включения первой из упомянутых выше генераций приурочены к трехгранной пирамидальной полости, размеры треугольного сечения которой составляют 66 × 90 × 100 мкм. Кристаллографи-

Институт геологии Коми научного центра Уральского отделения Российской Академии наук, ческий анализ показал, что эта полость образована плоскостями двух октаэдрических субиндивидов, сросшихся по (111). Вдоль ребер отрицательной пирамиды наблюдаются игольчато-призматические индивиды железо-титановых оксидов размером по удлинению от 25 до 70 мкм и видимой толщиной 2-6 мкм. Под аналитическим электронным микроскопом эти индивиды обнаруживают резкую неоднородность, обусловленную весьма контрастным взаимным обособлением TiO₂ и FeO при сохранении фазовой гомогенности. Последнее отражается в поляризации составов даже на соседних участках исследуемых фаз (табл. 1, ан. 1-5): обогащенные титаном участки – (0.75-0.83)TiO₂ · (0.03-0.24)FeO \cdot (0-0.02)SiO₂ \cdot (0-0.11)Al₂O₃ \cdot (0-0.01) $[CaO + V_2O_5 + Cr_2O_3];$ обогащенные железом участки – (0.7-0.95)FeO · (0.03-0.05)TiO₂ · (0-0.09) $SiO_2 \cdot (0.01 - 0.14)Al_2O_3 \cdot (0.01 - 0.02)[CaO + V_2O_5 + V_2O_5]$ + Cr₂O₃]. Выявляющаяся аналитическая обратная корреляция между TiO₂ и FeO (r = -0.97) дает основание определить статус рассматриваемых фаз как твердый раствор в основном рутила и иоцита, находящийся в состоянии экссолюции, не достигшей стадии фазовой гетерогенизации.

В центральной области исследуемого алмазного кристалла оксидные включения приурочены к границе между алмазом-хозяином и алмазом-доменом (рис. 1а). Размер последнего оценивается в 30 × 95 × 130 мкм. Для частично обнаженной поверхности алмаза-хозяина характерна своеобразная гребенчатая скульптура, похожая на формы, описанные в [7] как индукционная поверхность. Анализ показал, что в нашем случае "гребенка"

образована плоскостями (111) и (111).

Вдоль границы между доменом и алмазом-хозяином наблюдается цепочка мелких ксеноминеральных гомофазных зерен, размер которых колеблется от 1×5 до 6×20 мкм (рис. 16, в). В составе этих зерен установлены (в порядке снижения концентрации) TiO₂, FeO, SiO₂, ZrO₂, Al₂O₃, Cr₂O₃, V₂O₅, CaO, содержания которых колеблются в весьма широких пределах (табл. 1, ан. 6–17). Упомянутые колебания явно закономерны, на что указывает система сильных и контрастных корреляци-

Сыктывкар

Пермский государственный университет

№ п. п.	TiO ₂	FeO	SiO ₂	ZrO ₂	Al ₂ O ₃	Cr ₂ O ₃	V ₂ O ₅	CaO	Сумма
1	82.08	6.96	-	_	10.37	0.42	_	0.17	100
2	81.46	2.84	1.52	-	13.9	-	_	0.28	100
3	76.04	22.79	_	-	_	-	1.16	_	100
4	5.43	66.93	7.05	-	18.94	1.23	_	0.44	100
5	3.19	94.14	_	-	1.04	0.58	0.87	0.19	100
6	20.82	59.1	4.78	6.98	6.85	0.61	0.55	0.31	100
7	48.94	43.95	0.95	0.6	4.64	0.72	_	0.2	100
8	64.5	29.56	0.64	-	3.98	_	1.08	0.24	100
9	34.17	54.55	1.12	0.68	7.33	0.64	0.72	0.25	100
10	76.47	19.42	0.97	-	2.99	_	_	0.15	100
11	81.01	11.94	2.63	1.26	2.64	0.52	_	-	100
12	34.31	39.95	6.42	17.98	1.34	-	-	-	100
13	80.6	15.75	0.69	-	2.71	_	_	-	100
14	27.16	17.31	17.66	33.94	3.99	_	_	-	100
15	27.5	18.4	17.14	34.16	2.8	-	-	-	100
16	0.57	90.65	1.31	_	6.35	12.12	_	_	100
17	81.28	13.25	0.57	-	4.39	0.51	—	—	100

Таблица 1. Химический состав включений Ti-Fe-Si-Zr-Al-оксидных твердых растворов, мас. %

Примечание. 1-5 - трехгранная полость; 6-17 - алмазный домен, зерна: № 1 (6-10), № 2 (11), № 3 (12), № 5 (13-15), № 6 (16), № 7 (17).

Таблица 2. Матрица коэффициентов парной корреляции компонентов состава включений Ti–Fe–Si–Zr–Al-оксидных твердых растворов в алмазе

TiO ₂	1				TiO ₂		Рутил		
FeO	-0.82	1			FeO ZrO ₂ + SiO ₂		Иоцит Циркон		
SiO ₂	-0.31	-0.26	1		$Al_2 \tilde{O}_3$	$\frac{2}{2}$	Корунд		
ZrO ₂	-0.26	-0.29	0.97	1	$reO + Cr_2O$ CaO + Al ₂ O	$O_3 + V_2 O_5 O_3$	Аромшинелид Майонит (?)		
Al ₂ O ₃	-0.27	0	0	0	1				
Cr ₂ O ₃	-0.35	0.46	0	0	0	1			
V ₂ O ₅	0	0	0	0	0	0	1		
CaO	0	0	-0.35	-0.36	0	0	0	1	
	TiO ₂	FeO	SiO ₂	ZrO ₂	Al ₂ O ₃	Cr ₂ O ₃	V ₂ O ₅	CaO	

онных связей между компонентами (табл. 2). Здесь, прежде всего, обращает на себя внимание сильная обратная корреляция между TiO₂ и FeO, составляющими в совокупности не менее 70 мас. % вещества рассматриваемых фаз. Последние по этому признаку совершенно аналогичны описанным выше оксидным железо-титановым фазам, обнаруженным в трехгранной октаэдрической полости.

Выявляющаяся острая конкуренция между TiO_2 и FeO в составе исследуемых включений абсолютно противоположна так называемому ильменитовому корреляционному комплексу [8]. Это приводит к выводу о том, что в нашем случае мы

действительно имеем дело с твердым раствором именно рутила и иоцита. Судя по корреляции между другими компонентами (табл. 3), в состав рутил-иоцитовых растворов входит примесь хромшпинелида (FeO + $Cr_2O_3 + V_2O_5$), циркона (ZrO₂ + SiO₂), корунда (Al₂O₃) и, вероятно, майонита (Ca₁₂Al₁₄O₃₃). Пересчет данных рентгеноспектрального микроанализа на перечисленные выше миналы привел к вполне удовлетворительным результатам (табл. 3). Выявляющиеся невязки по SiO₂ и ZrO₂ не достигают значительных величин и весьма вероятно свидетельствуют о небольшой примеси в соответствующих фазах кремнезема и бадделеита.

Рис. 1. Алмазный домен в центральной части алмазахозяина (а) с выделениями Ti–Fe–Si–Zr–Al-оксидных твердых растворов (б, в). РЭМ-изображения в режимах вторичных (а) и упругоотраженных (б) электронов, в – схема последовательности анализа оксидных включений.

Представление об исследуемых ксеноминеральных включениях как оксидных твердых растворах убедительно подтверждается данным аналитической электронной микроскопии. Под РЭМ эти включения, будучи вполне гомофазными, обнаруживают отчетливую неоднородность по со-

Рис. 2. Картины нуклеации цирконовой протофазы (светлые изометричные участки) в пределах фазовогомогенного выделения Ti–Fe–Si–Zr–Al-оксидных твердых растворов. РЭМ-изображения в режимах вторичных (а) и упругоотраженных электронов (б, в).

ставу, особенно резко выступающую во взаимном обособлении титана и железа. Именно это обособление и определило, очевидно, возникновение упомянутой выше сильной обратной корреляции между TiO_2 и FeO. Кроме того, под электронным микроскопом на фоне рутил-иоцитового матрикса выделяются изометричные участки размером 0.5–1 мкм, аномально обогащенные цирконием (рис. 2). Судя по энергодисперсионным спектрам, ZrO₂ на таких участках связан с SiO₂ в пропорции, строго соответствующей стехиометрии

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 1 2004

№ п. п.	Рутил ТіО ₂	Иоцит FeO	Шпинелид Fe(Cr, V) ₂ O ₄	Циркон ZrSiO ₄	Майонит Са ₁₂ Аl ₁₄ О ₃₃	Корунд Al ₂ O ₃	SiO ₂	ZrO ₂
1	83.41	7.63	0.46	_	0.38	8.12	-	_
2	83.17	3.22	-	_	0.65	10.9	2.06	_
3	74.27	24.73	1.0	-	_	_	_	_
4	5.16	69.98	1.23	-	0.95	13.75	8.93	—
5	2.91	94.55	1.55	-	0.39	0.6	_	_
6	20.07	62.73	1.08	8.74	0.67	4.93	1.78	_
7	47.18	46.71	0.72	0.76	0.44	3.34	0.85	—
8	63.15	31.7	0.92	-	0.53	2.86	0.84	—
9	33.02	57.94	1.27	0.85	0.55	5.36	1.01	_
10	75.04	21.17	_	-	0.34	2.17	1.28	_
11	80.26	12.87	0.54	1.62	_	2.05	2.66	_
12	34.31	44.39	_	17.12	_	1.04	_	3.14
13	79.68	17.3	_	-	_	2.1	0.92	_
14	28.55	20.22	_	46.4	_	3.29	1.54	_
15	28.88	21.47	_	46.66	_	2.31	0.68	_
16	0.5	82.47	11.15	-	-	4.36	1.53	_
17	80.9	14.38	0.54	-	_	3.42	0.76	_

Таблица 3. Состав включений Ti–Fe–Si–Zr–Al-оксидных твердых растворов, пересчитанный на гипотетические миналы, мол. %

Примечание. 1–5 – трехгранная полость; 6–17 – алмазный домен, второй срез, зерна: № 1 (6–10), № 2 (11), № 3 (12), № 5 (13–15), № 6 (16), № 7 (17).

ZrSiO₄. Следовательно, здесь мы имеем дело с нуклеацией цирконовой протофазы, концентрация которой на соответствующих участках колеблется от 15 до 50 мол. %.

Выявленная неоднородность состава оксидных включений в исследуемом алмазе отражает, очевидно, самую начальную стадию экссолюции, когда в условиях сохраняющейся фазовой гомогенности твердых растворов лишь в самых общих чертах намечается обособление наименее взаимно растворимых компонентов – рутилового, иоцитового и цирконового. Существенным тормозом для такого упорядочения выступает именно примесь цирконового минала. На это указывает тот факт, что с ростом содержания этого минала соотношения между основными компонентами твердых растворов – TiO₂ и FeO – стремятся к эквимолекулярной пропорции (рис. 3).

Сохранение фазовой гомогенности исследуемых твердых растворов несомненно свидетельствует об их закалке, которая могла быть обусловлена только резким и быстрым перемещением исследуемого алмаза из области весьма высоких температур (мантия) в область относительно низких (у земной поверхности). В случае более медленной эвакуации должна была бы произойти фазовая гетерогенизация таких смесей с образованием мономинеральных индивидов иоцита, рутила и циркона. Как известно, включения последних действи-

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 1 2004

тельно установлены во многих алмазах [1, 9–11, устное сообщение Б.А. Малькова].

Выявленные нами Ti–Fe–Si–Zr–Al-оксидные твердые растворы, вероятно, впервые обнаружены в качестве твердофазных примесей в алмазах. Такие примеси, скорее всего, не удастся согласовать

Рис. 3. Вариации химизма Ti–Fe–Si–Zr–Al-твердых растворов. *1*, 2 – включения, приуроченные соответственно к пирамидальной полости и алмазному домену.

с современной номенклатурой сингенетических включений, поскольку их трудно связать с какимлибо конкретным магматическим или метаморфическим субстратом. Мы полагаем, что изученные нами фазы, термодинамические параметры кристаллизации которых не могут быть ниже максимальных оценок соответствующих параметров алмазообразования [12, 13], следует отнести к особому – ю в е н и л ь н о м у – парагенезису (классу) сингенетических включений.

Не исключено, что именно такие включения наилучшим образом подходят на роль непосредственных свидетелей зарождения и роста алмазов, поскольку они больше других минералов отвечают предполагаемым в глубокой мантии [14] условиям кристаллохимической унификации и широкого развития твердых растворов самых необычных конфигураций.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Harris J.W.* // Industr. Diamond Rev. 1968. V. 28. C. 25–29.
- 2. Соболев Н.В., Ефимова Э.С., Поспелова Л.Н. // Геология и геофизика. 1981. Т. 12. С. 25–29.
- 3. Соболев Н.В., Тейлор Л.А., Коптиль В.И. и др. В кн.: Проблемы, прогнозирование, поиски и изучение месторождений полезных ископаемых на пороге XXI века. Воронеж, 2003. С. 139–142.

- 4. Зинчук Н.Н., Коптиль В.И. // Бюл. МОИП. Отд. геол. 2003. Т. 78. В. 1. С. 54–66.
- Литвин Ю.А. В кн.: Геология, геохимия и геофизика на рубеже XX и XXI веков. К 10-летию РФФИ. М.: ООО "Связь-Принт", 2002. Т. 2. С. 133–135.
- 6. Чайковский И.И., Логутов Б.Б. В сб.: Проблемы минералогии, петрографии и металлогении. Пермь: Перм. гос. ун-т, 2003. В. 5. С. 194–201.
- 7. Бартошинский З.В. // Минералог. сб. Львов. гос. ун-та. 1964. № 18. В. 1. С. 16–24.
- Василенко В.Н., Леснов Ф.П., Зинчук Н.Н. и др. В кн.: Проблемы, прогнозирование, поиски и изучение месторождений полезных ископаемых на пороге XXI века. Воронеж, 2003. С. 33–38.
- Буланова Г.П. В кн.: Физические свойства и минералогия природных алмазов. Якутск: СО АН СССР, 1986. С. 76–82.
- Gurney J.J., Siebert J.C., Whitefield G.G. // Geol. Soc. South Africa Spec. Publ. 1969. V. 2. P. 351–357.
- 11. *Meyer H.O., Svisero D.P.* In: Abstr. Vol. Intern. Conf. on Kimberlites. Yohannesburg, 1973. P. 225–228.
- 12. *Мальков Б.А.* // Изв. АН СССР. Сер. геол. 1977. № 5. С. 84–85.
- Мальков Б.А., Асхабов А.М. В сб.: Алмазы и алмазоносность Тимано-Уральского региона. Сыктывкар: Геопринт, 2001. С. 202–204.
- Пущаровский Д.Ю., Максимов Б.А. В кн.: Геология, геохимия и геофизика на рубеже XX и XXI веков: К 10-летию РФФИ. М.: ООО "Связь-Принт", 2002. Т. 2. С. 317–318.