—— ГЕОХИМИЯ —

УДК 553.64:550.4

ТАЛЛИЙ В ОКЕАНСКИХ ФОСФОРИТАХ

© 2004 г. Г. Н. Батурин

Представлено академиком А.П. Лисицыным 14.07.2003 г.

Поступило 15.07.2003 г.

Таллий, образующий ряд токсичных соединений, относится к числу редких элементов: его среднее содержание в глинистых породах оценивается цифрой 1 г/т [1, 2], а в пелагических осадках океана – 1.8 г/т [3]. Но в некоторых породах и рудах, в частности в железо-марганцевых конкрециях океана, его содержание возрастает в десятки и сотни раз [3, 4].

В фосфоритах, являющихся основным сырьем для производства фосфорных удобрений, таллий практически не исследовался, и в сводных работах по распределению редких элементов в фосфоритах [5, 6] его поведение не рассматривалось. В то же время геохимии других токсичных элементов в фосфоритах, в частности кадмия, уделяется довольно большое внимание в связи с проблемами экологической безопасности и охраны окружающей среды [7–9]. Поэтому представляет интерес рассмотреть поведение таллия в океанских фосфоритах, являющихся по ряду геохимических показателей аналогами многих эксплуатируемых фосфоритовых месторождений на континентах.

С этой целью выполнено исследование коллекции океанских фосфоритов, собранных в рейсах научно-исследовательских судов Института океанологии им. П.П. Ширшова РАН, а также других организаций в Атлантическом и Тихом океанах на подводных окраинах континентов и на подводных горах и возвышенностях.

В число исследованных образцов входят: современные фосфоритовые конкреции и фосфатизированные копролиты морских львов с внутреннего шельфа Намибии; плиоцен-плейстоценовые фосфатные пески и конкреции с внешнего шельфа Намибии; позднечетвертичные конкреции с шельфов Перу и Чили; миоценовые конкреции, плиты и глыбы с шельфов Анголы, Марокко, банки Агульяс и плато Блейк; позднемеловые фосфатизированные известняки с подводных гор центральной части Тихого океана; фосфатное ядро железо-марганцевой конкреции и фосфатные

Институт океанологии им. П.П. Ширшова Российской Академии наук, Москва прожилки в железо-марганцевой корке с подводного поднятия Сьерра-Леоне в восточной тропической части Атлантического океана. Для сопоставления проанализированы также отдельные образцы вмещающих фосфориты осадков. Общее описание фосфоритов и осадков из названных районов приведено в работах [10, 11].

Содержание таллия определяли масс-спектральным методом с индуктивно связанной плазмой на квадрупольном масс-спектрометре с ІСР Plasma-Quard в Аналитическом сертификационном испытательном центре Всероссийского института минерального сырья (АСИЦ ВИМС) под руководством В.К. Карандашина. Определения выполнялись с использованием стандартных полиэлементных растворов высокой чистоты фирмы High Purity Standards Co, USA. Чувствительность анализа 0.02 г/т, точность ±15–20%. Наряду с таллием анализировали ряд других металлов. Фосфор, кремнезем, минеральный и органический углерод определяли классическими химическими и микрохимическими методами в аналитических лабораториях Государственного института горно-химического сырья (ГИГХС, аналитик Р.С. Дейнекина) и Института океанологии им. П.П. Ширшова РАН (аналитик Н.П. Толмачева). Результаты определения содержаний названных элементов приведены в табл. 1.

Согласно приведенным результатам, исследованные образцы фосфатных стяжений, фосфатизированных копролитов и известняков являются за единичными исключениями фосфоритами, содержащими от 15 до 33% P_2O_5 . Содержание в них основных нефосфатных компонентов колеблется в широких пределах: кремнезема от 0.03 до 31.6%, глинозема от 0.01 до 8.8%. Содержание железа и марганца, представленное в форме оксидов, варьирует столь же значительно – соответственно от 0.048 до 5.4% (Fe₂O₃) и от 0.0014 до 2.2% (MnO). Содержание минерального углерода (CO₂), входящего в состав как фосфата, так и нередко сопутствующего ему карбоната, составляет от 0.18 до 26.8%, органического углерода – от 0.12 до 1.52%.

В фосфатных песках, во вмещающих конкреции осадках и в отдельных гранулометрических фракциях осадков содержание некоторых пере-

БАТУРИН

№ обр.	Материал	Основной химический состав, %						Микроэлемен- ты, г/т		$\frac{\mathrm{Tl}}{\mathrm{Mn}}$ ×	$\frac{\text{Tl}}{\text{Fe}} \times$
		P ₂ O ₅	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CO ₂	Сорг	Mn	Tl	$\times 10^4$	$\times 10^4$
Внутренний шельф Намибии, голоценовые отложения											
2048-1	Диатомовый ил	0.82	58.9	1.9	0.93	2.62	5.54	63	3.5	550	5.4
2048-2	Фосфатизированный ил	1128	27.3	1.3	0.68	2.86	4.02	50	1.4	280	2.8
2048-3	Мягкая конкреция	23.28	10.0	1.3	0.65	4.63	1.83	47	1.7	360	3.7
2048-5	Рыхлая конкреция	30.24	2.08	0.12	0.14	-	_	16	0.31	200	3.1
2048-6	Уплотненная конкреция	30.23	0.10	0.011	0.059	5.76	1.03	12	0.079	65	1.9
2048-8	Плотная конкреция	32.41	0.03	0.016	0.048	6.36	0.88	2.0	0.051	25	1.6
2048-9	Рыхлый копролит	27.66	0.15	0.041	0.073	4.33	1.35	14	0.092	65	1.8
2048-11	Уплотненный копролит	30.87	0.35	0.029	0.063	6.36	0.79	11	0.094	85	2.1
2048-12	Плотный копролит	31.19	0.12	0.035	0.053	6.21	0.71	25	0.069	28	1.8
2048-13	Фракция осадка 2–1 мм	29.58	2.95	0.81	0.78	6.40	3.30	90	0.40	44	0.7
2048-14	То же, 1–0.5 мм	28.44	5.22	0.75	0.77	5.54	2.34	70	0.57	80	1.0
2048-15	То же, 0.5–0.25 мм	30.63	4.43	0.72	0.61	3.62	_	56	0.90	160	2.1
2048-16	То же, <0.01 мм	5.40	59.9	9.6	3.4	-	_	392	1.1	28	0.46
Внешний шельф Намибии, плиоцен-плейстоценовые отложения											
4-13/0	Песок из колонки, 0–1 см	6.40	14.65	2.1	2.2	29.48	_	54	3.8	700	2.5
4-14/0	То же	5.70	6.51	1.1	1.2	35.38	_	22	8.0	3600	9.5
4-14/н	То же, 140–150 см	24.50	13.69	2.2	2.6	4.80	1.43	57	9.3	1400	5.1
4-16/0	То же, 0–10 см	9.70	9.0	1.1	1.9	21.04	1.95	32	16	5000	12
4-16/н	То же, 210–220 см	24.90	8.52	2.4	4.0	6.78	3.11	51	18	3500	6.4
4-12/ф	Фракция <0.01 мм	0.80	24.6	8.1	4.9	20.72	5.54	131	0.53	40	0.15
4-12-3	Конкреции размером до 20 мм	32.77	0.69	0.64	0.91	5.38	0.90	27	0.88	3200	1.4
4-12-4	Слепок гастроподы	31.96	2.17	0.63	0.86	-	_	32	0.46	1400	0.7
4-12-6	Слепок пелециподы	26.22	9.31	1.6	2.4	4.31	1.01	27	14.6	5400	8.7
4-12-7	Копролит	32.28	0.30	0.06	0.40	6.22	0.97	24	0.15	600	0.5
4-12-9	Конкреция, 50 × 40 × 30 мм	32.44	0.40	0.07	0.36	6.03	0.88	12	0.45	3700	1.7
4-17/к	Конкреция менее 10 мм	31.31	1.47	0.65	1.1	-	-	35	0.59	1700	0.7
	Шельф Ч	или, 1	поздн	ечетв	ертич	ные с	отлож	кения	!	!	•
250-0	Терригенно-диатомовый ил	6.16	39.2	8.8	1.7	8.23	5.35	162	3.6	2200	3.0
250-1	Рыхлая конкреция	15.73	22.23	5.1	1.2	2.31	0.65	170	0.80	500	1.0
250-2	Уплотненная конкреция	20.64	31.60	5.8	1.8	3.51	0.80	155	0.90	50	0.7
250-4	Плотная конкреция	26.45	10.80	3.0	1.6	3.73	1.52	193	0.88	45	0.8
Шельф Перу, позднечетвертичные отложения											
553-0	Терригенно-диатомовый ил	1.33	57.0	12.6	2.7	9.37	4.46	308	1.6	50	0.85
553-1	Рыхлая конкреция	17.70	24.91	8.8	2.1	3.15	0.90	246	0.80	35	0.6

21.10

21.80

20.33

19.42

6.2

0.58

1.7

1.2

5.08

4.04

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 2 2004

210

68

0.69

5.4

33

800

0.6

6.4

0.71

1.35

553-2

546

Плотная конкреция

Фосфоритовая корка

ТАЛЛИЙ В ОКЕАНСКИХ ФОСФОРИТАХ

Таблица 1. Окончание

№ обр.	Материал	Основной химический состав, %						Микроэлемен- ты, г/т		$\frac{Tl}{Mn}$ ×	$\frac{\text{Tl}}{\text{Fe}}$ ×	
		P_2O_5	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CO ₂	Сорг	Mn	Tl	$\times 10^4$	$\times 10^4$	
Шельф Марокко (а), Анголы (б), банки Агульяс (в) и плато Блейк (г), миоценовые отложения												
770 (a)	Фосфоритовый конгломерат	18.58	6.85	1.6	5.4	13.71	0.52	123	1.8	150	0.48	
1215 (б)	Глыбовая конкреция	25.44	12.39	1.7	4.1	3.65	0.76	46	7.4	1600	2.6	
390 (в)	Фосфоритовая плита	19.11	2.88	0.98	7.2	5.72	0.33	10100	2.8	2.8	0.56	
540 (г)	Конкреции (ср. проба)	20.26	15.37	1.9	4.7	6.39	0.41	2400	0.22	9.2	0.07	
Подводные горы Тихого океана, позднемеловые отложения												
6002	Фосфатизированный известняк	21.48	_	5.0	3.3	2.15	0.29	11500	4.0	3.5	1.7	
6266-1	То же, фораминиферовый	27.48	-	1.1	1.0	17.42	0.22	2380	1.5	6.3	2.1	
6266-4	Плотный фосфорит из брекчии	30.98	0.9	0.2	2.9	12.28	0.12	7750	0.56	7.9	0.3	
6349	Плотное стяжение в рыхлом известняке	22.90	_	0.6	0.41	10.17	0.22	1000	0.52	5.2	1.7	
6352	Фосфоритовая корка на базальте	26.75	8.61	0.4	0.56	3.80	0.24	410	0.21	5.1	0.54	
6366	Фосфатный прослой в гиалокластите	25.65	11.44	0.10	0.30	3.85	0.21	2480	1.5	6.0	7.1	
6369	Фосфатизированный известняк	31.46	2.98	0.6	1.1	-	-	3330	1.9	5.7	2.5	
6333	То же, в туфобрекчии	23.49	_	6.3	2.6	2.4	0.13	5970	5.8	9.7	3.2	
Поднятие Сьерра-Леоне												
32-9	Фосфатизированный известняк в ядре Fe–Mn- конкреции	34.75	0.2	0.18	1.3	0.18	0.22	2250	2.8	12.4	3.1	
32/28-1	Фосфатный прожилок в Fe–Mn-корке	17.90	0.88	0.45	2.4	17.75	0.24	17050	19.4	11.4	11.5	
32/28-2	То же	13.42	0.29	0.2	0.54	26.82	0.19	1320	1.3	9.8	3.4	

численных элементов превышает указанные пределы за счет присутствия нефосфатных биогенных и терригенных компонентов.

Таллий в рассматриваемых образцах распределяется следующим образом.

Современный диатомовый ил с внутреннего шельфа Намибии содержит 3.5 г/т таллия, фосфатизированный участок ила и мягкое фосфатное стяжение из той же дночерпательной пробы – 1.4 и 1.7 г/т, более консолидированное, но еще рыхлое стяжение – 0.31 г/т и, наконец, уплотненное и плотное стяжения – 0.079 и 0.051 г/т. В слабо литифицированных копролитах морских львов содержание таллия составляет 0.092 и 0.094, в литифицированном 0.069 г/т. В четырех гранулометрических фракциях диатомовых илов (2–1, 1–0.5, 0.5–0.25 и 0.1–0.05 мм) содержание таллия возрастает от крупных фракций к мелким: 0.40 – 0.57 – 0.90 – 1.1 г/т. В плиоцен-плейстоценовых фосфатных песках внешнего шельфа Намибии содержание таллия меняется в пределах 3.8–18 г/т, а в тонкой нефосфатной фракции (< 0.01 мм) составляет 0.53 г/т. В пяти конкрециях разных типов из тех же песков оно относительно равномерно (0.15–0.88 г/т), но в фосфатном слепке раковины пелециподы повышается до 14.6 г/т.

Осадки с шельфов Чили и Перу содержат соответственно 3.6 и 1.6 г/т таллия, позднечетвертичные конкреции – 0.69–0.90 и фосфоритовая корка – 5.4 г/т.

Миоценовая фосфоритовая конкреция с плато Блейк содержит 0.22 г/т таллия, фосфориты с шельфа Марокко и с банки Агульяс – от 1.2 до 2.8 г/т и образец с шельфа Анголы – 7.4 г/т.

Содержание таллия в позднемеловых фосфоритах с подводных гор Тихого океана меняется в пре-

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 2 2004

Рис. 1. Соотношения концентраций марганца и таллия (а) и железа и таллия (б) в современных фосфоритах с внутреннего шельфа Намибии. *1* – диатомовый ил; *2* – фосфатизированный ил; *3*, *4* – конкреции нелитифицированные (3) и литифицированные (4); *5*–*7* – копролиты нелитифицированные (*5*), слабо литифицированные (*6*) и литифицированные (*7*); *8*–*10* – гранулометрические фракции диатомового ила: 2–1 мм (*8*), 1–0.5 мм (*9*) и 0.5–0.25 мм (*10*).

делах 0.21–6.1 г/т и составляет в среднем 2.4 г/т. Фосфатное ядро железо-марганцевой конкреции с поднятия Сьерра-Леоне содержит 2.8 г/т, а два образца фосфатных прожилков из железо-марганцевых корок – 1.3 и 19.4 г/т таллия.

Судя по этим результатам, содержание таллия в океанских фосфоритах находится в основном на фоновом уровне, характерном для осадочных пород и океанских осадков, но в некоторых случаях его концентрация значительно возрастает.

Форма нахождения таллия в фосфатных породах не изучалась, но, судя по общим закономерностям распределения редких и рассеянных элементов в фосфоритах [5, 6, 12], они могут выполнять, с одной стороны, роль изоморфной примеси в кристаллической решетке апатитового минерала, а с другой стороны, входить в состав биогенного и терНо, судя по приведенным данным, какая-либо общая корреляционная связь таллия с фосфором и другими исследованными элементами отсутствует, поскольку пониженные и повышенные содержания таллия встречаются в пробах различного состава. Вместе с тем сопоставление содержаний таллия с марганцем и железом в группе современных фосфоритов различной степени литификации свидетельствует о наличии между ними определенной зависимости (рис. 1).

Ранее было установлено, что наиболее высокие содержания таллия в морской среде характерны для железо-марганцевых конкреций – в среднем 150 г/т [4].

Анализ 9 образцов железо-марганцевых корок, перекрывающих исследованные фосфориты с подводных гор Тихого океана и поднятия Сьерра-Леоне, показал, что они содержат от 44.7 до 229, в среднем 126 г/т таллия. При этом отношение средних содержаний таллия к марганцу составляет (10^{-4}) : в осадочных породах 11, в океанских осадках 6, в глубоководных железо-марганцевых конкрециях 8, в рудных железо-марганцевых корках 8, а соответствующие отношения Tl/Fe в тех же объектах – 0.3–0.5–12–10.5. Относительное постоянство средних соотношений Tl/Mn в перечисленных типах пород показывает, что наиболее активными концентраторами таллия в окислительной океанской среде являются гидроксиды марганца и в меньшей степени железа, которые, видимо, могут играть определенную роль носителей таллия также и в фосфоритах.

Но приведенные в табл. 1 отношения Tl/Mn и Tl/Fe в исследованном материале значительно отличаются от тех, которые характерны для железо-марганцевых конкреций и корок, которые формируются преимущественно за счет поступления рудных и сопутствующих элементов непосредственно из океанской воды. Так, отношение Tl/Mn составляет (10⁻⁴): в современных и плиоцен-плейстоценовых конкрециях шельфа Намибии, позднечетвертичных конкрециях с перуаночилийского шельфа и миоценовой конкреции с шельфа Марокко 25-500, а в плиоцен-плейстоценовых фосфатных песках и конкрециях 600–5400, т.е. в десятки и сотни раз выше по сравнению с железо-марганцевыми конкрециями и корками. Сопоставимые с последними образованиями величины Tl/Mn - от 1 до 12 · 10⁻⁴ - наблюдаются только в фосфоритах банки Агульяс, плато Блейк и подводных гор Тихого и Атлантического океанов.

В противоположность Tl/Mn отношение Tl/Fe в исследованных фосфоритах оказалось в целом пониженным относительно железо-марганцевых конкреций и корок. В фосфоритах с плато Блейк, шельфа Марокко и банки Агульяс оно составляет

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 2 2004

от 0.07 до $0.56 \cdot 10^{-4}$, в большинстве фосфоритовых конкреций с подводных окраин континентов и фосфатизированных известняках с подводных гор – от 0.5 до $3.4 \cdot 10^{-4}$ и лишь в нескольких образцах приближается к таковому в железо-марганцевых конкрециях и корках (плиоцен-плейстоценовые фосфатные пески и одна конкреция с внешнего шельфа Намибии, фосфоритовая корка с шельфа Перу, фосфатизированный известняк с одной подводной горы в Тихом океане и фосфатный прожилок в железо-марганцевой корке с поднятия Сьерра-Леоне в Атлантическом океане).

Приведенные данные позволяют представить следующую схему поведения таллия в океанских фосфоритах.

Поступление таллия (являющегося в океане консервативным элементом [13]) в осадки происходит за счет его сорбции из воды осаждающимися гидроксидами марганца и железа, чему, видимо, способствуют сопоставимые концентрации растворенных форм всех трех элементов в океанской воде [13].

Гидроксиды марганца, сорбирующие таллий из океанской воды и осаждающиеся на шельфах, восстанавливаются в обогащенных органическим веществом осадках, переходят в раствор и диффундируют в придонную воду, а таллий остается в осадках. В результате отношение Tl/Mn в шельфовых осадках оказывается много выше, чем в пелагических осадках, железо-марганцевых конкрециях и корках.

Диагенетические фосфатные стяжения, формирующиеся на подводных окраинах континентов, содержат частицы вмещающих осадков и наследуют повышенное отношение Tl/Mn, но в процессе их литификации происходит вытеснение нефосфатных компонентов, обогащенных таллием. Благодаря этому отношение Tl/Mn в плотных образцах современных фосфоритов ниже, чем в мягких и рыхлых, и приближается к таковому в алеврито-пелитовой фракции фосфатоносных песков внешнего шельфа Намибии (40 · 10⁻⁴).

В гранулометрических фракциях современных диатомовых осадков, содержащих фосфоритовые микроконкреции и мелкий костный детрит, наблюдается тенденция к обратной корреляции между содержанием таллия и марганца: мелкопесчаная фракция обеднена марганцем и обогащена таллием по сравнению с крупнопесчаной (рис. 1а) и отношение Tl/Mn возрастает от 28 до 44–80–160 · 10⁻⁴. Очевидно, это связано с тем, что в мелкопесчаной фракции концентрируется литогенный материал, обогащенный таллием, а также, как показали результаты анализа, характерными для некоторых тяжелых минералов элементами – хромом, бериллием, рубидием, цезием, цирконием, торием, иттрием и редкими землями.

Вклад железа в поставку таллия в современные фосфориты является, видимо, относительно скромным, поскольку в осадках с подводных окраин континентов преобладает (порядка 90%) инертное железо, связанное с литогенным материалом [14, 15]. Именно поэтому среднее отношение Tl/Fe в океанских осадках примерно в 20 раз ниже, чем в гидрогенных железо-марганцевых конкрециях и корках, формирующихся за счет осаждения растворенных гидроксидов из океанской воды. Реакционноспособное железо, поставляющее свою долю таллия в обогащенные органическим веществом фосфатоносные осадки, восстанавливается до пирита [15], что, видимо, сопровождается потерей таллия, о чем свидетельствует уменьшение отношений Tl/Fe от рыхлых к плотным фосфоритовым конкрециям в современных диатомовых илах.

Но в процессе вторичного ожелезнения океанских фосфоритов железо может явиться основным концентратором таллия. В частности, таллием обогащены плиоцен-плейстоценовые фосфатные пески и одна конкреция с внешнего шельфа Намибии с низким содержанием марганца и повышенным содержанием железа, а также фосфоритовая корка с шельфа Перу и глыбовая конкреция с шельфа Анголы.

Приведенные данные позволяют заключить, что при значительной неравномерности распределения таллия в океанских фосфоритах для этих пород в целом характерно фоновое содержание этого элемента, сопоставимое с его средним содержанием в океанских осадках и глинистых осадочных породах континентов. В фосфатную фазу фосфоритов таллий не входит и связан частично с литогенным материалом, но в большей степени с гидроксидами марганца и железа, благодаря чему фосфориты обогащаются таллием в окислительной обстановке.

Работа выполнена при финансовой поддержке РФФИ (грант 03–05–65400).

СПИСОК ЛИТЕРАТУРЫ

- 1. Виноградов А.П. // Геохимия. 1962. № 7. С. 555-571.
- Turekian K.K., Wedepohl K.H. // Bull. Geol. Soc. Amer. 1961. V. 72. № 1. P. 175–192.
- Волков И.И., Соколова Е.Г. В сб.: Геология океанов и морей: Тез.докл. VI Всесоюз. школы мор. геологии. М.: ИОАН СССР, 1984. Т. 3. С. 33–35.
- Батурин Г.Н. Геохимия железо-марганцевых конкреций океана. М.: Наука, 1986. 328 с.
- 5. Холодов В.Н., Минеев Д.С. Вещественный состав фосфоритов. М.: Наука, 1979. С. 46–65.
- Altschuler Z.S. // SEPM Spec. Publ. 1980. № 29. P. 19– 30.
- 7. Батурин Г.Н., Орешкин В.Н. // Геохимия. 1981. № 11. С. 1727–1733.

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 2 2004

- 8. *Becker P*. Phosphate and Phosphoric Acid. N.Y.: Marcel Dekker, 1989.
- 9. Nathan Y., Benalioulhaj N., Prévôt L., Lucas J. // J. Afr. Earth Sci. 1996. V. 22. № 1. P. 17–27.
- 10. *Батурин Г.Н.* Фосфориты на дне океанов. М.: Наука, 1978. 230 с.
- Гайоты Западной Пацифики и их рудоносность / Под ред. И.Н. Говорова, Г.Н. Батурина. М.: Наука, 1995. 368 с.
- 12. Jarvis I., Burnett W.C., Nathan Y. et al. // Eclog. geol. helv. 1994. V. 87. № 3. P. 643–700.
- 13. Bruland K.W. // Chem. Oceanogr. 1983. V. 8. P. 157-220.
- 14. Волков И.И., Жабина Н.Н., Демидова Т.П., Соколов В.С. В сб.: Геохимическая деятельность микроорганизмов в осадках Тихого океана. Пущино: Науч. центр биол. иссл. АН СССР, 1981. С. 92–133.
- 15. *Батурин Г.Н., Розанов А.Г. //* Океанология. 2003. Т. 43. № 1. С. 35–43.